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Role of LncRNAs in regulating cancer amino 
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Abstract 

The metabolic change of tumor cells is an extremely complicated process that involves the intersection and integra‑
tion of various signal pathways. Compared with normal tissues, cancer cells show distinguished metabolic character‑
istics called metabolic reprogramming, which has been considered as a sign of cancer occurrence. With the deep‑
ening of tumor research in recent years, people gradually found that amino acid metabolism played crucial roles in 
cancer progression. Long non-coding RNAs (lncRNAs), which are implicated in many important biological processes, 
were firstly discovered dysregulating in cancer tissues and participating in extensive regulation of tumorigenesis. 
This review focuses on the reprogramming of amino acid metabolism in cancers and how lncRNAs participate in the 
regulatory network by interacting with other macromolecular substances. Understanding the functions of lncRNA 
in amino acid reprogramming in tumors might provide a new vision on the mechanisms of tumorigenesis and the 
development of new approaches for cancer therapy.
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Background
The proliferation of normal cells requires the continu-
ous accumulation of substances, so as to produce off-
spring cells. The accumulated substances in cells include 
proteins, lipids and nucleic acids, which are essential for 
cell proliferation [1]. In the past three decades, the stud-
ies on oncogenes revealed that the characteristic pheno-
type of cancer cells is often caused by somatic mutations, 
and it is the integration of these mutations that lead to 
the changes of various signal pathways and the state of 
cell metabolism. The PI3K/AKT/mTOR and the AMP-
activated protein kinase pathways are more common 

dysregulated pathways in cancer [2, 3]. Researches on 
tumorigenesis have made it clear that these pivotal onco-
genic signals lead to the unique metabolic characteristics 
of tumor cells and support their proliferation. Therefore, 
the change of cell metabolism is considered as a crucial 
hallmark in the development of cancer [4].

The occurrence of cancer often depends on the repro-
gramming of cell metabolism, and the metabolism 
reprogramming enables tumor cells to obtain the neces-
sary nutrients from the nutrition deficient environment. 
Generally speaking, tumor cells metabolize glucose, fatty 
acids and glutamine at a much higher rate than normal 
cells [5]. Metabolism reprogramming is regarded as a 
cancer-specific characteristic, including dysregulation of 
glucose and glutamine metabolism, changes in lipid bio-
synthesis and decomposition, and so on [6, 7]. In order to 
maintain their proliferation, tumor cells need to increase 
ATP production, synthesize macromolecules and reduce 
the generation of reducing substances or other metabolic 
auxiliary materials [8]. Besides, cancer cells must adapt 
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their metabolism to the dynamic changes in the process 
of tumor development, so as to maintain the energy level, 
redox status, cellular signaling and biosynthesis, thus 
promoting tumor growth [9]. In normal tissues, cells tend 
to generate energy through oxidative phosphorylation by 
the mitochondria, and in the absence of oxygen, glucose 
was catabolized to lactic acid through glycolysis. Inter-
estingly, even in the presence of sufficient oxygen, tumor 
cells still use the glycolysis pathway to generate energy, in 
order to meet the rapid proliferation of cancer cells [10]. 
This process is known as the Warburg Effect. Currently, 
the Warburg effect has been observed in various types of 
tumors and has been widely accepted as a symbol of met-
abolic changes in cancer cells [10]. Since the discovery 
of the Warburg effect, the majority of researches about 
tumor metabolism have focused on glucose metabolism. 
Recently, with the deepening of the research, people are 
aware that other nutrients, such as amino acids, for the 
process of tumor cell metabolism play a key role [11].

