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With the increasing number of contaminants in the marine environment, various experimental organisms have been “taken into
labs” by investigators to find the most suitable environmentally relevant models for toxicity testing. The marine medaka, Oryzias
melastigma, has a number of advantages that make it a prime candidate for these tests. Recently, many studies have been conducted
onmarinemedaka, especially in terms of their physiological, biochemical, andmolecular responses after exposure to contaminants
and other environmental stressors. This review provides a literature survey highlighting the steady increase of ecotoxicological
research on marine medaka, summarizes the advantages of using O. melastigma as a tool for toxicological research, and promotes
the utilization of this organism in future studies.

1. Introduction

Estuaries and coastal waters are contaminated by high levels
of anthropogenic pollutants [1], creating an urgent need for
ecotoxicological studies of marine pollution. The ecotoxico-
logical characteristics of pollutants in saltwater and freshwa-
ter environments are different.Theparameters of seawater are
significantly different from those of freshwater (i.e., salinity,
density, buoyancy, pH, ionic strength, and dissolved oxygen
(DO)), and these differences impact the ecotoxicological
characteristics of the pollutants, such as the packing fraction
and size, the distribution of the contaminants in liquid and
solid phases, and the bioaccumulation of the contaminants
[2–4].

In addition, the studies of the organisms living in the
two different environments have also presented different
results. AlthoughOryzias latipes (freshwater fish) andOryzias
melastigma (seawater fish) are closely related, their branchial
FXYD domain-containing ion transport regulator (FXYD)
proteins exhibit divergent expression patterns [5]. Kif7 is not
expressed in O. melastigma but is highly expressed in the
brain of zebrafish, which is a freshwater fish [6]. There is an

inverse correlation between the muscle water contents
(MWC) and salinity in O. latipes; however, the two param-
eters are not related in O. melastigma [7]. Exposure to per-
fluorooctane sulfonates (PFOS) shortened the hatching time
and increased the hatching rate of O. melastigma but had the
opposite effects in zebrafish [8–10]. These differences illus-
trate that ecotoxicological results from freshwater environ-
ments cannot be directly applied to the marine environment.
At present, aquatic toxicological research is largely carried out
under freshwater environmental conditions, and research in
the marine environment is urgently needed.

The biologic impact of toxic pollutants on fish is an imp-
ortant area of study in ecotoxicology. Fish models, such as
zebrafish (Danio rerio), tilapia (Oreochromis niloticus), and
rainbow trout (Oncorhynchus mykiss), have been widely used
for ecotoxicological studies in the freshwater environment.
Although some estuarine species, for example, Corophium
acherusicum, Enteromorpha linza, and Ctenogobius giurinus,
can be used for the study of ecotoxicology inmarine environ-
ments, the research still lags well behind that in freshwater
environments, and problems such as species specificity and
the lack of genetic information in these species do exist.
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O. melastigma, also namedO. dancena or Indianmedaka,
has many advantages as a fish model in marine toxicological
research. This review summarizes the advantages and
research findings of marine toxicological studies using O.
melastigma and encourages further investigation of ecotox-
icology in the marine environment using this fish model.

2. Advantages of O. melastigma as a Research
Model in Toxicological Studies

O. melastigma originates from the coastal waters and fresh
waters of Pakistan, India, Myanmar, and Thailand. In clas-
sification, O. melastigma and O. latipes belong to the order
Beloniformes, family Adrianichthyidae and genera Oryzias.
The embryo of this species has been identified as an important
tool for toxicology investigations by the regime of ILSI
Health andEnvironmental Sciences Institute (HESI). As a fish
model, it shares many advantages as follows.

(1) O. melastigma is small in size (4.5 to 23mm) and
has a short generation time (2-3 months). These
characteristics make it available to culture on a large
scale under laboratory conditions (30‰ artificial
seawater, 28 ± 1∘C, and in a 14 h light: 10 h dark
cycle). The relatively large eggs and transparent color
simplify experimental observations and operations,
such as observing developmental changes during each
stage of growth [11].

(2) O. melastigma has distinct sexual dimorphism, and
the morphology of the anal fin is very prominent
approximately 1 month after hatching, rendering it
highly desirable for gender studies [12]. Researchers
have recommended that future risk evaluation of
immune-modulatory chemicals must include parallel
assessment of both genders. This makes O. melas-
tigma, owing to its characteristics of distinct gender
dimorphism and the presence of sex-determining
Dmy gene of its homologous species O. latipes, suit-
able for toxicity evaluation [13].

(3) O. melastigma possesses strong environmental toler-
ance. This organism is capable of adapting to a wide
range of temperatures; thus, mutants can be derived
that are conveniently temperature sensitive [14]. O.
melastigma has the ability to survive in aquatic envi-
ronments with a wide range of salinity. Although O.
latipes can adapt to varying salinity environments to
some degree, the adaptive capacity of O. latipes is
lower than that of O. melastigma, which can thrive in
water of varying salinity ranging from 0 to 35 ppt [1].

(4) The eggs and larvae of O. melastigma are sensitive to
many environmental pollutants. If the specific sen-
sitive gene responding to pollutants or other envi-
ronmental stresses can be identified at the molecular
level, then environmental pollution can be quickly
identified. The molecular staging of O. melastigma
embryos, focusing on the heart, pectoral fin, brain,
eye, pancreas, muscle, liver, and neuron system, has
been fully described [15].

