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Abstract

An essential feature of meiosis is Spo11 catalysis of programmed DNA double strand breaks (DSBs). Evidence suggests that
the number of DSBs generated per meiosis is genetically determined and that this ability to maintain a pre-determined DSB
level, or ‘‘DSB homeostasis’’, might be a property of the meiotic program. Here, we present direct evidence that Rec114, an
evolutionarily conserved essential component of the meiotic DSB-machinery, interacts with DSB hotspot DNA, and that Tel1
and Mec1, the budding yeast ATM and ATR, respectively, down-regulate Rec114 upon meiotic DSB formation through
phosphorylation. Mimicking constitutive phosphorylation reduces the interaction between Rec114 and DSB hotspot DNA,
resulting in a reduction and/or delay in DSB formation. Conversely, a non-phosphorylatable rec114 allele confers a genome-
wide increase in both DSB levels and in the interaction between Rec114 and the DSB hotspot DNA. These observations
strongly suggest that Tel1 and/or Mec1 phosphorylation of Rec114 following Spo11 catalysis down-regulates DSB formation
by limiting the interaction between Rec114 and DSB hotspots. We also present evidence that Ndt80, a meiosis specific
transcription factor, contributes to Rec114 degradation, consistent with its requirement for complete cessation of DSB
formation. Loss of Rec114 foci from chromatin is associated with homolog synapsis but independent of Ndt80 or Tel1/Mec1
phosphorylation. Taken together, we present evidence for three independent ways of regulating Rec114 activity, which
likely contribute to meiotic DSBs-homeostasis in maintaining genetically determined levels of breaks.
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Introduction

In most sexually reproducing organisms, meiotic recombination

is initiated by programmed catalysis of DNA double strand breaks

(DSBs) by Spo11, an evolutionarily conserved type II topoisom-

erase-like transesterase [1]. In Saccharomyces cerevisiae, where the

process is best understood, Spo11 activity requires nine additional

proteins, five of which are meiosis specific (Rec102, Rec104,

Rec114, Mei4, and Mer2), and four that are expressed during

both meiosis and vegetative growth (Rad50, Mre11, Xrs2, and

Ski8) [2]. These proteins interact with each other and/or with

Spo11 to form a complex referred to as the Spo11- or DSB-

complex, or DSB-machinery, and participate in the Spo11

transesterase reaction that leads to the formation of a DSB

(reviewed in [2]).

Meiotic DSBs are essential for meiosis; nevertheless, each break

represents a potentially lethal or mutagenic DNA lesion that must

be repaired before the first meiotic division (MI). As such, Spo11

catalysis is tightly regulated at the temporal, spatial, and

quantitative levels. For instance, the catalysis does not normally

take place until the locus has undergone replication [3,4]. When it

occurs, DSB-catalysis takes place preferentially at loci referred to

as DSB hotspots rather than randomly throughout the genome [5–

7]. The number of breaks catalyzed per meiosis is also

developmentally programmed; in yeast or mammals, the number

is approximately 150–250 per meiosis, whereas in Drosophila, it is

about 25 [6–10].

Maintaining the number of meiotic DSBs at the developmen-

tally programmed level would require both positive and negative

means of regulating break formation. Although much is known

about the genetic requirements for DSB formation [2], factors and

mechanisms involved in monitoring the extent of breakage and/or

limiting the number of breaks remain largely elusive. Recent

studies suggested a role for the mammalian ATM kinase and its

Drosophila and budding yeast homologs, tefu+ and TEL1, respec-

tively, in down-regulating meiotic DSB formation [8,9,11]. These

proteins are members of the ATM/ATR family of conserved

signal transduction kinases involved in fundamental DNA/

chromosomal processes such as DNA replication, DNA damage

repair, recombination, and checkpoint regulation [12,13]. They
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also play a key role(s) in many essential meiotic processes including

interhomolog bias in DSB repair [14], meiotic recombination

checkpoint regulation [15], and sex chromosome inactivation in

mammals [16].