LncRNAs: a brief introduction
Eukaryotes produce many types of RNAs, which play a 
crucial role in the transmission of genetic information 
and often exist in specific subcellular localization. The 
synthesis, processing and transportation of RNA are 
closely involved in the regulation of cell functions [12]. 
Less than 2 % of the human genome encodes protein-
coding RNA, and more than 90 % of the total genome is 
transcribed into noncoding RNA(ncRNA) [13]. LncRNA 
is a kind of RNA transcript with more than 200 nucleo-
tides, which has little protein-coding potential. It is usu-
ally transcribed by RNA polymerase II with 5’-end cap, 
polyadenylation and splicing  [14]. LncRNA could local-
ize in the nucleus or cytoplasm, and the function of 

lncRNA usually depends on subcellular localization [15]. 
Researchers have found that LncRNA was involved in 
multiple aspects of gene expression regulation includ-
ing epigenetic, transcriptional and post-transcriptional 
modification. (1) LncRNA can act as an RNA decoy bind-
ing to transcription factors, thus interfering its binding 
to the promoter and regulating transcription [16]. (2) As 
a molecular sponge, adsorbing and separating miRNA 
from target mRNA, which affects the translational of 
mRNA [17]. (3) As a molecular scaffold, interacting 
with proteins to form the lncRNA-proteins complex, 
thereby regulating the protein activity or stability [18]. (4) 
Recruiting chromatin modifiers to reprogram chromatin 
[19]. (5) Binding with mRNA and affecting the transla-
tion, splicing, and stability of mRNA [20, 21] (Fig.  1). 
With the continuous research on lncRNA in recent years, 
lncRNA has been proved to be involved in tumor pro-
gression through a series of cell metabolism processes 
(Fig. 2), thus showing a unique advantage in tumor diag-
nosis, monitoring, prognosis and treatment [22]. LncR-
NAs can play an oncogenic or a tumor suppressive role, 
however, they are often dysregulated in cancers and par-
ticipate in the occurrence of metabolic changes [23–25]. 
In this review, we mainly focus on the roles of lncRNAs 
in amino acid metabolism of tumor cells and discuss the 
pathways affected by lncRNAs in the process of cancer 
metabolism.

Normal metabolism of amino acids
Metabolic reprogramming enables cancer cells to adapt 
to increased nutrient requirements and biosynthesis, in 
which changes in amino acid metabolism are an impor-
tant part of the metabolic reprogramming event. Amino 
acids, which are metabolized into proteins and converted 

Fig. 1  Typical molecular mechanisms of lncRNA
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into hormones, neurotransmitters and other important 
nitrogen-containing active substances, are crucial for cell 
survival [26]. In the process of amino acid metabolism in 
normal cells, 1–2 % of proteins are degraded every day, 
mostly in skeletal muscle and most of the amino acids 
produced by protein degradation are reused to synthesize 
new proteins. Intracellular protein degradation is com-
pleted by a series of enzymatic reactions [27]. Eukary-
otic cells participate in the degradation of protein mainly 
through two pathways: (1) ATP-independent pathway in 
lysosomes. (2) ATP-dependent pathway in the protea-
some, namely the ubiquitin-involved protein degrada-
tion process [28]. In humans, the twenty amino acids 
that make up proteins are usually divided into essential 
and non-essential amino acids. Essential amino acids 
are those whose carbon skeleton cannot be de novo 
synthesized, including isoleucine (Ile), leucine (Leu), 
methionine (Met), valine (Val), phenylalanine (Phe), tryp-
tophan (Trp), histidine (His), threonine (Thr) and lysine 
(Lys). Semi-essential amino acids are those that can be 
synthesized de novo but not in sufficient quantities to 
maintain the normal metabolic level. Therefore, dietary 

supplementation is usually required. They include argi-
nine (Arg), cysteine (Cys), glycine (Gly), glutamine (Gln), 
proline (Pro) and tyrosine (Tyr). Five other amino acids 
are considered dispensable because they are easily syn-
thesized in  vivo, including alanine (Ala), aspartic acid 
(Asp), asparagine (Asn), glutamate (Glu) and serine (Ser) 
[29]. Glutamine is the most abundant amino acid in the 
circulation and is second only to glucose in the metab-
olism of tumor cells [30]. Although glutamine is a kind 
of conditionally essential amino acid in vivo, it has been 
observed that in lots of cancers, the dependence on glu-
tamine has unique to some cancer cells [31, 32].