(5) Studies ofO. latipes in anatomy, physiology, and other
aspects have been increasingly extensive and system-
atic, and the genome sequences of O. latipes have
been completed. Many common characteristics exist
between O. latipes and O. melastigma in phylogeny;
thus, the brackish O. melastigma can serve as a good
marine fishmodel for developmental studies by utiliz-
ing the resources developed from O. latipes. The cor-
responding genetic chip information ofO.melastigma
has been acquired which makes it convenient for the
study ofO.melastigma [1, 14, 16]. Additionally, homol-
ogous species could be fully used for comparative
biology, in a similar manner to Drosophila, for which
the genome analysis of multiple species has greatly
promoted the study of comparative biology [14, 17].

All of these advantages enhance the potential of O.
melastigma to be a competent model organism in marine
ecotoxicology.

3. The Research Background of
O. melastigma in Molecular Biology

Sharing a high degree of similarity, most of the research
findings of the congeneric species of O. melastigma, such as
O. latipes, could be applied to O. melastigmamostly. Notably,
even though O. melastigma is similar to the other medaka
species, some differences still exist. For example, omChgh is
characterized by eight exons and seven introns, while the
second isoform of the Chgh gene has only seven exons in the
O. latipes genome [6, 18, 19]. Dlx2 is expressed only in the
telencephalon and diencephalon of O. melastigma, while it is
also expressed in the rhombencephalon of O. latipes [1]. O.
latipes and O. melastigma share completely identical peptide
sequences but bear very different glycan structures [19]. This
phenomenon suggests that further exploration of the marine
medaka genome and proteome is needed [20].

3.1. The Research Background of O. melastigma Genes. A
substantial number of molecular biological studies for O.
melastigma are being conducted. The complete mitochon-
drial genome of O. melastigma has been obtained from the
genome data sequenced by next-generation sequencers [21].
A batch of organ-specific molecular markers have also been
identified, such as the makers for brain, eyes, heart, liver,
and muscle [15]. These markers can be used to indicate the
developmental status of specific organs, and their abnormal
expression can be used to indicate the toxicity of pollutants
on organ development. Chen et al. [1] analyzed the expression
of 11 organ-specific expression genes during each period
of embryonic development by in situ hybridization (ISH)
and determined that 8 of the 11 genes are similar to those
expressed during the embryonic development of zebrafish
and O. latipes.

In addition to the above specified genes of organ devel-
opment, some functional genes in different tissues have
been analyzed as well (Table 1). Some immune-related genes,



BioMed Research International 3

Table 1: Expression of the cloned genes of O. melastigma in different tissues under various environmental stresses.

Functions Genes Exposed tissues Exposed to References
Reference genes 18S, Rpl7, and 𝛽-actin

Hypoxia-responsive

Telomerase reverse transcriptase (Tert)
Ovary, liver, testis, kidney,
gill, brain, spleen, intestine,

eye, muscle, and skin
Hypoxia [16, 22]

Hypoxia-inducible factor-1𝛼 (Hif 1𝛼) Liver, testis Hypoxia [22]
Erythropoietin (Epo) Liver, testis, and embryos Hypoxia, PFOS [22, 23]

Leptin receptor (Lepr)

Liver, gill, heart, kidney,
gill, brain, spleen, intestine,
eye, muscle, ovary, and

testis

Hypoxia [24]

Hemoxygenase-1 (Ho) Liver, gill, and heart WAFs, Hypoxia [24, 25]

Immune toxicity

Glutathione peroxidase (Gpx) Embryos PFOS [26]
Catalase (Cat) Embryos PFOS [26]

Uncoupling protein 2 (Ucp2) Embryos PFOS [26, 27]
Cyclooxygenase-2 (Cox2) Embryos PFOS [26]

Peroxisome proliferator-activated
receptors(Ppars): Ppar𝛼, Ppar𝛽, and

Ppar𝛾
Embryos, whole fish PFOS, WAFs [25, 26, 28]

Complement-related
genes

Lectin, mannose-binding 2 (Mbl2) Liver PBDE-47 [29]
Cyan fluorescent protein (Cfp) Liver PBDE-47 [29]

Complement component: C1r/s, C3, C9,
C3-2, C4, C1q, C5, C8, C1 inhibitor Liver PBDE-47, Vibrio

parahaemolyticus [29, 30]

Prothrombin (F2) Liver [30]

Complement factor: Hf, Bf Liver Vibrio
parahaemolyticus [30]

Hepcidin (Hep): Hep1, Hep2
Liver, spleen, gill, intestine,
ovary, testis, brain, and

embryos

Vibrio
parahaemolyticus [30]

Mannose-binding lectin-associated serine
protease (Masp) Liver Vibrio

parahaemolyticus [30]

Inflammation-related
genes

Tumor necrosis factor-𝛼 (Tnf𝛼) Embryos PFOS, BPA [26, 31]
Interleukin (Il): Il1𝛽, Il8 Embryos PFOS, BPA [26, 31]

CC chemokine eotaxin-1 (Ccl11) Embryos BPA [31]
Superoxide dismutase (Sod) Embryos PFOS, BPA [26, 31]

Osmoregulatory
mechanism

Na+/K+-ATPase (Nka) Gill, embryos BPA, SW (35‰), BW
(15‰), and FW (0) [7, 31, 32]

Na+, K+, 2Cl− cotransporter (Nkcc):
Nkcc1a, Nkcc1b, and Nkcc2

Gill, liver, testis, intestine,
ovary, brain, muscle,

kidney, heart, Fin, and eye

SW (35‰), BW
(15‰), and FW (0) [32]

