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Abstract: Murine coronary arteries are very resistant to the development of atherosclerosis, which
may be related to their intramyocardial course. Blood pressure promotes atherosclerotic plaque
formation by acting as a physical force that potentiates the migration of pro-atherogenic lipopro-
teins across the endothelium. C57BL/6N apolipoprotein (apo) E deficient mice have increased
remnant lipoproteins that are a risk factor for coronary atherosclerosis. In this study, our aim was
to quantify coronary atherosclerosis and artery remodeling following transverse aortic constriction
(TAC) in C57BL/6N apo E−/− mice and to evaluate the impact of increased remnant lipoproteins on
the development of pressure overload-induced cardiac hypertrophy and heart failure. Advanced
atherosclerotic lesions were observed in the left coronary artery of C57BL/6N apo E−/− TAC mice
but not in C57BL/6N TAC mice. Pressure overload resulted in markedly increased cardiac hyper-
trophy and more pronounced heart failure in C57BL/6N apo E−/− TAC mice in comparison to
C57BL/6N TAC mice. Pathological hypertrophy, as evidenced by increased myocardial fibrosis and
capillary rarefaction, was more prominent in C57BL/6N TAC apo E−/− than in C57BL/6N TAC mice
and led to more marked cardiac dysfunction. In conclusion, TAC in apo E deficient mice induces
coronary atherosclerosis and aggravates the development of pathological cardiac hypertrophy and
heart failure.

Keywords: coronary atherosclerosis; pathological hypertrophy; heart failure; apolipoprotein E; remnant
lipoproteins; oxidative stress; cardiac dysfunction; pressure overload; transverse aortic constriction

1. Introduction

All pro-atherogenic lipoproteins contain apolipoprotein (apo) B. Retention of pro-
atherogenic lipoproteins within the vessel wall is the obligatory initiating event of atheroge-
nesis [1,2]. The retained lipoproteins trigger an inflammatory response that is accompanied
by lesion progression and the formation of advanced atherosclerotic plaques [2]. Apo
B-containing lipoproteins stick to the vessel wall mainly through electrostatic binding to
proteoglycans in the extracellular matrix. Ionic binding occurs between positively charged
amino acids in apo B-100 and the negatively charged glycosaminoglycans [3]. Furthermore,
there is a distinct functional proteoglycan-binding site on apo B-48, and apo B-48-containing
lipoproteins bind proteoglycans with similar affinity compared to apo B-100-containing
lipoproteins [4]. Areas prone to developing atherosclerotic lesions, such as branch sites,
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often contained distinct amounts and types of glycosaminoglycans [5]. In addition, gly-
cosaminoglycan composition differs between distinct vascular beds within one species
and within the same vascular bed between different species [5]. These observations may
partially explain the different susceptibility of different arteries to atherosclerosis within
the same species or differences in atherosclerosis susceptibility of the same artery between
different species.

Distinct cardiovascular risk factors may have a differential effect on the endothelial
cells and vascular smooth muscle cells at distinctive parts of the vascular tree [6]. Obser-
vational data from the Pathobiological Determinants of Atherosclerosis in Youth study
indicate that the effect of cardiovascular risk factors on atherogenesis is dependent on the
specific vascular bed [7–9]. Type III hyperlipoproteinemia, characterized by the presence
of large amounts of chylomicron remnants and very low-density lipoprotein (VLDL) rem-
nants, not only induces coronary atherosclerosis but also frequently leads to peripheral
vascular disease and cerebral vascular disease [10–12]. In contrast, type IIa hyperlipidemia
in patients with familial hypercholesterolemia characterized by increased levels of low-
density lipoprotein (LDL) cholesterol specifically induces atherosclerotic plaque deposition
in the coronary arteries and proximal aorta and does not lead to atherosclerosis in other
vascular beds when unescorted by additional cardiovascular risk factors [13]. The relative
atherogenicity of VLDL and LDL has been demonstrated to differ substantially in different
parts of the rabbit aorta in a direct comparison of two rabbit models with matched total
cholesterol levels but distinct amounts of VLDL cholesterol and LDL cholesterol [14,15].

A particular observation is that the coronary arteries of mice are very resistant to the
development of atherosclerosis [16]. Atherosclerotic plaques in humans predominantly
develop in the coronary and carotid arteries, whereas in mice, lesions are mainly local-
ized in the aortic sinus, the proximal aorta and the aortic arch, and the brachiocephalic
trunk [16]. An apparent exception to this rule is the fact that mice with homozygous
null mutations in the genes for both scavenger receptor class B, type I (SR-BI), and apo E
develop severe occlusive, fibrin-containing coronary arterial lesions but all die by 8 weeks
of age [17]. The time course and the specific pathological observations in double SR-BI apo
E knockout mice indicate that these mice rather represent a model of a complex aggressive
obliterative arteriopathy and not of atherosclerosis. The resistance of coronary arteries in
mice to coronary atherosclerosis may be related to the proteoglycan composition of the
subendothelium. However, one feature of coronary arteries in mice is the intramyocardial
course. Intramyocardial arteries, in general, do not develop atherosclerosis [18]. This
may be caused by the lower or absent transmural pressure gradient in intramyocardial
arteries [18].