Amino acids are indispensable for tumor cell metabolism
Mounting evidence shows that the rapid proliferation 
of cancer cells depends on higher demand for amino 
acids. A variety of amino acids play a vital function in 
the metabolism of tumor cells: Serine and glycine, as the 
basic precursors for the synthesis of proteins, nucleic 
acids and lipids, need more consumption to meet the 
rapid proliferation of tumor cells. Moreover, the biosyn-
thesis of serine and glycine affects cellular antioxidative 

Fig. 2  Amino acid metabolism involving lncRNAs that are dysregulated in cancer
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capability and also promotes tumor growth [33]; The 
c-MYC oncogene activates the expression of glutaminase 
(GLS1/GLS2) and glutamine metabolism in cancer cells, 
and glutamine can be converted to glutamate even in 
hypoxia [34]. More consumed glutamine for mitochon-
drial energy production is a feature of multiple cancer 
cell metabolism; arginine participates in the urea cycle, 
in which argininosuccinate synthetase (ASS) catalyzes 
citrulline and aspartic acid to produce argininosuccinate. 
Subsequently, argininosuccinate is cleaved to produce 
arginine. In malignant melanoma and hepatocellular 
carcinoma, ASS deficiency leads to a failure in arginine 
synthesis, and arginine deficiency interferes with the 
growth of cancer cells, which is used for the treatment 
of advanced malignant tumors [35]. Furthermore, tumor 
cells also preferentially uptake branched chain amino 
acids (BCAAs) as nutrients. The three BCAAs are valine, 
leucine and isoleucine. BCAA metabolism can meet 
some inherent requirements in the process of cancer pro-
liferation, such as providing nitrogen for de novo nucleo-
tide synthesis, participating in the activation of signaling 
pathways and influencing the expression of many crucial 
metabolite-derived co-factors [36]. In melanoma, for 
example, when leucine is deprived, hyperactivation of 
RAS-MEK signaling fails to inhibit mTOR, thereby trig-
gering apoptosis of human melanoma cells [37].

Glutamine metabolism: the essential part of amino acid 
metabolism
Glutamine is transported into cells by solute carrier fam-
ily 1 neutral amino acid transporter member 5 (SLC1A5, 
also known as ASCT2), and high levels of glutamine in 
the blood serve as a source of nitrogen and carbon for 
biosynthesis. Intracellular glutamine could be catalyzed 
by mitochondrial glutaminase to produce glutamate 
and ammonium ions. Glutamate is also a precursor to 
glutathione (GSH), which is a major cellular antioxi-
dant to help maintain normal immune system function 
[38–40]. Glutamate could be converted into α-KG 
(α-Ketoglutarate), the intermediate product of the tri-
carboxylic acid (TCA) cycle, by transamination and 
oxidative deamination. The oxidative deamination of glu-
tamate is catalyzed by GDH (glutamate dehydrogenase) 
[41]. Moreover, α-KG is involved in reductive carboxy-
lation and reverse catalysis to produce citrate used for 
the synthesis of acetyl-CoA and lipids [42]. Oxaloacetic 
acid (OAA), an intermediate of the TCA cycle, is con-
verted into aspartic acid by transamination, which is used 
for the synthesis of purine and pyrimidine nucleotides 
(Fig.  3). At the same time, glutamine can promote the 
synthesis of UDP-N-acetylglucosamine (UDP-GlcNAc), 
which plays a key role in protein folding and transport. 

The lack of glutamine will lead to faulty protein folding 
and endoplasmic reticulum stress response [43]. 

LncRNAs and glutaminase
Glutamine can be catalyzed by glutaminase to produce 
glutamate, which is the first step of glutamine metabo-
lism. There are two genes encoding glutaminase in 
mammals, namely GLS and GLS2, which show differ-
ent structures and are specifically expressed in different 
tissues [44, 45]. Recent studies have shown that GLS is 
highly expressed in some malignant tumors and knock-
down of GLS significantly reduces the invasion and pro-
liferation of cancer cells, indicating the cancer-promoting 
role of GLS [46, 47]. GLS2 is mainly expressed in the 
liver and brain [48]. In some tissues, GLS2 is a target 
of p53 and mediates the tumor-suppressing role of p53 
in cancer cells [49]. LncRNA CCAT2 (Colon Cancer 
Associated Transcript 2), which is located at the 8q24 
amplicon of cancer risk-associated rs6983267 SNP was 
reported to promote the glycolysis as well as glutamine 
metabolism in a variety of cancers [50, 51]. The interac-
tion between CCAT2 and CFIm complex regulates the 
alternative splicing of GLS by selecting the Poly-A site 
of GLS pre-mRNA intron 14 and induces the produc-
tion of two alternative splicing isoforms, respectively 
KGA(glutaminase kidney isoform) and GAC(glutaminase 
isoform C)   [51]. Although these two isoforms have the 
same active site, GAC has higher catalytic activity than 
KGA. GAC plays a key role in mitochondrial glutamine 
metabolism of cancer cells, promoting cell proliferation 
and metastasis in vivo [52].