FXYD domain-containing ion transport
regulator (Fxyd): Fxyd5, Fxyd6, Fxyd7,
Fxyd8, Fxyd9, Fxyd11, and Fxyd12

Gill, intestine, kidney,
brain, eye, liver, and caudal

fin

SW (35‰), BW
(15‰), FW (0) [5]

Cardiac
development-related
genes

NK2 transcription factor related 5
(Nkx2.5) Embryos PFOS, BPA [23, 31]

Cyclooxygenase (Cox): Cox1, Cox2 Embryos PFOS, BPA [23, 31]
ATP synthase Embryos PFOS [23, 27]

Bone morphogenetic protein (Bmp4) Embryos PFOS, BPA [23, 31]
Fibroblast growth factor 8 (Fgf8) Embryos PFOS, BPA [23, 31]
GATA-binding protein 4 (Gata4) Embryos PFOS, BPA [23, 31]

Leptin receptor (Lerp) Embryos BPA [31]
SET and MYND domain containing 1

(Smyd1) Embryos PFOS [23]
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Table 1: Continued.

Functions Genes Exposed tissues Exposed to References

Metabolisms

Cytochrome P450 (Cyps) Liver, gill, embryos,
intestine, and ovary PFOS, WAFs [25, 28, 33]

Aldehyde dehydrogenase (Aldh) WAFs [25]
Glutathione S-transferase (Gst): Gsta,

Gstk, Gsto, Gstt, and Gstz WAFs [25]

Sulfotransferase (Sult): Sult1, Sult2
cytosolic, Sult2b1, Sult2b2, Sult3 cytosolic,

Sult3-like, Sult4a1, and Sult6b1
WAFs [25]

UDP-glucuronyltransferases (Ugts): Ugt1b,
Ugt2a, Ugt2a2, Ugt2a3, Ugt2b33,
Ugt2b3-like, Ugt5a1, and Ugt5g1

WAFs [25]

Hydroxysteroid dehydrogenase (Hsd):
3𝛽-Hsd, 11 𝛽-Hsd, and 17𝛽-Hsd WAFs [25]

Aryl Hydrocarbon Receptor (Ahr): Ahr1,
Ahr2 Embryos, whole fish PFOS, WAFs [25, 28]

5 𝛼-reductase (Srd5a) WAFs [25]
Steroidogenic acute regulatory protein

(Star) WAFs [25]

ATP-binding cassette (Abc): Abcb1, Abcc2,
Abcc3, Abcc4, and Abcg2 WAFs [25]

Heat shock protein (Hsp): Hsp10, Hsp22,
Hsp27, Hsp30, Hsp60, Hsp70, Hsp75,
Hsp90a, Hsp90𝛽, Hsp𝛽7, and Hsp𝛽11

WAFs [25]

Choriogenin H and L (Chgh and Chgl) Liver, embryos, and larvae PFOS, E2, EE2, BPA,
and NP [28, 34]

Kinesin superfamily7 (Kif7) Brain, kidney, liver, muscle,
ovary, and testicle [6]

Aryl hydrocarbon receptor nuclear
translocator (Arnt) Embryos PFOS [28]

Vitellogenin (Vtg) Embryos, liver, gill,
intestine PFOS [28]

Estrogen receptor (Er) Embryos PFOS [28]
Horiolysin H and L (Hce and Lce) Embryos PFOS [10]

Notes: 2,2,4,4-tetrabromodiphenyl ether (PBDE-47), bisphenol A (BPA), polycyclic aromatic hydrocarbons (PAHs), sea water (SW), fresh water (FW),
brackish water (BW), 17𝛽-Estradiol (E2), 17𝛼-ethinylestradiol (EE2), 4-nonylphenol (NP).

including complement-related genes and inflammation-
related genes, have been analyzed. Bo et al. used suppres-
sion subtractive hybridization (SSH) to identify differentially
expressed immune genes in the liver of O. melastigma
infected with Vibrio parahaemolyticus [30]. Based on an
NCBI BLAST search of the 1279 sequenced clones in the SSH
libraries, 396 genes were identified, and 38 were involved in
the immune process. Additionally, genes involved in cellu-
lar metabolism, biological regulations, general response to
stimuli, transport processes, signal transduction, and cellular
component organization were obtained [30]. Some genes
related to metabolism, osmoregulatory and cardiac devel-
opment in O. melastigma have also been submitted. Whole
omCyp genes were registered at the GenBank database. To
date, various Cyp gene families have been identified. The
transcript profiling of whole omCyp genes has been finished
for O. melastigma exposed to water accommodated fractions
(WAFs) of Iranian crude oil [25, 33].

Second generation high-throughput sequencing tech-
nology has greatly enhanced the ability to obtain genetic
information. Huang et al. extracted RNA fromO. melastigma
following exposure to pollutants during various developmen-
tal periods and used Illumina high-throughput sequencing
to obtain 6GB data. They performed bioinformatics analyses
and identified a large number of toxicology-related genes,
thus providing a broad molecular basis for further toxicolog-
ical investigations [27].

Differentially expressed genes can be largely obtained in
fish after exposure to pollutants using gene chip technology.
Chinese scholars have constructed a dedicated gene chip
for O. melastigma, which contains 180 genes related to cell
division, detoxification reactions, hypoxia response, oxidative
stress, apoptosis, growth, sex determination, gonadal differ-
entiation, and reproductive hormone secretion [35].This chip
includes the most common marker genes for toxicological
studies and can be used effectively for gene screening with
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differential expression. Using newly developed sequencing
technology (Illumina RNA-Seq) and digital gene expression
(DGE) technology, a total of approximately 145 thousand
unigenes were obtained with 565 bp of unigene N50 [27],
which were further enriched in various molecular pathways
involved in the response to PFOS exposure and related to
neurobehavioral defects, mitochondrial dysfunction, and the
metabolism of proteins and fats.