Here we present evidence that Rec114, an evolutionarily

conserved Spo11-accessory protein and an essential component of

the meiotic DSB-machinery [2], is a direct target of Tel1/Mec1,

the budding yeast ATM/ATR homologues. Several Spo11-

accessory proteins are proposed to be anchored at the chromo-

some axes and interact transiently with DSB hotspots at chromatin

loops to promote cleavage [17–21]. Tel1/Mec1 phosphorylation

of Rec114 upon DSB formation down-regulates its interaction

with DSB hotspots and leads to reduced levels of Spo11 catalysis.

Further analyses showed two additional means of down-regulating

Rec114: synapsis associated removal at the onset of pachytene, as

previously observed [17,22], and Ndt80-dependent turnover. We

propose a model whereby multiple means of regulating Rec114

activity contribute to meiotic DSB homeostasis in maintaining the

number of breaks at the developmentally programmed level.

Results

Rec114 is a Tel1/Mec1 target
Budding yeast Tel1 and Mec1, like their mammalian counter-

parts, ATM and ATR, are serine/threonine kinases [23]. These

kinases preferentially phosphorylate their substrates on serine (S)

or threonine (T) residues that precede glutamine (Q) residues, so

called SQ/TQ or [S/T]Q motifs. Many known targets of the

ATM/ATR family proteins contain [S/T]Q cluster domains

(SCDs), defined as a region where three or more SQ or TQ

motifs are found within a tract of 100 residues or less [24].

As a means to investigate a role of Tel1/Mec1 in regulating

DSB formation, we explored the possibility that they might

directly phosphorylate one or more of the nine Spo11-accesssory

proteins mentioned above. Rec114, an evolutionarily conserved

meiosis specific chromosomal protein, was the most likely target

with eight SQ/TQ consensus phosphorylation sites, seven of

which are found in two clusters, referred to as SCD1 and SCD2

(Figure 1A). Western blot analysis using polyclonal a-Rec114

antibodies [17] revealed the appearance of slower migrating

Rec114 species (Figure 1A). The putative phosphorylated

isoform(s) of Rec114 was more prominent in a strain expressing

a tagged version of REC114, REC114-13xMYC (Figure 1B ‘‘WT’’).

The tagged version also persisted for longer, showing that despite

conferring full spore viability the tag changed some of Rec114’s

characteristics (see below). In both REC114 and REC114-13xMYC

strains, the slower migrating species became prominent by

4 hours, corresponding to meiotic prophase in the current

experimental condition [14].

DSBs formed by Spo11 activates Tel1/Mec1, which in turn,

directly phosphorylate a number of targets including H2AX,

Sae2/Com1, (the ortholog of human CtIP), Hop1, and Zip1

[14,25–27]. To test whether the Rec114 phosphorylation was also

dependent on meiotic DSBs, we assessed the effect of spo11-Y135F,

a catalytically inactive allele of SPO11 [1]. The gel shift was not

detected in protein from spo11-Y135F strains, indicting it is

dependent on DSB formation (Figure 1B).

Next, we tested the dependence of the Rec114 mobility shift on

TEL1/MEC1. To this end, we assessed Rec114 migration patterns

in a rad24D tel1D strain. In a rad24D tel1D strain, the Tel1/Mec1

signaling is down-regulated to a level comparable to that in mec1D
tel1D cells kept viable by a suppressor mutation, sml1D; however,

rad24D tel1D cells do not exhibit the severe meiotic progression

defect observed in the latter [14]. We found that Rec114 mobility

shift was reduced in a rad24D tel1D background (Figure 1B). The

reduction was also observed at the restrictive temperature in a

tel1D strain carrying the temperature sensitive mec1-4 allele [28]

(Figure 1G).