The way lncRNAs regulate glutamine metabolism
Previous studies have shown that miRNA can interact 
with specific lncRNA and degrade lncRNA at the post-
transcriptional level [53]. LncRNA HOTTIP is an impor-
tant oncogene of hepatocellular carcinoma (HCC). It was 
reported that HOTTIP was involved in GLS1-mediated 
glutamine metabolism in HCC, and HOTTIP overex-
pression could improve GLS1 expression level to enhance 
glutamine metabolism. HOTTIP was identified as the 
target of miR-192 and miR-204, which would inhibit 
HOTTIP expression through the Argonaute2-mediated 
RNA interference pathway, thereby inhibiting the pro-
liferation of the cancer cells. GLS1, as a downstream 
gene of the miR-192/204-HOTTIP axis, is critical in the 
progression of hepatocellular carcinoma and glutamine 
metabolism [54].

LncRNA can interact with miRNA as an endogenous 
competitive RNA (ceRNA), and miRNA participates 
in the regulation of target gene expression by binding 
with the 3’ UTR of target mRNA [55]. LncRNA TUG1 
has been reported to promote glutamine metabolism by 
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inhibiting miR-145 in intrahepatic cholangiocarcinoma 
(ICC). Sirt3, as a direct target of miR-145, has been con-
firmed to activate GDH in the mitochondrial matrix 
by deacetylation, thus positively regulating the expres-
sion of GDH [56]. LncRNA TUG1, acting as a ceRNA 
‘sponges’ miR-145, increased the level of Sirt3 and GDH. 
The knockdown of TUG1 or overexpression of miR-145 
resulted in a significant reduction in intracellular glu-
tamine consumption, reduced proliferation and migra-
tion of ICC cells, and inhibited tumor development. At 
the same time, glutamate participates in GDH-mediated 
oxidative deamination which results in the reduction of 

α- KG   [57]. LncRNA HOX transcript antisense inter-
genic RNA(HOTAIR) has a similar effect. In glioma 
cells, the expression of lncRNA HOTAIR is abnormally 
increased. Existing studies have shown that lncRNA 
HOTAIR as a ceRNA ‘sponged’ miR-126-5p and pro-
motes glutamine metabolism in glioma. The miR-126-5p 
was reported to play an inhibitory role in both lung can-
cer and gastric cancer [58, 59]. While in glioma, GLS 
was confirmed to be the direct target of miR-126-5p, 
and miR-126-5p significantly reduced the expression 
of GLS in mRNA and protein levels. LncRNA HOTAIR 
regulated the expression of GLS through the miR-126/

Fig. 3  a SLC1A5 transports glutamine into cells and is converted to glutamate by glutaminase, which participates in the synthesis of GSH together 
with intracellular Cys. SLC7A11 exchanges extracellular cystine and intracellular glutamate, and c-myc participates in the positive regulation of 
SLC1A5 and SLC7A11. Glutamate is converted into α-KG by L-glutamate dehydrogenase or aminotransferases, which participates in the TCA 
cycle. α-KG participates in the reductive carboxylation process to produce citrate, which used for the synthesis of acetyl-CoA and lipids, aspartate 
produced by oxaloacetic acid transamination is a necessary substance for nucleotide synthesis. b LncRNAs which are involved in regulating amino 
acid metabolism



Page 6 of 10Guo et al. Cancer Cell Int          (2021) 21:209 

GLS pathway, thus changing the glutamine metabolism 
process of glioma and promoting the development of the 
tumor. Glutamate was also the precursor of GSH, while 
miR-126-5p was negatively correlated with GSH level 
[60].