3.2. The Research Foundation of O. melastigma Proteins. The
detection of protein expression levels requires correspond-
ing antibodies. Because of the conservation of homologous
proteins, antibodies have certain commonalities in allied
species. The antibody library of zebrafish has been relatively
completed; thus we can use them to directly screen for the
specific antibody that reacts with the homologous protein in
O. melastigma, avoiding the tedious processes of antibody
preparation. Through immunohistochemical assay (IHCA)
screening of whole embryos, 17 types of zebrafish antibodies
can cause specific immune reactions with O. melastigma.
These antibodies have a close relationship with the devel-
opment of nerve, heart, and brain, providing a basis for
toxicological research on protein levels [15, 16]. In addition,
mouse anti-human TERTmonoclonal antibody mAb476 can
specifically combine with the TERT protein ofO. melastigma
[16].

The tissue distribution of the protein expression in O.
melastigma under various environment stresses has been
partly finished intuitively by WB, IHCA, and matrix-assisted
laser desorption/ionization tandem time-of-flight mass spec-
trometry (MALDI-TOF/TOF MS) (Table 2). The expression
of the TERT protein in the cytoplasm and nucleus of O.
melastigma can be quantified by Western blotting (WB) [41].
Kong et al. observed the TERT protein expression of O.
melastigma in the testis, ovary, muscle, brain, gill, intestine,
kidney, and liver of adult fish using IHCA [16]. Proliferating
Cell Nuclear Antigen (PCNA) is the proteinmarker reflecting
cell proliferation, which can be detected by means of IHCA
in O. melastigma. Experimental results showed a significant
correlation between PCNA and TERT in transcriptional
and translational expression levels [11]. PCNA detection can
also reflect the spatial and temporal characteristics of O.
melastigma embryonic development [15].

Proteomics refers to the research method of identifying
protein characteristics on the large-scale level, and it has
become one of the hot spots of aquatic toxicology [39]. Quan-
titative proteomic analysis demonstrated that hepatotoxicity
caused by Hg might involve oxidative stress, cytoskeleton
impairment, and energy metabolism alteration, highlighting
that the fish liver might be an important target for Hg attack.
And proteins such as cathepsin D, GST, and peroxiredoxin-
1 responding to Hg treatment in a dose-dependent manner
could be used as potential biomarkers of aquatic Hgmonitor-
ing [38]. Exposure to PbTx-1 resulted in the alteration of the
protein expression involved in cell structure, macromolecule
metabolism, neurotransmitter release, and the distribution
of signal transduction which may help explain the damage
mechanisms of aquatic toxins in fish [36].

4. Utilization of O. melastigma in
Toxicological Studies

O.melastigma has been used as a researchmodel for assessing
multiple responses to stresses of organic chemicals, inorganic
chemicals, detrimental organisms, and environmental stress
(Table 3).The toxicity responses ofO.melastigma are different
from some species under environmental stresses, which may
even have a totally opposite effect (Table 4).

4.1. Toxicological Studies for Organic Chemicals. The chorio-
genin of teleost fish is considered to be part of the structural
interlayer of chorionic precursor cells, which are sensitive to
estrogenic contaminants. It increased the expression of the
egg-shell precursor protein gene in the liver when exposed to
a high concentration of 17𝛽-Glycol and 17𝛼-ethinyl estradiol
[34]. The Chgh and Chgl of O. melastigma are sensitive to
exposure to estradiol and nonylphenol, and the response of
the male fish is more sensitive compared to the female. This
indicates that the two genes can be used as sensitive biomark-
ers to detect pollution levels of estrogen contaminants in the
marine environment [34].

TheWAF exposure induced CYP-involved detoxification
effects but reduced CYP-involved steroidogenic metabolism
in the marine medaka. As well-characterized biomarkers
of toxicants exposures, omCyp1a and omCyp1b were highly
induced following WAF exposure [25, 43]. Some previous
studies have shown potentially synergistic effects after coex-
posure of O. melastigma embryos to CYP1A inhibitors and
PAH-type CYP1A inducers [43]. The acute aquatic toxicity
of some seawater organisms exposed to polycyclic aromatic
hydrocarbons (PAHs) in the laboratory is summarized in
Table 5. Distinctly, O. melastigma showed high tolerance to
PAHs compared to other species.The heart elongation (heart
tube) of O. melastigma embryos and heart deformities of
these juvenile fishes have been recommended as potential
biomarkers of the existence of PAH pollution by Mu et al.
[43].

Studies quantified the endogenous expression of all six
complement system genes including C1r/s, Mbl2, CfpF2, C3,
and C9, in the liver of marine medaka and found that the
expression levels were higher in males than in females. BDE-
47 exposure downregulates the expression of all six genes in
males, while in females the expression of Mbl2, Cfp, and
F2 mRNAs was upregulated and C3 and C9 remained stable
with exposure time and dose. These results indicate that the
future direction for fish immunotoxicology should include
parallel assessment for both genders [29]. Two hepcidins in
O. melastigma play a complementary role in the innate
defense system. Gender specificity should be taken into
consideration in immunotoxicological studies in time and
extent of induction of the two hepcidin genes in infected O.
melastigma [48].