Patients with hypertension have increased presence, extent, and severity of coronary
atherosclerosis quantified by coronary computed tomographic angiography [19]. Blood
pressure promotes atherosclerotic plaque formation by acting as a physical force that poten-
tiates the migration of pro-atherogenic lipoproteins across the endothelium. Hypertension
is also a principal risk factor for the development of heart failure [20].

Since transverse aortic constriction (TAC) between the origin of the right innominate
artery and the left common carotid artery induces a rise in blood pressure proximal to
the constriction, this procedure raises coronary pressure. Notwithstanding this, coronary
atherosclerosis is completely absent in several murine models of hypercholesterolemia or
dyslipidemia following TAC [21–23]. Increased remnant lipoproteins are a risk factor for
ischemic heart disease and myocardial infarction in humans [24,25]. We speculated that
increased remnant lipoproteins in apolipoprotein (apo) E deficient mice might produce
coronary atherosclerosis under conditions of increased coronary pressure. The specific
objectives of this study were 1) to quantify coronary atherosclerosis and artery remodeling
in C57BL/6N apo E−/− TAC mice and 2) to evaluate the impact of increased remnant
lipoproteins on the development of pressure overload-induced cardiac hypertrophy and
heart failure.
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2. Materials and Methods
2.1. In Vivo Experiments

All investigations were performed in accordance with the European legislation on
protection of animals used for scientific purposes (Directive 2010/63/EU), and all exper-
imental procedures on animals were performed in accordance with protocols approved
by the Institutional Animal Care and Research Advisory Committee of the KU Leuven
(Approval number: P154/2013). Mice were housed in filter top type II cages containing
5 mice or less in the semi-specific pathogen-free facility of KU Leuven at Gasthuisberg. A
semi-natural 12 h cycle of light and dark was maintained, and temperature was kept in
a range from 21 ◦C to 22 ◦C. C57BL/6N mice and C57BL/6N apo E−/− mice, originally
purchased from Taconic (Ry, Denmark), were locally bred in the animal unit at Gasthuisberg
and were fed standard chow diet (Sniff Spezialdiäten GMBH, Soest, Germany). Apo E
deficient mice from Taconic had been backcrossed to the C57BL/6N background for 11
generations and were backcrossed for one additional generation. All experiments were
performed on female mice. In order to induce pressure overload, transverse aortic con-
striction (TAC) was performed at the age of 14 weeks, as described in detail before [26,27].
The position of the TAC was between the origin of the right innominate artery and the
left common carotid artery. The surgical procedure in sham mice was identical, except
that no constriction on the aorta was applied. In the first experimental layer, C57BL/6N
mice and C57BL/6N apo E−/− mice were assigned for hemodynamic quantification and
morphometric and histological analyses 8 weeks following the sham or TAC operation.
The second experimental layer consisted of mice that did not undergo perfusion fixation
and that were used for unbiased quantification of tissue and organ weights 8 weeks after
the TAC or sham procedure.

2.2. Blood Sampling

Blood was collected by puncture of the vena cava inferior at the end of the experiment
just before euthanasia. Anticoagulation was performed with 0.1 volume of 136 mmol/L
trisodium citrate. Subsequently, plasma was isolated by centrifugation at 1100× g for
10 min and immediately stored at −80 ◦C.

2.3. Separation of Lipoproteins by Gel Filtration

Murine lipoproteins were fractioned by fast performance liquid chromatography gel
(FPLC) filtration (Waters Associates, Milford, MA, USA) of 100 µL plasma obtained from
C57BL/6N mice or from C57BL/6N apo E−/− mice as described previously [28]. Choles-
terol levels in high-density lipoprotein (HDL) and non-HDL fractions were determined by
AmplexTM Red Kit (Molecular Probes, Carlsbad, CA, USA).

2.4. Quantification of Lipid Peroxidation Products in Plasma

Lipid peroxidation was analyzed by measurement of Thiobarbituric Acid Reactive
Substances (TBARS). Quantification of TBARS was performed according to the instructions
of the manufacturer (Cayman Chemical, Ann Arbor, MI, USA).

2.5. In Vivo Hemodynamic Measurements

Invasive hemodynamic measurements were executed 8 weeks after sham operation or
TAC using a 1.0 French Millar pressure catheter (SPR-67/NR; Millar instruments, Houston,
TX, USA) as described. In order to perform these measurements, anesthesia was induced
by intraperitoneal administration of 1.2 g/kg urethane (Sigma, St. Louis, MO, USA).
Hemodynamic data were registered with Powerlab Bridge Amplifier and Chart Software
(sampling rate 2000 Hz; ADInstruments Ltd., Oxford, UK).

2.6. Histological Analysis

Histological analysis was performed as described before [29]. Mice that first under-
went hemodynamic analyses were perfused via the abdominal aorta with phosphate-
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buffered saline. Subsequently, hearts were arrested in diastole by administration of
KCl (100 µL; 0.1 mol/L), followed by perfusion fixation with 1% paraformaldehyde in
phosphate-buffered saline. Post-fixation overnight was performed with 1% paraformalde-
hyde, and hearts were subsequently embedded in paraffin. Cross-sections of 6 µm thickness
at 130 µm spaced intervals were made, extending from the apex to base of the heart.