LncRNAs mediate the antioxidant defense in cancer 
metabolism
Glutamine metabolism is of great significance for main-
taining the redox balance of tumor cells and the level of 
ROS (reactive oxygen species). GLS2 inhibits the produc-
tion of ROS and mediates the antioxidant defense func-
tion of cells [61]. Glutamine can be catalyzed by GLS2 to 
produce glutamate, which participates in the synthesis 
of glutathione (GSH) in  vivo. The glutathione-centered 
redox system is involved in the occurrence of a series of 
signal pathways, including the elimination of ROS, pro-
tein synthesis and cell oxidative defense functions. GSH 
is the most important intracellular antioxidant mol-
ecule, protecting cells from apoptosis induced by oxida-
tive stress [62, 63]. Glutathione mainly exists in the form 
of reduced glutathione (GSH) and oxidized glutathione 
(GSSG). Under physiological conditions, GSH is the main 
existing form, accounting for about 99 % [64]. The ratio 
of GSH/GSSG reflects the redox state of cells, the lack 
of glutamine during cell metabolism will eliminate the 
effect of GLS2 on the increase of GSH levels, indicating 
that glutamine metabolism plays a critical role in main-
taining tumor cell redox balance and ROS levels  [65].

It was reported that lncRNA UCA1 participated in the 
malignant progression, drug resistance and metabolism 
reprogramming of bladder cancer [66–69]. In bladder 
cancer cells, UCA1 regulates the glutamine metabolism 
and antioxidant defense by inhibiting miR-16, which tar-
gets GLS2 for translational inhibiting and reduced GLS2 
expression. This suggests a positive role of UCA1 in 
reducing ROS and sustaining the redox balance of cancer 
cells. Notably, the mRNA level of UCA1 and GLS2 are 
positively correlated, and the expression of GLS2 is nega-
tively correlated to the miR-16 in bladder cancer.

The interplay between lncRNAs and MYC
The MYC proto-oncogene family includes c-Myc, 
N-Myc, L-Myc, which are involved in the occurrence of 
various human tumors [70]. Cancer cells maintain their 
rapid proliferation and metastasis through metabolic 
reprogramming. Studies on PI3K/AKT/mTOR signaling 
pathway showed that cancer cells were strongly addicted 
to glucose and other nutrients such as amino acids. Glu-
tamine, as one of the major energy substrate of cancer 
cells, could also easily lead to addiction [71]. Metabolic 
reprogramming induced by MYC leads to glutamine 
addiction, its high expression can induce the glutamine 

transporter, glutaminase and lactate dehydrogenase A 
(LDH-A) expression. Myc is a major regulator of glu-
tamine metabolism [72]. Cancer cells accelerate mito-
chondrial glutaminolysis by Myc, which provides cells 
with fast-generating NADPH [73]. NADPH participates 
in many metabolic reactions, such as the synthesis of 
fatty acids, cholesterol and non-essential amino acids, 
and plays a key role in maintaining the reduction state of 
GSH [74].