PFOS has estrogenic activity and endocrine-disruptive
properties that elicit transcriptional responses on POPs-
related pathways in a stage-specific manner [61–63]. The
marine biological toxicity of PFOSwas systematically studied
by Dong et al. using O. melastigma [10, 23, 26–28]. Their
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Table 2: Expression of proteins in different tissues of O. melastigma under various environmental stresses.

Related functions Proteins Expression tissues and exposure
condition

References

Cell structure
Histone-binding protein RBBP4 Gill (Br) [36]

Gelsolin Gill, brain (Br) [36]

Krt4 protein Gill (Br) [36]

Oxidative stress response

Hemoglobin beta chain Gill (Br) [36]

Histone H3 Gill (Br) [36]

Glial fibrillary acidic protein Brain (Br) [36]

Keratin 15 [KRT15] Brain (Br), liver (Hg) [36, 37]

Zgc: 65851 Brain (Br) [36]

Type I cytokeratin, enveloping layer [CYT1] Brain (Br), liver (Hg) [36, 37]

Myosin light chain 2 Brain (Br) [36]

Tropomyosin alpha-3 chain Brain (Br) [36]

𝛼-Tubulin 1 Liver (Hg) [37]

Keratin 8 Liver (Hg) [37]

𝛼-Actin Liver (Hg) [37]

Keratin 18 Liver, brain (Hg) [37]

𝛽-Actin Liver, brain (Hg) [37]

Type I keratin-like protein Liver (Hg) [37]

Lamin type B Liver (Hg) [37]

Krt5 protein Brain (Hg) [37]

Type II basic cytokeratin Brain (Hg) [37]

Keratin K10 [KRT10] Liver (Hg) [38]

Novel protein similar to vertebrate plectin 1 [PLEC] Liver (Hg) [38]

Peroxiredoxin 4 Liver (Hg) [38]

Peroxiredoxin 6 Liver (Hg) [38]

Glutathione S-transferase [GSTR] Liver (Hg) [38]

SOD [Cu-Zn] Liver (Hg) [38]

Aldehyde dehydrogenase 1 family, member A2 Brain (Hg) [38]

Aldehyde dehydrogenase, mitochondrial Brain (Hg) [38]

Peroxiredoxin-2 [PRDX2] Liver (Hg) [38]

Natural killer enhancing factor Liver (Hg) [37]

Peroxiredoxin-1 [PRDX1] Liver (Hg) [38]

DJ-1 protein [DJ-1] Liver (Hg) [38]

Cathepsin D [CTSD] Liver (Hg) [38]

proliferating cell nuclear antigen [PCNA]
Testis, muscle, kidney, liver Cheek,
brain, intestine, and ovary embryo
during each development period (H)

[16, 39]

Telomerase Reverse Transcriptase [TERT] Testis, brain, muscle, gill, intestine,
kidney (N), and liver (H)

[16]

superoxide dismutase [SOD] Whole fish (Z) [40]

Metallothionein [MT] Whole fish (Z) [40]

heat shock protein 70 [HSP70] Whole fish (Z) [40]
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Table 2: Continued.

Related functions Proteins Expression tissues and exposure
condition

References

Metabolism

ApoA-IV4 Gill (Br) [36]

Aldose reductase Gill, brain (Br) [36]

Pyruvate carboxylase Brain (Br) [36]

Dpysl5a protein Brain (Br) [36]

Triosephosphate isomerase Brain (Br) [36]

Enolase Brain (Br) [36]

Glutamine synthetase Brain (Br, Hg) [36, 37]

Isovaleryl coenzyme A dehydrogenase Brain (Br) [36]

Glyceraldehyde 3-phosphate dehydrogenase Brain (Br) [36]

Homogentisate 1,2-dioxygenase Liver (Hg) [37]

Alanyl-tRNA synthetase, cytoplasmic Liver (Hg) [37]

Dihydrolipoamide S-acetyltransferase Liver (Hg) [37]

Adenosylhomocysteinase Liver (Hg) [37]
Pyruvate dehydrogenase E1 component subunit

alpha, somatic form, mitochondrial Liver (Hg) [37]

Brain-type fatty acid binding protein Liver (Hg) [37]

Methionine adenosyltransferase-like Liver (Hg) [37]

S-formylglutathione hydrolase Liver (Hg) [37]

Apolipoprotein A1 Brain (Hg) [37]

Pyruvate kinase Brain (Hg) [37]

Dihydropyrimidinase-related protein 5 Brain (Hg) [37]

Dihydropyrimidinase-like 2 Brain (Hg) [37]

Enolase 1, (alpha) Brain (Hg) [37]

Creatine kinase, brain b Brain (Hg) [37]

Total glutathione [GSH] Whole fish (W) [25]

Glutathione S-transferase [GST] Whole fish (W) [25]

Sulfotransferase [SULT] Whole fish (W) [25]

Superoxide dismutase [SOD] Whole fish (W) [25]

Glutathione reductase [GR] Whole fish (W) [25]

Glutathione peroxidase [GPx] Whole fish (W) [25]

Catalase, CAT Whole fish (W) [25]

ATP synthase subunit d, mitochondrial [ATP5H] Liver (Hg) [38]
Electron-transferring-flavoprotein dehydrogenase

[ETFDH] Liver (Hg) [38]

Electron transferring flavoprotein subunit alpha,
mitochondrial [ETFA] Liver (Hg) [38]

Pyruvate dehydrogenase (lipoamide) beta [PDHB] Liver (Hg) [38]
Phytanoyl-CoA dioxygenase domain-containing

protein 1 [PHYD1] Liver (Hg) [38]

Delta3,5-delta2,4-dienoyl-CoA isomerase,
mitochondrial [ECH1] Liver (Hg) [38]

Phosphorylase [PYGB] Liver (Hg) [38]

Formimidoyltransferase-cyclodeaminase [FTCD] Liver (Hg) [38]
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Table 2: Continued.