Defects in meiotic recombination or synapsis activate Tel1- or

Mec1- checkpoint response [12,14,15,26,27,29]. In rad50S, mre11S

(‘‘S’’ for separation of function), or com1D/sae2D backgrounds,

Spo11 remains covalently bound to the break ends, preventing

their further processing. Accumulation of unprocessed meiotic

DSBs in these mutants triggers a TEL1-dependent checkpoint

response [30–32]. Elimination of the meiotic recombinase Dmc1,

on the other hand, leads to accumulation of hyper-resected break

ends that are loaded with single strand DNA (ssDNA) binding

proteins and activates a MEC1-mediated checkpoint response

[15,33]. During Tel1- or Mec1-checkpoint response, a number of

targets, including Hop1 and Com1/Sae2, remain hyper-phos-

phorylated, reflecting the increased kinase activity of Tel1/Mec1.

We found that both the extent and duration of Rec114 mobility

shift seemed also enhanced in a rad50S or dmc1D background

(Figure 1C), consistent with the possibility that Rec114 might be a

target of Tel1/Mec1.

To further address the role(s) of Tel1/Mec1 in Rec114 mobility

shift, we examined its migration pattern in a strain expressing a

rec114 allele, rec114-8A, where all of the S or T residues of the eight

Tel1/Mec1 consensus sites were replaced by a non-phosphor-

ylatable alanine (A). We found that Rec114 mobility shift was

abolished in a rec114-8A dmc1D strain (Figure 1D), indicating that

the observed shift is due to a modification(s) at one or more of the

eight Tel1/Mec1 consensus sites.

To confirm in vivo phosphorylation of Rec114 at a specific

residue(s) during normal meiosis, we generated phospho-specific

antibodies against three of the eight ATM/ATR consensus sites in

Rec114. T175 and S187 were chosen based on their biological

relevance (Table 1; see analysis below); S265 was selected using a

software tool that predicts kinase-specific phosphorylation sites

(GPS 2.1; Supporting Online Material). Using these phospho-

Author Summary

Meiosis is a specialized cell division that underpins sexual
reproduction. It begins with a diploid cell carrying both
parental copies of each chromosome, and ends with four
haploid cells, each containing only one copy. An essential
feature of meiosis is meiotic recombination, during which
the programmed generation of DNA double-strand-breaks
(DSBs) is followed by the production of crossover(s)
between two parental homologs, which facilitates their
correct distribution to daughter nuclei. Failure to generate
DSBs leads to errors in homolog disjunction, which
produces inviable gametes. Although DSBs are essential
for meiosis, each break represents a potentially lethal
damage; as such, its formation must be tightly regulated.
The evolutionarily conserved ATM/ATR family proteins
were implicated in this control; nevertheless, the mecha-
nism by which such control could be implemented
remains elusive. Here we demonstrate that Tel1/Mec1
down-regulate meiotic DSB formation by phosphorylating
Rec114, an essential component of the Spo11 complex. We
also observed that Rec114 activity can be further down-
regulated by its removal from chromosomes and subse-
quent degradation during later stages in meiosis. Evidence
presented here provides an insight into the ways in which
the number of meiotic DSBs might be maintained at
developmentally programmed level.

Controlling Meiotic DSB Levels through Rec114
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specific antibodies, we performed Western blot analyses on

samples taken from strains expressing either WT or the non-

phosphorylatable allele, rec114-8A. The results showed that each of

the three phospho-specific antibodies generated signals in the WT

samples but not the rec114-8A, confirming in vivo phosphorylation

of Rec114 at these three sites (Figure 1E). Finally, we demon-

strated that purified Mec1 could directly phosphorylate one or

more of the three confirmed in vivo Rec114 phosphorylation sites in

vitro (Figure 1F). Taken together, we conclude that Rec114 is a

DSB dependent target of Tel1/Mec1 during normal meiosis.