As we all know, the androgen receptor (AR) signaling 
plays an important role in the progression of prostate 
cancer [75]. LncRNA PCGEM1 (prostate cancer gene 
expression marker 1) is an androgen-induced prostate-
specific lncRNA [76], which has been confirmed to regu-
late the metabolism including the tricarboxylic acid cycle, 
glutamine metabolism and pentose phosphate pathway 
of prostate cancer by activating c-Myc. C-Myc recruits 
PCGEM1 to the promoter of its target genes, which pro-
motes chromatin recruitment and enhances its transacti-
vation activity. When endogenous PCGEM1 is knocked 
down, the activity of c-Myc will decrease, indicating 
that PCGEM1 plays a metabolic regulation role as a co-
activator of c-Myc in prostate cancer cells. This is also 
the first report that lncRNA binds with c-Myc and acts 
as a co-activator to regulate metabolic reprogramming 
[77]. In esophageal squamous cell carcinoma (ESCC), 
the Wnt/β-catenin signaling pathway is highly correlated 
with the progression of ESCC, and its abnormal activa-
tion can lead to the occurrence of a variety of cancers 
[78]. While c-Myc, as a target gene of the Wnt/β-catenin 
signaling pathway, is involved in regulating ESCC cell 
cycle distribution and promoting tumor progression. The 
overexpression of UCA1 reduced the level of c-Myc and 
the β-catenin protein in the nucleus, and the proliferation 
and invasion of ESCC cells were obviously inhibited [79]. 
On the other hand, pancreatic cancer (PC) is a group 
of malignant tumors that mainly originated from the 
pancreatic ductal epithelium and acinar cells, which is 
extremely malignant and progresses rapidly  [80]. Recent 
studies have found that antisense lncRNA of glutaminase 
(GLS-AS) is involved in the pathogenesis of pancreatic 
cancer by mediating the mutual feedback of Myc and 
GLS in the tumor nutrients stress microenvironment. 
Tumor nutrients stress microenvironment is a critical 
factor for the downregulation of GLS-AS in pancreatic 
cancer, and GLS is the key target of GLS-AS. GLS-AS 
forms double-stranded RNA with GLS pre-mRNA and 
inhibits GLS expression at the post-transcriptional level. 
The promoter region of GLS-AS contains the binding site 
of Myc. As a multifunctional transcription factor, Myc 
down-regulates the expression of GLS-AS by inhibit-
ing its transcriptional activity [81]. C-Myc is involved in 
regulating a variety of signaling pathways in cancer cells, 
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and recent studies have shown that c-Myc participates 
in the regulation of glutamine metabolism by mediating 
the transcription of GDH. LncRNA XLOC_006390 was 
also found to promote pancreatic cancer through regu-
lating amino acid metabolism. XLOC_006390 promotes 
the stability of c-Myc by preventing its ubiquitination and 
subsequently upregulates GDH. GDH was confirmed to 
be generally up-regulated in cancer, and knockdown of 
GDH in cancer cells can significantly attenuate the glu-
taminolysis rate [82]. As GDH is closely related to pan-
creatic cancer progression, reduce the expression of GDH 
via the XLOC_006390/c-Myc/GDH signal axis, leading 
to the lower glutamine metabolism level, thus may pro-
viding a new vision for pancreatic cancer therapy [83].

LncRNAs mediate amino acid transporters’ function 
in cancer
The proliferation of tumor cells is characterized by 
uncontrolled and rapid division. Amino acids, as a class 
of major nutrients, are very important for the growth of 
tumor cells [84]. Due to excessive nutrient requirements, 
some amino acid transporters are up-regulated in the 
development of cancer. Four amino acid transporters 
have been found to be highly expressed in cancer, namely 
SLC7A5, SLC7A11, SLC1A5 and SLC6A14. SLC7A5 is 
also referred to as the LAT1 (L-Amino acid transporter 
1), with a high affinity to the branched-chain and neutral 
amino acid. It mediates a sodium-independent manda-
tory exchange and this exchange mechanism allows a 
large number of neutral amino acids to be balanced on 
the membrane [85]. The promoter of SLC7A5 has a typi-
cal binding site with C-Myc, and the high expression of 
C-Myc often leads to an increase of SLC7A5 expression 
level in cancer cells [86]. It was reported that SLC7A5 
was closely related to cell proliferation in lung can-
cer. SLC7A5 has been proved to be the direct target of 
miR-126 [87], which significantly inhibits the transport 
of other amino acids such as leucine, thus affecting the 
amino acid metabolism and the activation of the mTOR 
signal   [88, 89]. The involvement of leucine in mTOR 
signal activation has been widely recognized [90]. Sev-
eral lncRNAs were reported to regulate the amino acids 
metabolism through miR-126. For example, lncRNA 
PVT1-5 (Plasmacytoma variant translocation 1–5) was 
reported to be up-regulated and promoted the progres-
sion of lung cancer through sponging miR-126 [91]. 
Moreover, in non-small cell lung cancer (NSCLC), MYC 
induced long noncoding RNA (MINCR) is significantly 
up-regulated and promoted the proliferation and migra-
tion of NSCLC cells through targeting miR-126 [92].