Related functions Proteins Expression tissues and exposure
condition

References

Signal transduction

Putative transient receptor protein 2 Gill (Br) [36]

Myosin regulatory light chain 2 Gill (Br) [36]

FXYD domain-containing ion transport regulator Gill (S) [5]

NKCC1a-like protein Gill (S) [32]

NKA 𝛼-subunit Gill (S) [7, 32]

Grancalcin Gill (Br) [36]

Protein modification

Myosin light chain 2 Gill (Br) [36]

Calreticulin, like 2 Gill (Br) [36]

Transforming protein RhoA Brain (Br, Hg) [36, 37]

Calmodulin Brain (Br) [36]

Annexin 4 Liver (Hg) [37]

14-3-3E1 protein Liver (Hg) [37]

14-3-3 protein Liver (Hg) [37]

Annexin A13 Brain (Hg) [37]

Cytosolic nonspecific dipeptidase Liver (Hg) [37]

Proteasome alpha 1 subunit Liver (Hg) [37]

HSP-90 Brain (Hg) [37]

Other function related

Chaperonin containing TCP1, subunit 8 (theta) Brain (Hg) [37]

Beta-synuclein Brain (Br) [36]

SH3-domain GRB2-like endophilin B2 Brain (Br) [36]

Complement component C3-1 Liver (Hg) [37]

Carbonic anhydrase 1 Brain (Hg) [37]

ATPase, H+ transporting, V0 subunit D isoform 1 Brain (Hg) [37]

Transferrin Brain (Hg) [37]
Eukaryotic translation initiation factor 3, subunit 2

beta [EIF3S2] Liver (Hg) [38]

Histone H4 Liver (Hg) [38]

Ependymin [EPD] Liver (Hg) [38]

GammaN1 crystallin [CRYGN1] Liver (Hg) [38]
Notes: the abbreviations in parentheses mean the protein expression in the environment of exposure to normal (N), hypoxia (H), brevetoxins (Br), HgCl2 (Hg),
salinity (S), nZnO (Z), and WAFs of Iranian crude oil (W).

results showed that exposure to PFOS could induce the hatch-
ing enzyme both at transcriptional and enzymatic activity
levels and further lead to decreases of average hatching time
and increases of the average hatchability of O. melastigma
embryos, which in turn induced the mortality of the larvae
hatched from exposed embryos. All of these effects were
dose dependent [10]. They also found that PFOS is toxic
to the development of the cardiovascular system of O.
melastigma, affecting the expression of cardiac development-
related genes, morphological development, and function of
the heart in the marine medaka [23].

Some research has also been conducted in their lab-
oratory with embryos exposed to low concentrations of

bisphenol A (BPA). The result showed that the expression of
heart development-related genes and inflammation-related
genes inO.melastigmawas altered, the body length andwidth
decreased, and the larvae exhibited inflammation foci in the
heart ventricles [31].

4.2. Toxicological Studies for Inorganic Chemicals. Subacute
toxicity experiments with ambient concentrations of pollu-
tants are often closer to environmental value and thus have
great significance in toxicological evaluation. In evaluating
the toxicity of ZnO, researchers evaluated the subacute
toxicity of two zinc oxides on the expression of SOD, MT,
and HSP70 in O. melastigma and found that the two zinc
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Table 4: Comparative toxicity of O. melastigma and other species under various stresses.

Exposing to O. melastigma Other species References

PFOS

Hatched in advance and hatching rate
increased.

Hatch was delayed and hatching rate was not affected or
decreased in zebrafish. [8–10]

Ke in the larvae ranged from 0.04/d to
0.07/d.

Ke ranged from 0.053 to 1.700 L/kg/d in blood, kidney,
liver and gall bladder and from 0.02 to 0.23/d in carcass
and liver concentrations in rainbow trout
(Oncorhynchus mykiss).

[51–53]

Did not alter Epo Led to high mortality in zebrafish [23]

Phe, Pyr, and BaP NOEC values were 50, 25, and 10 𝜇g/L,
respectively.

NOEC values were 10, 50, and 1.8 𝜇g/L, respectively, in
the water flea (Tigriopus japonicus). [54]

E2 The mRNA level of 3Bhsd (steroidogenic
enzymes) was increased.

Decreased the production of 11-KT and mRNA levels of
steroidogenic enzymes in zebrafish and decreased the
production of testosterone in human

[55–57]

DWNTs
Growth inhibition was observed at
10mg/L for so-DWNTs but not for
st-DWNTs.

Population growth was reduced to 0.1mg/L for
so-DWNTs and 10mg/L for st-DWNTs in the water flea. [23]

nZnO Lack of change was observed in the SOD
activities.

SOD activities were decreased for the first few days but
recovered soon in O. latipes and were also significantly
depleted in mouse embryo fibroblast cells, more toxic in
Skeletonema costatum andThalassiosira pseudonana,
and less toxic in Elasmopus rapax and the water flea.