Synthetic interaction between rec114-phosphomimetic
and spo11-hypomorphic alleles

To investigate function(s) of Tel1/Mec1 phosphorylation of

Rec114, the effect of mutating the S or T residues of the eight

Tel1/Mec1 consensus sites was examined. We began the analysis

with two rec114 alleles, rec114-8A or rec114-8D, where the eight S

or T were mutated to either a non-phosphorylatable alanine (A) or

to a phospho-mimetic aspartic acid (D) residue, respectively. Spore

viability of rec114-8A diploids was comparable to that of REC114

in all genetic backgrounds tested (Table 1). rec114-8D, in contrast,

conferred haploinsufficiency and synthetic interactions with

mutations that confer either a reduction in DSB-catalysis (e.g.

spo11-HA and spo11-DA) [34] or sensitivity to such reduction (e.g.

pch2D) [35] (Table 1). Thus, constitutively mimicking Tel1/Mec1

phosphorylation might be deleterious to meiosis. Alternatively, the

effect might be due to protein misfolding caused by the

introduction of eight closely spaced negative charges, which might

have led to its degradation. Although we cannot rigorously rule out

the latter, it appears unlikely, given that chromatin bound

Rec1148D is more abundant than Rec114 (see analysis below),

and also because replacing as few as two (T175 and S187) of the

eight consensus sites with a phosphomimetic residue confers a

rec114-8D like phenotype with respect to haploinsufficiency and

synthetic interaction with spo11-hypomorphic alleles (Table 1).

Notably, T175 and S187 of Rec114 are confirmed in vivo

phosphorylation sites (Figure 1E).

Rec114 phosphorylation down-regulates Spo11 catalysis
The synthetic spore lethality interaction between rec114-

phosphomimetic and spo11-hypomorphic alleles, which are known

to confer sublethal reductions in crossover (CO) levels [34]

(Table 1), suggested that the combined effects of the mutations

may result in a lethal deficit in CO-formation. To test this, we

assessed the effect of rec114-8D on CO-levels at the well

characterized HIS4-LEU2 artificial meiotic recombination hotspot
Figure 1. Rec114 is a DSB dependent Tel1/Mec1 target. A.
Schematic representation of Rec114 with the locations of eight [S/T]Q

motifs. S: serine, T: threonine, SCD: [S/T]Q Cluster Domain. Below:
Slower migrating Rec114 species revealed in Western blot analysis
using polyclonal a-Rec114 antibodies. B–D. Samples from indicated
genotypes were collected at the specified time points and subjected to
a Western blot analysis using a-Myc or a-Hop1 antibodies. E. Samples
from REC114 and rec114-8A cultures were collected at 3, 5, and 7 hours
after induction of meiosis, and subjected to immunoprecipitation using
a-Rec114 antibodies. The resulting precipitates were separated in SDS
gels and immunoblotted using three phosphos-specific antibodies (a-
pThr175, a-pSer187, a-pSer265), or a-Rec114 antibodies. F. In vitro
kinase assay using immunoprecipitated Mec1-myc18 and purified GST-
Rec114 and GST-Rec1148A in the presence of ‘‘cold’’ ATP. Samples were
separated in SDS gels and immunoblotted using a cocktail of a-
pThr175, a-pSer187, and a-Ser265 antibodies or a-Rec114 antibodies. G.
Samples from indicated genotypes were collected 5 hours after
induction of synchronous meiosis and subjected to Western blot
analysis using a-pThr175 or a-Rec114 antibodies.
doi:10.1371/journal.pgen.1003545.g001
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(Figure 2A) [36]. rec114-8D conferred a delay in the accumulation

of COs, and about 25% reduction in the final level of COs; in

rec114-8A, the level of COs was comparable to WT but they

appeared earlier (Figure 2BC).