Sirius Red staining was performed to quantify interstitial collagen content [30]. Sirius
Red polarization microscopy on a Leica RBE microscope with KS300 software (Zeiss) was
applied to quantify thick, tightly packed mature collagen fibers as orange-red birefringent
and loosely packed less cross-linked and immature collagen fibers as yellow-green birefrin-
gent. Collagen positive area was normalized to the left ventricular remote area and was
expressed as percentage. To quantify interstitial collagen, any perivascular fibrosis was
excluded from the analysis. Perivascular fibrosis was determined as the ratio of the fibrosis
area surrounding the vessel to the total vessel area. Capillary density in the myocardium
was quantified on CD31-stained sections using rat anti-mouse CD31 antibodies (BD Bio-
sciences, Erembodegem, Belgium; dilution 1/500). Two mid-ventricular cross-sections
were analyzed per mouse [31,32].

Immunostaining for 3-nitrotyrosine with rabbit anti-nitrotyrosine antibodies (Merck Mil-
lipore, Overijse, Belgium; dilution 1/250) was applied to evaluate nitro-oxidative stress [21].

Morphometric analyses of the left coronary artery were performed on Sirius Red-
stained sections at 130 µm spaced intervals.

2.7. Statistical Analysis

At the completion of the study, data of all surviving mice were included in the analy-
sis. All investigators who performed different endpoint analyses were blinded to group
allocation. Unblinding of animal numbers corresponding to specific allocation groups was
carried out at completion of measurements. All data are expressed as means ± standard
error of the means (SEM). Parameters between two groups (cholesterol data, hemodynamic
parameters) were compared using Student’s t-test using GraphPad Instat (GraphPad Soft-
ware, San Diego, CA, USA). When indicated, a logarithmic transformation, a square root
transformation, or a non-parametric Mann–Whitney test was conducted. The assumption
of Gaussian distribution was checked using the method Kolmogorov and Smirnov. Pa-
rameters between four groups were compared by one-way analysis of variance followed
by Bonferroni multiple comparisons post-test for comparing the sham groups, the TAC
groups, and the sham versus respective TAC groups using GraphPad Instat. When the
assumption of sampling from populations with identical standard deviations was not
met, a logarithmic transformation or a square root transformation was applied. When
the assumption of sampling from populations with Gaussian distributions was not met,
a Kruskal–Wallis test was executed, followed by Dunn’s multiple comparisons post-test.
Kaplan–Meier survival curves were analyzed by log-rank test using Prism4 (GraphPad
Software). A two-sided p-value of less than 0.05 was considered statistically significant.

3. Results

3.1. Markedly Increased Mortality in C57BL/6N Apo E−/− Mice Compared to C57BL/6N Mice
following Transverse Aortic Constriction

Transverse aortic constriction (TAC) was performed at the age of 14 weeks to in-
duce pressure overload. Comparison of Kaplan–Meier survival curves by log-rank test
demonstrated a pronounced and highly statistically significant increased mortality rate
in C57BL/6N apo E−/− TAC mice compared to C57BL/6N TAC mice (hazard ratio for
mortality 2.59, 95% confidence interval 1.56 to 4.30; p = 0.0002) during a follow-up period of
8 weeks (Figure 1). Eight weeks after surgical intervention, 35 out of 47 (74.5%) C57BL/6N
TAC mice and 42 out of 99 (42.4%) C57BL/6N apo E−/− TAC mice were alive (Figure 1).
Sham operation in both C57BL/6N apo E−/− and C57BL/6N mice did not result in any
mortality (data not shown).
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Figure 1. Comparison of Kaplan–Meier survival curves during 8 weeks follow-up after TAC. Female
C57BL/6N TAC mice (black line) and female C57BL/6N apo E−/− TAC mice (red line) are compared.
The time-point of 0 days corresponds to the induction of TAC at the age of 14 weeks. Comparison of
survival curves was performed by log-rank test.

3.2. Pressure Overload Induced by TAC Induces Coronary Atherosclerosis in C57BL/6N
Apo E−/− Mice

Increased remnant lipoproteins and hypertension are two independent risk factors for
coronary atherosclerosis. We speculated that both risk factors might interact to produce
coronary atherosclerosis in C57BL/6N apo E−/− mice. Since the genetic background may
have a profound effect on cholesterol levels in apo E deficient mice [33], we first compared
the lipoprotein profiles of apo E−/− mice backcrossed for 12 generations to the C57BL/6N
background and wild-type C57BL/6N mice (Figure 2). Total plasma cholesterol levels were
4.33-fold (p < 0.0001) higher in C57BL/6N apo E−/− mice than in C57BL/6N mice (Figure 2,
Table 1). This increase was entirely attributable to an increase in non-HDL cholesterol levels,
whereas HDL cholesterol levels in C57BL/6N apo E−/− mice were 61.8% (p < 0.0001) lower
than in C57BL/6N mice (Figure 2, Table 1).

Data on coronary artery remodeling and coronary atherosclerosis are provided in
Table 2. Representative Sirius Red-stained cross-sections of left coronary arteries are shown
in Figure 3. Pressure overload in C57BL/6N mice resulted in outward remodeling, as
evidenced by a 2.19-fold (p < 0.001) increase in the area within the external elastic lamina.
In addition, pressure overload in C57BL/6N TAC mice resulted in media hypertrophy, as
evidenced by a 1.73-fold (p < 0.001) increase in the medial area compared to C57BL/6N
sham mice. The luminal area was 2.50-fold (p < 0.001) higher in C57BL/6N TAC mice than
in C57BL/6N sham mice. These changes reflect the increased distending pressure in the
coronary arteries of C57BL/6N TAC mice.