[40]

Cercariae Did not infect
Infected in liver and kidneys of Channa punctatus,
infected in the muscles of Cliona orientalis, and did not
infect in Puntius sophore and Gambusia affinis

[58]

Salinity Prefers hypoosmotic conditions Prefers hyperosmotic conditions in Javanese medaka
(Oryzias Javanicus) [11, 59]

MWC was constant with the increase of
salinity in O. melastigma.

MWC was decreased with the increase of salinity in O.
latipes. [7]

Hypoxia HAS was not present. HAS was identified in zebrafish and Fugu. [60]
3Bhsd and Cyp19amRNA expression
upregulation

3Bhsd and Cyp19amRNA expression was reduced in
zebrafish. [55]

Notes: the elimination rate constant (Ke); No Observed Effect Concentration (NOEC); 11-ketotestostrone (11-KT); HIF-1 ancillary sequence (HAS).

oxides show differences in the induction of three proteins
[40]. In the toxicity assessing, double-wall carbon nanotubes
(DWNTs) (10mg/L) following ultrasonic treatment inhibited
the growth of O. melastigma larvae [46].

O. melastigma is also used in the evaluation of heavy
metal toxicity. The 96 h LC50s of this fish following exposure
to Cu2+, Cd2+, Hg2+, Cr6+, Pb2+, and Zn2+ are shown in
Table 6, from which we could determine that O. melastigma
has a strong sensitivity to metal stress compared to other
marine species. Toxicity detection of O. melastigma for
copper, tributyltin (TBT), and five commonly used antifoul-
ing fungicides, including s-triazine, diuron, pyrithione zinc,
copper pyrithione, and chlorothalonil, indicate that the 96 h
LC50 of this fish’s tolerance for copper, s-triazine, and diuron
is at the level of mg/L, while others are 𝜇g/L [91]. Exposing
fertilized eggs and newly hatched O. melastigma juveniles to
Cd2+, Hg2+, Cr6+, and Pb2+ significantly reduced the hatching
ability of the embryos and the heart rates above a certain con-
centration [47]. Metal accumulation of inorganic mercury in
the liver and brain of O. melastigma induced oxidative stress,
cytoskeletal reorganization and/or disruption, dysfunction in
metabolism, protein modification, signal transduction, and
other related functions [37, 38].

4.3. Toxicological Researches for Detrimental Organisms. The
median lethal time (LT50) of O. melastigma is treated as an
indicator of pollutant toxicity for toxicological comparison
and correlation analysis. In addition, the acute toxicity test
can provide the appropriate dose for the study of molecular
toxicological mechanisms, such as the determination of the
24 h LC50 value in O. melastigma exposed to brevetoxins
(PbTxs). These concentrations of PbTxs can be determined
in follow-up proteomics studies [36].

ISH showed that Vibrio parahaemolyticus would induce
the expression of hepcidin genes in the nuclei and cytoplasm
of liver cells ofO.melastigma [48]. It is also used to character-
ize the toxicity of the toxins generated by Chattonella marina
andKarenia brevis. Test fishes exposed to the toxins generated
byC.marina exhibit hyperventilation, while those exposed to
the toxins generated byK. brevis exhibit hypoventilation [49].
With the assistance of the proteomic approach combined
with other methods, the toxicological mechanism of aquatic
toxins in marine organisms will be elucidated easily and
conveniently [36].

4.4. Toxicological Studies for Environmental Stress. O.
melastigma can serve as a marine fish model for assessing
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Table 5: Acute toxicity data (96 h LC50/EC50) of seawater organisms exposed to PAHs.

Scientific name LC50/EC50 PAHs (𝜇g/L) References
Phe Pyr BaP

Corophium acherusicum LC50 310 49 — [54]
Neomysis awatschensis LC50 130 — — [54]
Tigriopus japonicus LC50 546 174 3.46 [54]
Neomysis awatschensis LC50 — 15.2 — [54]
Nitzschia closterium EC50 71.5 56.8 51 [54]
Enteromorpha linza EC50 2070 209 286 [54]
Oncorhynchus mykiss LC50 3200 2000 — [64]
Acanthogobius lactipes LC50 295 — — [54]
Ctenogobius giurinus LC50 — 13.1 — [54]
O. melastigma LC50 6399 3127 5705 [54]
Sparus macrocephalus LC50 800 — — [54]
Strongylocentrotus intermedius LC50 520 — — [54]
Hemicentrotus pulcherrimus LC50 — 1.056 1.56 [54]
Notes: median lethal concentration (LC50); median effective concentration (EC50).

Table 6: Acute toxicity data (LC50, mg/L) of metals in various species.