Cysteine, as a rate-limiting amino acid for GSH synthe-
sis, whose level affects GSH balance in cells, is considera-
ble for the sustaining of redox balance of cells. SLC7A11, 

the major transporter for the exchange of extracellular 
cysteine and intracellular glutamate, protects cancer cells 
from apoptosis and promoting tumor development by 
improving the synthesis of GSH [93]. Antisense lncRNA 
AS-SLC7A11 is significantly reduced in epithelial ovarian 
cancer (EOC) and has been proved to inhibit SLC7A11 
expression in ovarian cancer. The knockdown of AS-
SLC7A11 increases the expression of SLC7A11 and 
improves the proliferation and viability of ovarian cancer 
cells [94].

Other mechanisms of lncRNAs in amino acid metabolism
The role of lncRNAs in cancer is diverse, recent studies 
have shown that polypeptides encoded by lncRNA can 
also suppress cancer in amino acid metabolism   [95]. 
LncRNA HOXB-AS3 can encode a conserved peptide 
containing 53 amino acids. This peptide inhibits amino 
acid metabolism and glycolysis to slow the progression 
of colon cancer [96]. As we know, the methionine cycle 
elucidates the metabolism of sulfur-containing amino 
acids in  vivo. Methionine adenosyltransferases (MAT) 
catalyze the methionine cycle to produce S-adenosyl-
methionine (SAMe). MAT has two coding genes in vivo, 
respectively MAT1A and MAT2A, and in the liver, their 
regulation modes for the SAMe are completely opposite: 
MAT1A upregulates the concentration of the SAMe, 
while MAT2A downregulates the SAMe [97, 98]. The 
methyl in SAMe is called active methyl, which makes 
SAMe to be the most important direct donor of methyl 
in vivo [99]. In hepatocellular carcinoma (HCC), lncRNA 
SNHG6, as a molecular sponge of miR-1297, is involved 
in regulating genome-wide methylation levels. MiR-1297 
directly binds to the 3 ‘UTR of the MAT2A mRNA, lead-
ing to its translational inhibition. SNHG6 upregulates 
the expression of MAT2A, thereby negatively regulating 
the concentration of SAMe in cells, leading to significant 
genome-wide hypomethylation of hepatocellular carci-
noma, which is a major feature of tumor genesis [100].

Conclusions
LncRNA in malignant tumors is widely involved in the 
process of metabolism   [101]. Besides involved in the 
regulation of glycolysis and lipid metabolism [102], 
lncRNA was also found to be involved in the process 
of amino acid metabolism: regulate the action mode of 
amino acid transporters, leading to the lack of several 
amino acid types; as a ceRNA to interact with miRNA 
involved in regulating glutamine metabolism; control 
alternative splicing of glutaminase to regulate meta-
bolic processes in  vivo; reduce intracellular ROS level 
so as to protect the function of the mitochondrion and 
regulate antioxidant defense in cells; encode some pep-
tides to play a role in the anticancer properties, which 
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can enlighten some potential ideas for treatment; play 
a unique role in the regulation of signaling pathways in 
Myc-driven cancers. In this review, we highlighted the 
characteristics of lncRNAs in regulating cancer amino 
acid metabolism, and the change of glutamine metab-
olism played a vital role in the process of oncogenesis 
[103]. Tumor cells seem to be very dependent on glu-
tamine so that we can reasonably infer that drugs act 
on glutamine metabolism can play an unexpected role 
in the process of cancer development. The rediscov-
ery on the effect of glutamine in tumor cells may pro-
vide us with promising clinical treatment. Besides, the 
metabolic mechanism of lncRNA in cancer also needs 
to further elucidate, which will be a great help to find 
new biomarkers and therapeutic targets in cancer treat-
ment. There are many other lncRNAs related to cancer 
cell metabolism, whose structures and functions are 
not clear to us. Given that the research on lncRNAs is 
still at the preliminary stage, it seems promising to dis-
cover novel lncRNAs and develop lncRNA-based tar-
geted therapeutic strategies. The study afterward will 
be full of challenges and opportunities.
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