As expected, no coronary atherosclerosis was observed in C57BL/6N apo E−/− sham
mice. In contrast, advanced lesions were observed in the left coronary artery of C57BL/6N
apo E−/− TAC mice (Figure 3, Table 2), indicating that increased coronary pressure and
hypercholesterolemia caused by increased remnant lipoproteins interact to produce these
coronary artery lesions. The degree of outward remodeling and the degree of media
hypertrophy in C57BL/6N apo E−/− TAC mice were similar compared to C57BL/6N TAC
mice. The luminal area was decreased by 28.1% (p < 0.05) in C57BL/6N apo E−/− TAC
mice compared to C57BL/6N TAC mice. However, because of outward remodeling, the
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luminal area was 1.73-fold (p < 0.01) higher in C57BL/6N apo E−/− TAC mice than in
C57BL/6N apo E−/− sham mice (Table 2). Taken together, C57BL/6N apo E−/− TAC mice
constitute a model of coronary atherosclerosis.

Area within the external elastic lamina (EEL), area within the internal elastic lamina
(IEL), medial area, intimal area, luminal area, and percentage stenosis in the left coronary
artery in the four experimental conditions.
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Table 1. Total, non-HDL, and HDL plasma cholesterol levels in female C57BL/6N and female
C57BL/6N apo E−/− mice.

C57BL/6N(n = 5) C57BL/6N Apo E−/−(n = 10)

Total cholesterol 68.3 ± 2.4 296 ± 4 ****
Non-HDL cholesterol 9.39 ± 1.50 274 ± 4 ****

HDL cholesterol 58.9 ± 1.2 22.5 ± 1.3 ****
Data are expressed as means ± SEM. Lipoproteins were separated by gel filtration. ****: p < 0.0001 versus
C57BL/6.

Table 2. Coronary atherosclerosis in female C57BL/6N TAC apo E−/− mice.

C57BL/6N
Sham (n = 9)

C57BL/6N Apo
E−/− Sham

(n = 12)

C57BL/6N TAC
(n = 16)

C57BL/6N Apo
E−/−TAC (n = 24)

EEL area (µm2) 30,000 ± 1800 29,300 ± 2700 65,600 ± 4900 §§§ 67,800 ± 8100 !!!

IEL area (µm2) 17,800 ± 400 18,500 ± 1700 44,400 ± 3700 §§§ 43,200 ± 5400 !!

Media area (µm2) 12,200 ± 1600 10,800 ± 1100 21,200 ± 2100 §§ 24,700 ± 2800 !!!

Intima area (µm2) 0.00 ± 0.01 0.00 ± 0.01 0.00 ± 0.01 11,300 ±3500 !!!***
Luminal area (µm2) 17,800 ± 400 18,500 ± 1700 44,400 ± 3700 §§§ 31,900 ± 3200 !!*

Stenosis (%) 0.00 ± 0.01 0.00 ± 0.01 0.00 ± 0.01 18.9 ± 4.1 !!!***

Stenosis is defined as the ratio of intimal area divided by IEL area and is expressed as percentage. §§: p < 0.01;
§§§: p < 001 versus C57BL/6N sham. !!: p < 0.01; !!!: p < 0.001 versus C57BL/6N apo E−/− sham. *: p < 0.05 versus
C57BL/6N TAC. ***: p < 0.001 versus C57BL/6N TAC.
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compared to C57BL/6N TAC mice (Figure 4e). Furthermore, right ventricular weight was 
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Figure 3. Left coronary artery sections illustrating coronary artery remodeling and coronary
atherosclerosis. Representative Sirius Red-stained sections of the left coronary artery of female
C57BL/6N sham mice (a), female C57BL/6N apo E−/− sham mice (b), female C57BL/6N TAC mice
(c), and female C57BL/6N apo E−/− TAC mice (d). The media is demarcated by the internal elastic
lamina (IEL) and the external elastic lamina (EEL). Atherosclerosis is present in intimal tissue within
the IEL. The scale bar represents 50 µm.

3.3. Pressure Overload Induced by TAC Results in Markedly Increased Cardiac Hypertrophy and
More Pronounced Heart Failure in C57BL/6N Apo E−/− Mice in Comparison to C57BL/6N Mice

Body weight, tibia length, and organ and tissue weights of mice that underwent
euthanasia 8 weeks after TAC or sham surgery are summarized in Figure 4. Neither body
weight (Figure 4a) nor tibia length (Figure 4b) was significantly different between the four
conditions. Total heart weight was increased by 2.02-fold (p < 0.001) in C57BL/6N TAC
mice and by 2.62-fold (p < 0.001) in C57BL/6N apo E−/− TAC mice compared to respective
sham groups. Cardiac weight was 1.30-fold (p < 0.001) higher in C57BL/6N apo E−/−