A reduction in CO-levels can result from either insufficient DSB

levels and/or a defect(s) in CO homeostasis [34]. CO homeostasis

refers to the notion that CO-levels tend to be maintained at the

expense of noncrossovers (NCOs), and is, in part, based on the

observation that strains expressing spo11-hypomorphic alleles

exhibited only a modest reduction in the levels of COs despite

the fact that their DSB levels, assessed in a rad50S background,

were significantly lower than WT [34]. To determine whether the

reduction in CO-levels in a rec114-8D strain was due to a defect in

break formation and/or CO homeostasis, we measured DSB levels

in a rec114-8D com1Dsae2D or rec114-8D rad50S strain using pulsed

field gel electrophoresis (PFGE)/Southern analysis (Figure 2D;

data not shown). The results showed that rec114-8D confers a

dramatic reduction in the levels of DSBs on three different

chromosomes examined, ChrIII, V, and VIII (Figure 2E; Figure

S1 ABC; data not shown). We conclude that the modest reduction

in CO-levels in a rec114-8D strain is likely due to a reduction in

DSB levels, and that the observed synthetic interaction between

rec114-phosphomimetic and spo11-hypomorphic alleles (Table 1)

may result from additive impact of the two mutations on

insufficient DSB-catalysis.

The above observations suggest that Tel1/Mec1 phosphoryla-

tion of Rec114, mimicked in rec114-8D, down-regulates DSB

formation. If so, the absence of the phosphorylation in rec114-8A

should lead to an increase in DSB levels, assuming that no other

mechanism was acting redundantly. Indeed, a substantial increase

could be observed for break sites near YCL064C or YCR048W on

ChrIII (Figure 2EF). The extent of the increase was comparable to

that observed in tel1D, a mutant reported to cause an increase in

DSB levels [11]. Since Rec114 is a target of Tel1 and/or Mec1

(above), the latter suggests that Rec114 is likely to be a key target

in mediating Tel1 negative regulation in DSB levels. Unlike

rec114-8D, whose negative effect on break levels was obvious at all

break sites analyzed on ChrIII, V, and VIII, we were only able to

document the much subtler positive effect of rec114-8A or tel1D on

ChrIII with this technology (Figure 2EF; Figure S1D–E and data

not shown).

The dramatic effect of rec114-8D suggests that phosphorylation

of some or all of the sites mutated is sufficient to strongly reduce

Spo11 catalysis. The comparably modest increase in rec114-8A

mutants, where Rec1148A is insensitive to Tel1/Mec1 negative

control via phosphorylation at these sites, suggests that Rec1148A

might mainly cause repeated cleavage by the same activated DSB

machine near the break on the same chromatid, which would

hardly increase the DSB signals measured by Southern; alterna-

tively, it may point to the existence of additional mechanism(s)

limiting break formation, and that it/they is/are yet to be

discovered.

Unexpectedly, we found that the negative effect of rec114-8D on

break level was notably attenuated in a dmc1D background

compared to rad50S or com1D/sae2D (Figure 2G; data not shown).

In a rec114-8D dmc1D strain, DSB levels reached about 75% of a

REC114 dmc1D. In a RAD50 DMC1 background, the effect of

rec114-8D was intermediate, between rad50S/com1D/sae2D and

dmc1D (Figure S2). These observations show that the control of

DSB formation is likely multi-layered and that feedbacks in

addition to that by Rec114 phosphorylation exist.

Rec114 phosphorylation leads to a genome-wide
reduction in DSB levels

As an independent means of assessing the effect of Rec114

phosphorylation on DSB levels, we performed a genome-wide

Spo11-chromatin immunoprecipitation (ChIP) on CHIP assay

(here on referred to as ChIP-chip), which confers greater

resolution and offers easier normalization than a Southern blot

based analysis (e.g. [7,37]). In constructing the required strains for

the analysis, we took into account the potential genetic interaction

between various epitope tags of Spo11 and rec114 alleles as

suggested by reduced spore viability of strains expressing tagged

versions of either protein (Table 1; data not shown). We

introduced the untagged versions of REC114, rec114-8A, or

rec114-8D alleles into a rad50S strain expressing SPO11-18xMYC.