Species Exposure ages LC50 (mg/L) References
Cu2+ Cd2+ Pb2+ Cr6+ Hg2+ Zn2+

Argopecten ventricosus Juvenile — 0.396 0.830 3.430 — — [65]
Chironomus furens Larvae 52.8 0.3 0.3 0.3 0.03 4.5 [66]
Chironomus plumosus Larvae 42.6 0.4 8.2 1 0.3 9.5 [66]
Chironomus riparius Adult 0.043 0.021 — — — — [67]
Cynoglossus semilaevis Postlarvae 0.025 0.178 1.026 — 0.045 1.18 [68]
Duttaphrynus melanostictus Larvae 0.03 0.3 4.2 — — 4.2 [69]
Echinogammars olivii Adult 0.25 — 0.62 — — 1.30 [70]
Farfantepenaeus paulensis Postlarvae — 0.83 — — — 3.31 [71]
Fundulus heteroclitus Postlarvae 1.7 18.2 188 — 0.068 129.5 [72–74]
Hyalella azteca Adult 0.21 0.013 — — — — [67]
Hexagenia spp. Adult 0.073 7.82 — — — — [67]
Liza vaigiensis Postlarvae — 3.7 138 — 0.0835 — [72]
Lutjanus argentimaculatus Juvenile — — 98 20.1 0.38 — [75]
Menidia menidia Juvenile — 6.3 — 91 0.112 — [75, 76]
Oreochromis niloticus Juvenile 0.80 — — — 0.82 — [77]
O. latipes Postlarvae — 5.6 — 12.4 — — [72]
O. melastigma Postlarvae 7.3 1.12 >20 1.456 0.097 43 [78]
Pagrosomus major Postlarvae 0.31 5.6 — — — 3.6 [79, 80]
Palaemon elegans Adult 2.52 — 5.88 — — 12.3 [70]
Penaeus indicus Postlarvae 0.8204 — 7.22 — — — [81, 82]
Penaeus monodon Postlarvae — 2.28 5.77–7.28 — — 3.02 [83, 84]
Penaeus penicillatus Larvae — 3.025 — — — 4.267 [85]
Poecilia reticula Juvenile 2.36 17.71 — 43.4 — — [86]
Penaeus setiferus Postlarvae 0.0308 — — — 0.017 — [87, 88]
Priopidichthys marianus Juvenile — — 140 31 0. 35 — [72]
Rivulus marmoratus Postlarvae 1.4 21.1 85.3 14.3 — 147.9 [72, 74]
Sphaeroma serratum Adult 1.98 — 4.61 — — 6.12 [70]
Sparus macrocephalus Larvae 0.2 0.3 — — — 1.8 [80]
Stenocypris major Adult 0.0252 0.0131 0.5262 — — 1.1898 [89]
Tubifex tubifex Adult 0.16 0.87 — — — — [67]
Zebrafish Adult 0.174 6.497 116.432 181.09 0.14 44.48 [86, 90]
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molecular responses to stresses in the marine environment.
Hypoxia upregulates omTert expression via omHIF-1 in the
liver and testis of nonneoplastic fish [22]. Significant changes
were observed in the transcription, translation, cell prolif-
eration, and apoptosis level of TERT in the liver of O.
melastigma exposed to hypoxic conditions for 3 months
[16]. Anoxic conditions can increase the expression of Tert
in the liver and testicular tissue of O. melastigma, which is
mediated by anoxia-induced factor-1 [24]. The expression of
leptin receptor gene exhibits tissue specificity when exposed
to hypoxia, and this gene was identified as a sensitive marker
gene for a hypoxic environment [22].

The experimental animal, marine medaka, is suitable
for studying the mechanism of hypoosmoregulatory. Studies
show that branchial omNkcc1a mRNA levels are induced
significantly with an increase in environmental salinities.
Salinity-dependent expression of Nkcc1a is in the branchial
mitochondria-rich (MR) cells of O. melastigma, which sug-
gests a critical role in hypoosmoregulatory endurance of this
fish [32]. Studies have also indicated that O. latipes exhib-
ited better hypoosmoregulatory ability, while O. melastigma
exhibited better hyperosmoregulatory ability. These results
support the hypothesis that the lowest branchial NKA activi-
ties of these two species were found in the environments that
have similar salinities to their natural habitats [7].

5. Conclusion

O. melastigma have biological characteristics such as small
size, high fecundity, short life cycle, sexual reproduction, and
distinctive life stages that would allow their use as a marine
fish model. Additionally, their ease of cultivation facilitates
the use of O. melastigma in independent laboratories. The
availability of knowledge on their sensitivity towards inor-
ganic and organic compounds and the increasingly complete
knowledge on their genes and proteins will also enhance
the potential of O. melastigma as suitable models in marine
aquatic ecotoxicology and toxicogenomics. Researchers have
demonstrated the potential application of O. melastigma as
an ideal marine test fish for marine pollution assessments
and ecotoxicological studies of organic chemicals, inor-
ganic chemicals, microorganism, and environmental stress
in relation to cardiac toxicity, hepatotoxicity, neurotoxicity,
ecotoxicity, immunotoxicity, and so forth.

O. melastigma can also serve as a model marine fish for
assessing multiple in vivo molecular responses to stresses in
the marine environment. O. melastigma showed high toler-
ance to PAHs and strong sensitivity to metal stress compared
to other species. The heart elongation of O. melastigma
embryo and omChgh and omLepr expression are used as
potential biomarkers to indicate PAH mixtures contami-
nation or an oil spill, estrogenic chemicals in the marine
environment, and growth and/or endocrine disruption in
this marine fish, respectively. The expression of the leptin
receptor gene, which was identified as a sensitive marker
gene for hypoxia environment, exhibits tissue specificity in
O. melastigma. We may be able to develop biomarkers for
more specific adverse effects that can be used for both eco-
toxicology and human health risk assessment because of the

high degree of evolutionary conservation among vertebrates
[92].

Although some toxicological research has been con-
ducted using this small fish species as a model, there is still
much to be studied. Fortunately, transcriptome analyses and
proteomic approaches, along with new methodologies in O.
melastigma, such as gene knockdown, gene overexpression,
gene chip technology, second-generation high-throughput
sequencing technology, RNA-Seq, and DGE technology, can
be expected to further accelerate the knowledge of the toxi-
cological mechanisms of aquatic toxins in marine animals in
the future. Demonstrating and understanding toxicity mech-
anisms in O. melastigma that are common between humans
and fish and wildlife are necessary if we are to integrate
findings from laboratory and ecotoxicology studies with
human health risk assessment.
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