TAC mice than in C57BL/6N TAC mice (Figure 4c). Similar differences were observed
when heart weight was normalized to tibia length (Figure 4d). Left ventricular weight was
2.23-fold (p < 0.001) higher in C57BL/6N TAC mice (p < 0.001) and 2.59-fold (p < 0.001)
higher in C57BL/6N apo E−/− TAC mice than in respective sham groups (Figure 4e). Left
ventricular weight was increased by 1.20-fold (p < 0.05) in C57BL/6N apo E−/− TAC mice
compared to C57BL/6N TAC mice (Figure 4e). Furthermore, right ventricular weight was
increased by 1.61-fold (p < 0.001) in C57BL/6N TAC mice and by 1.92-fold (p < 0.001) in
C57BL/6N apo E−/− TAC mice compared to respective sham groups (Figure 4f). Wet lung
weight was 1.27-fold (p < 0.001) higher in C57BL/6N TAC mice and 2.29-fold (p < 0.001)
higher in C57BL/6N apo E−/− TAC mice than in respective sham groups (Figure 4g).
Wet lung weight was increased by 1.86-fold (p < 0001) in C57BL/6N apo E−/− TAC mice
compared to C57BL/6N TAC mice, indicating much more pronounced heart failure in
the former (Figure 4g). No significant increase in liver weight was observed in TAC mice
compared to sham mice. Taken together, pressure overload induced by TAC resulted in
much more pronounced cardiac hypertrophy and heart failure in apo E deficient mice
compared to wild-type mice.
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mice and by 25.6% (p < 0.001) in C57BL/6N apo E−/− TAC mice compared to respective 
sham groups (Figure 5a). Myocardial capillary density was 11.7% (p < 0.05) lower in 
C57BL/6N apo E−/− TAC mice than in C57BL/6N TAC mice (Figure 5a). TAC induced 
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apo E−/− TAC mice. Myocardial fibrosis was increased by 1.41-fold (p < 0.01) in C57BL/6N 
apo E−/− TAC mice compared to C57BL/6N TAC mice (Figure 5b). Perivascular fibrosis was 
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Figure 4. Cardiac hypertrophy and heart failure after TAC. Body weight (panel (a)), tibia length
(panel (b)), heart weight (panel (c)), heart weight/tibia length (panel (d)), left ventricular weight
(panel (e)), right ventricular weight (panel (f)), lung weight (panel (g)), and liver weight (panel (h))
in female C57BL/6N sham mice (n = 16), female C57BL/6N apo E−/− sham mice (n = 9), female
C57BL/6N TAC mice (n = 14), and female C57BL/6N apo E−/− TAC mice (n = 11). Sham mice are
represented by open bars whereas TAC mice are represented by closed bars. C57BL/6N mice are
represented in black whereas C57BL/6N apo E−/− mice are represented in red.

3.4. Increased Myocardial Fibrosis and Capillary Rarefaction following TAC in Apo E
Deficient Mice

Features of pathological hypertrophy are capillary rarefaction and myocardial fibrosis.
Myocardial capillary density was reduced by 19.9% (p < 0.001) in C57BL/6N TAC mice
and by 25.6% (p < 0.001) in C57BL/6N apo E−/− TAC mice compared to respective sham
groups (Figure 5a). Myocardial capillary density was 11.7% (p < 0.05) lower in C57BL/6N
apo E−/− TAC mice than in C57BL/6N TAC mice (Figure 5a). TAC induced pronounced
interstitial myocardial fibrosis in both C57BL/6N TAC mice and in C57BL/6N apo E−/−

TAC mice. Myocardial fibrosis was increased by 1.41-fold (p < 0.01) in C57BL/6N apo
E−/− TAC mice compared to C57BL/6N TAC mice (Figure 5b). Perivascular fibrosis
was 1.57-fold (p < 0.001) higher in C57BL/6N apo E−/− TAC mice than in C57BL/6N
TAC mice (Figure 5c). Representative photomicrographs showing Sirius Red-stained
interstitial collagen viewed under polarized light are shown in Figure 5d. Figure 5e
contains representative photomicrographs of CD31-positive vessels.
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Figure 5. Histological analysis of pathological hypertrophy after TAC. Myocardial capillary density
(panel (a)), interstitial fibrosis (panel (b)), and perivascular fibrosis (panel (c)) in female C57BL/6N
sham mice, female C57BL/6N apo E−/− sham mice, female C57BL/6N TAC mice, and female
C57BL/6N apo E−/− TAC mice. Representative photomicrographs show Sirius Red-stained intersti-
tial collagen viewed under polarized light (panel (d)) and CD31-positive capillaries (panel (e)). The
scale bar represents 50 µm.

3.5. Deterioration of Cardiac Function Induced by TAC Is Significantly More Pronounced in Apo E
Deficient Mice Compared to Wild-Type Mice

Diastolic dysfunction was observed in C57BL/6N apo E−/− sham mice, as evidenced
by a 13.1% (p < 0.05) decrease in the absolute value of the maximal rate of isovolumetric
relaxation and a 1.12-fold (p < 0.05) increase in the time constant of isovolumetric relaxation
(Table 3). Pressure overload induced by TAC in apo E deficient mice induced a pronounced
(p < 0.05) increase in end-diastolic pressure compared to wild-type TAC mice (Table 4). Di-
astolic function was worse in C57BL/6N apo E−/− TAC mice compared to C57BL/6N TAC
mice, as evidenced by a 1.18-fold (p < 0.05) increase in the time constant of isovolumetric
relaxation (Table 4).
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Table 3. Hemodynamic parameters in the left ventricle and in the aorta 8 weeks after sham operation
in female C57BL/6N mice and female C57BL/6N apo E−/− mice. Sham operation was performed at
the age of 14 weeks. Data are expressed as means ± SEM. ◦: p < 0.05 versus C57BL/6N sham.

C57BL/6N
Sham (n = 19)

C57BL/6N Apo E−/− Sham
(n = 8)

LEFT VENTRICLE

Peak systolic pressure (mm Hg) 101 ± 2 96.1 ± 1.3
End-diastolic pressure (mm Hg) 0.677 ± 0.475 1.96 ± 0.46

dP/dtmax (mm Hg/ms) 12.1 ± 0.4 10.5 ± 0.7
dP/dtmin (mm Hg/ms) −9.91 ± 0.35 −8.61 ± 0.42◦

Tau (ms) 4.42 ± 0.13 4.94 ± 0.15◦

Heart rate (bpm) 609 ± 13 599 ± 12

AORTA

Mean pressure (mm Hg) 81.6 ± 1.7 79.5 ± 2.0
Systolic pressure (mm Hg) 99.4 ± 1.7 95.6 ± 1.8
Diastolic pressure (mm Hg) 64.4 ± 2.6 64.1 ± 4.7

Table 4. Hemodynamic parameters in the left ventricle and in the aorta 8 weeks after TAC operation
in female C57BL/6N mice and female C57BL/6N apo E−/− mice. Sham operation was performed at
the age of 14 weeks. Data are expressed as means ± SEM. *: p < 0.05 versus C57BL/6N TAC.

C57BL/6N
TAC (n = 18)

C57BL/6N Apo E−/− TAC
(n = 21)

LEFT VENTRICLE

Peak systolic pressure (mm Hg) 173 ± 9 183 ± 8
End-diastolic pressure (mm Hg) 2.29 ± 0.90 6.32 ± 1.04 *

dP/dtmax (mm Hg/ms) 11.9 ± 0.8 11.9 ± 0.7
dP/dtmin (mm Hg/ms) −11.5 ± 0.6 −11.3 ± 0.7

Tau (ms) 5.10 ± 0.23 6.00 ± 0.33 *
Heart rate (bpm) 631 ± 11 601 ± 12

AORTA

Mean pressure (mm Hg) 104 ± 6 109 ± 4
Systolic pressure (mm Hg) 172 ± 11 183 ± 8
Diastolic pressure (mm Hg) 61.8 ± 5.5 65.1 ± 5.5

3.6. Apo E Deficiency Induces Pronounced Oxidative Stress in Both Sham Mice and TAC Mice

Lipid peroxidation was quantified by the measurement of Thiobarbituric Acid Reactive
Substances (TBARS) in plasma. TBARS were increased by 1.85-fold (p < 0.01) in C57BL/6N
apo E−/− sham mice compared to C57BL/6N sham mice (Figure 6a). Pressure overload
induced a prominent increase in TBARS levels. TBARS were 1.80-fold (p < 0.01) higher in
C57BL/6N TAC mice and 1.57-fold (p < 0.05) higher in C57BL/6N apo E−/− TAC mice
compared to respective sham groups. The level of lipid peroxidation products was increased
by 1.61-fold (p < 0.001) in C57BL/6N apo E−/− TAC mice compared to C57BL/6N TAC
mice (Figure 6a). The same pattern of differences was observed when the 3-nitrotyrosine
positive area was quantified in the myocardium (Figure 6b). The effect of apo E deficiency
on the 3-nitrotyrosine positive area was both observed in sham mice (3.24-fold increase;
p < 0.001) and in TAC mice (2.38-fold increase; p < 0.001) (Figure 6b). Representative images
of myocardial sections immunostained for 3-nitrotyrosine are shown in Figure 6c.
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Predilection sites for atherosclerosis in apo E−/− mice as well as in low-density 
lipoprotein receptor (LDLr) deficient mice are the aortic root, the lesser curvature of the 
aortic arch, and the brachiocephalic artery [16,34–36]. However, mice are very resistant to 
coronary atherosclerosis [16]. This may be related to specific characteristics of the anatomy 
of coronary arteries in mice. Indeed, major anatomical differences exist between human 
coronary arteries and murine coronary arteries [37]. Similarly, as in other rodent species, 
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Figure 6. Quantification of oxidative stress in sham mice and in TAC mice. Sham mice and TAC
mice are indicated by open bars and closed bars, respectively. C57BL/6N mice are represented
in black whereas C57BL/6N apo E−/− mice are represented in red. Plasma TBARS expressed as
plasma malondialdehyde equivalents (panel (a)). Percentage of 3-nitrotyrosine-positive area in the
myocardium (panel (b)). Quantifications in panel (a,b) were performed in 10 female C57BL/6N sham
mice, 10 female C57BL/6N apo E−/− sham mice, 21 female C57BL/6N TAC mice, and 31 female
C57BL/6N apo E−/− TAC mice. Representative photomicrographs showing myocardial sections
stained for 3-nitrotyrosine (panel (c)). The scale bar represents 50 µm.

4. Discussion

The main findings of this study are that (1) increased coronary artery pressure induced
by TAC on the one hand and increased remnant lipoproteins, on the other hand, interact to
produce coronary atherosclerosis in apo E deficient mice; (2) pressure overload induced
by TAC leads to much more pronounced cardiac hypertrophy and much more prominent
features of pathological hypertrophy in apo E deficient mice compared to wild-type mice;
(3) heart failure in C57BL/6N apo E−/− TAC mice is much more marked than in wild-type
mice as evidenced by the increased end-diastolic pressure and the remarkable augmentation
of the lung weight; (4) increased oxidative stress is not only observed in TAC mice but also
in C57BL/6N apo E−/− sham mice, indicating that apo E deficiency is a model of increased
oxidative stress.

Predilection sites for atherosclerosis in apo E−/− mice as well as in low-density
lipoprotein receptor (LDLr) deficient mice are the aortic root, the lesser curvature of the
aortic arch, and the brachiocephalic artery [16,34–36]. However, mice are very resistant to
coronary atherosclerosis [16]. This may be related to specific characteristics of the anatomy
of coronary arteries in mice. Indeed, major anatomical differences exist between human
coronary arteries and murine coronary arteries [37]. Similarly, as in other rodent species,
the murine heart has no interventricular grooves, and the left and right coronary arteries
become intramyocardial very shortly after their origin [37]. Thus, in contrast to humans, the
proximal part of the coronary arteries has an intramyocardial course and not an epicardial
course. Moreover, since there is no interventricular groove, there is no artery that is truly
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equivalent to the left anterior descending coronary artery in humans. Rather, the left main
coronary arterial trunk divides into the left circumflex on the one hand and the obtuse
marginal arteries on the other hand that supply the ventral and dorsal walls of the left
ventricle [37]. In species with intramyocardial coronary arteries, the interventricular septum
is mainly irrigated by a distinct artery, the septal artery [37]. A single major septal coronary
artery in mice may arise either from a separate ostium from the right sinus of Valsalva or
originate as a proximal branch of the right coronary artery or less frequently from the left
coronary artery [37–39]. Occasionally two septal arteries are present [37,38]. When taken
together, the absence of an interventricular groove is associated with an intramyocardial
course of coronary arteries, the absence of a left anterior descending coronary artery, and
the presence of one or two septal arteries.

Coronary atherosclerosis in humans develops in the epicardial coronary arteries and
not in the intramyocardial arteries [18]. Therefore, it is not surprising that, in general, no
coronary atherosclerosis is observed in the two most commonly used murine models of
hypercholesterolemia [16,34–36]. One explanation for the absence of atherosclerosis in
intramyocardial arteries is the lower or absent transmural pressure gradient [18]. Cardiac
contraction compresses intramyocardial vessels and moves the plasma, pro-atherogenic
lipoproteins, and infiltrating leukocytes away from the coronary artery wall [40]. Myocar-
dial bridging is a congenital anomaly in which a segment of a coronary artery is surrounded
by a myocardium, and the artery covered by the myocardium is called a tunneled artery.
The tunneled segment is spared from atherosclerosis [41]. An alternative explanation for
the absence of coronary atherosclerosis in intramyocardial vessels is the absence of vasa
vasorum in the intramyocardial arteries [42]. The absence of adventitial vasa vasorum
formation is also observed at the coronary segment covered by a myocardial bridge [43].

TAC in mice will increase coronary artery pressure and the distending pressure in
the coronary artery. Changes in coronary pressure affect coronary dimensions [44]. The
increased distending pressure resulted in an increase in luminal area in both C57BL/6N
TAC mice and C57BL/6N apo E−/− TAC mice. Moreover, increased pressure is the
cause of media hypertrophy [45]. The structural changes of the artery and/or changes in
transmural pressure gradient following TAC potentiate the development of atherosclerosis
in C57BL/6N apo E−/− TAC mice. In contrast to the presence of extensive lesions in
female C57BL/6N apo E−/− TAC mice, no coronary atherosclerosis at all has previously
been observed in female C57BL/6J LDLr−/− TAC mice on standard chow [21] or on a
0.2% cholesterol 10% coconut oil diet [22]. This cannot be attributed to differences in
plasma cholesterol levels since total plasma cholesterol levels in C57BL/6J LDLr−/− mice
on a 0.2% cholesterol 10% coconut oil are higher than in C57BL/6N apo E−/− mice fed
standard chow. Therefore, differences in the development of coronary atherosclerosis
must be related to differences in the nature of pro-atherogenic lipoproteins between apo E
deficient mice and LDLr deficient mice, properties of apo E independent of its effects on
lipid levels, or differences in the genetic background (C57BL/6N versus C57BL/6J). Apo
E deficient mice are characterized by increased concentration of chylomicron remnants
and VLDL remnants, which are contained in β-VLDL particles and intermediate density
lipoprotein (IDL) particles [46–48]. LDL receptor-deficient mice have a much more selective
increase in LDL [49,50]. Furthermore, LDL receptor-deficient mice are characterized by
a pronounced increase in apo B-100 and a modest elevation of apoB-48, whereas apo E
deficient mice have a striking increase in apo B-48 but not of apoB-100 [51]. Therefore, the
pro-atherogenic lipoproteins in apo E deficient mice are apo B-48-containing remnants,
whereas the pro-atherogenic lipoproteins in LDL receptor-deficient mice are apo B-100-
containing LDL. These differences may be relevant to the observed difference in coronary
atherosclerosis. Remnant lipoprotein cholesterol is a predictor of incident coronary heart
disease in humans [24,25,52].

Apart from its effects on lipoprotein metabolism and lipoprotein levels, lipoprotein-
independent functions have also been attributed to apo E [53]. These functions include
effects on immune response, inflammation and oxidation, and on smooth muscle prolif-
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eration and migration. Although these lipoprotein-independent effects may theoretically
contribute to the development of atherosclerosis in apo E deficient mice, this hypothesis
cannot be corroborated by direct experimental evidence. In contrast, multiple studies have
demonstrated that C57BL/6J and C57BL/6N mice present various phenotypic differences
with relevance to cardiovascular research [54,55]. C57BL/6J mice are characterized by a
spontaneous mutation in the nicotinamide nucleotide transhydrogenase gene [56,57]. This
enzyme catalyzes the reduction of NADP+ at the price of oxidation of NADH oxidation
and proton re-entry into the mitochondrial matrix. Functional loss of this enzyme due to
this spontaneous mutation in C57BL/6J mice results in mitochondrial redox abnormalities
that result in a poor capacity to sustain NADP and glutathione in their reduced states.
This mutation may be relevant both for the development of atherosclerosis [54,58] and for
the development of cardiac dysfunction. However, since apo E deficient mice are on the
C57BL/6N background and LDLr deficient mice are on the C57BL/6J background, this
mutation does not explain the presence of coronary atherosclerosis in C57BL/6N apo E−/−

TAC mice and the absence of coronary atherosclerosis in C57BL/6J LDLr−/− TAC mice.
However, since the mutation in the nicotinamide nucleotide transhydrogenase gene is only
one of many genetic factors that may affect cardiovascular phenotypic differences between
C57BL/6J and C57BL/6N mice [55,57], we cannot exclude that the genetic background
places a role in the coronary phenotype of both models.

TAC leads to much more marked cardiac hypertrophy and much more prominent fea-
tures of pathological hypertrophy in apo E deficient mice compared to wild-type C57BL/6N
mice. Notwithstanding the presence of coronary atherosclerosis, the luminal area was in-
creased in C57BL/6N apo E−/− TAC mice compared to C57BL/6N apo E−/− sham mice.
Therefore, TAC in C57BL/6N apo E−/− mice remains a model of non-ischemic cardiomy-
opathy. The direct impact of hypercholesterolemia on cardiac hypertrophy and cardiac func-
tion has previously been demonstrated both in the absence of pressure overload [59–61] and
in the presence of pressure overload [21,22]. Hypercholesterolemia also potentiates cardiac
hypertrophy and adverse remodeling following myocardial infarction [31,62] and in the set-
ting of diabetic cardiomyopathy [63]. Oxidative stress and nitro-oxidative stress may play
a key role in the effects of hypercholesterolemia on cardiac structure and function [64–66].
Hypercholesterolemia also induces hyperactive mammalian target of rapamycin (mTOR)
signaling in the heart, whereby protein synthesis and cell growth are promoted by the
mTOR complex 1 (mTORC1) [22,67,68].

Pathological hypertrophy and cardiac dysfunction in C57BL/6N apo E−/− TAC mice
resulted in pronounced heart failure, as evidenced by the very marked increase in the
wet lung weight, which is much more prominent compared to other models of TAC-
induced heart failure [21,22]. This raises the hypothesis that high concentrations of remnant
lipoproteins may be more detrimental to the myocardium than high concentrations of LDL.
Alternatively, the more pronounced effects of hypercholesteremia on the development
of heart failure in apo E deficient mice may be related to the impact of apo E deficiency
per se on inflammation and on oxidation. Apo E modulates several dimensions of the
inflammatory response [53,69–71] and also exerts anti-oxidant effects in vivo [53]. This may
clarify why oxidative stress was elevated in apo E deficient mice even in the absence of TAC.
Since inflammation [72] and oxidation [66] contribute to the development of heart failure,
this may explain why apo E deficiency per se may be a potent potentiator of pressure-
induced heart failure. Increased oxidative stress may also underlie diastolic dysfunction in
C57BL/6N apo E−/− sham mice [73].

TAC in C57BL/6N apo E deficient mice resulted in higher mortality than in C57BL/6N
mice. This may partially reflect a higher incidence of death caused by acute heart failure
induced by the hemodynamic effects of pressure overload but may also reflect an increased
incidence of lethal arrhythmias. The pro-arrhythmic effects of hypercholesterolemia may
be mediated through direct interactions between cholesterol and the membrane proteins,
through alterations of membrane fluidity, and/or the impact of hypercholesterolemia on
lipid rafts [74,75].
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The current study highlights the importance of interaction between different risk fac-
tors in the development of coronary atherosclerosis and potentially also in the development
of heart failure. In clinical medicine, the effects of two causes are frequently not additive,
but the impact of one causal variable on an outcome may be dependent on the state of a sec-
ond causal variable. In particular, interactions between genotype and environmental factors
should be considered, and the impact of genetic risk factors may therefore be conditional on
specific environmental exposures. Murine atherosclerosis models are generally hampered
by the absence of coronary atherosclerosis. The model investigated in this study offers
perspectives for evaluating the effect of pharmacological interventions in a robust model
of coronary atherosclerosis in mice. The C57BL/6N apo E−/− TAC mice also constitute
a model of severe oxidative stress and heart failure and may be used to evaluate novel
therapeutic heart failure strategies in mice.

In conclusion, the interaction between increased remnant lipoproteins and increased
coronary pressure induced by TAC produces advanced coronary atherosclerosis in apo
E deficient mice. Pressure overload-induced cardiomyopathy in apo E deficient mice
is characterized by a very severe phenotype with prominent features of pathological
remodeling and very pronounced heart failure. Apo E deficient mice are a model of
increased oxidative stress, which may explain diastolic dysfunction in C57BL/6N apo
E−/− sham mice.
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