Unlike spo11-6xHIS-3xHA, the SPO11-18xMYC did not affect spore

viability of rec114-8D strains (data not shown). Spo11-myc ChIP

was performed without the use of formaldehyde (FA) cross-linking

to enrich for Spo11 proteins that had remained covalently bound

to the break ends upon DNA-cleavage. To ensure the highest

degree of comparability between the three REC114/rec114 allele

Table 1. Spore viability of the different rec114 alleles in various genetic backgrounds.

Relevant Genotype2 None3 ½rec1 1 4 �
rec1 1 4D

4
spo1 1 -HA

spo1 1 -HA

spo1 1 -HA

spo1 1 -DA

spo1 1 -DA

spo1 1 -DA

pch2D

pch2D

REC114 Allele1

REC114 0.98* 0.99* 0.98 0.78 0.30 0.99

8A 0.99* 0.99* 0.98 0.80 0.28 0.97

8D 0.92* 0.68* 0.29 0.003* ,0.01 0.28*

T175D, S187D 0.95* 0.72 0.55 ND ND ND

T175D, T179D, S187D 0.93* 0.69 0.48 ND ND ND

T175E, T175E, S187E 0.95* 0.69 0.51 ND ND ND

Spore viability was assessed following 2 day incubation on sporulation medium (SPM) plate at 30uC. Generally, 160 spores were scored for each strain except for those
with (*) where 320 spores were analyzed. Viability was indicated as the fraction of viable spores over the total dissected. Abbreviations: T; threonine, S; serine, A; alanine,
D; aspartic acid, E; glutamic acid, ND; not determined.
1Nature of mutations in rec114 alleles analyzed.
2Relevant genotypes of the strains to which REC114, rec114-8A, or the four different rec114-phosphomimetic alleles in the ‘‘REC114 allele’’ column were introduced to
assess potential genetic interaction(s).
3Homozygous diploids expressing the indicated REC114 or rec114 alleles in an otherwise WT background.
4Heterozygous diploids expressing a single copy of the indicated REC114 or rec114 alleles; the other allele is rec114D.
doi:10.1371/journal.pgen.1003545.t001
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backgrounds, the experiments were performed strictly in parallel

for all steps from culturing to the final analysis. The resulting

profiles of covalently bound Spo11 in the three backgrounds

reproduced the published DSB hotspot profiles [7] with great

precision (Figure 3A). A small fraction of signals, typically near

telomeres and within pericentric regions, however, are not DSB

specific, but identical among the three profiles (Figure 3A, areas

denoted by *); these were used to superimpose the profiles (decile

normalization, [17], Materials and Methods). Importantly, the

three aligned profiles differ in the amplitude of hundreds of sharply

defined positions in an almost invariable pattern: Spo11 signal in

rec114-8A is higher than in wild type, while Spo11 in rec114-8D is

strongly reduced (Figure 3A; Figure S3).

The results of statistical evaluation of the differences in these

peaks is presented in Figure 3C. The following prediction was

tested in this analysis: If DSB formation was indeed reduced in

rec114-8D relative to rec114-8A, then the ratio of the Spo11 profiles

of rec114-8A over rec114-8D, (hereon referred to as 8A/8D), should

define DSB sites. In fact, the correlation between DSB hotspots

and the 8A/8D peaks should be greater than that of not-

normalized profiles. Indeed, profiles of these ratios identify near

100% of the published DSB hotspots (eg. Figure S3 A,D). When

peaks of the ratio of these profiles were compared to the mapped

hotspots at a resolution of 600 bp, .97% of the 1200 strongest

Spo11 8A/8D peaks matched one of the 3600 DSB sites [7],

(p,10240, Figure S4A). The same was true for smaller selections;

62% of 500 strongest 8A/8D sites matched one of the 500

strongest DSB sites (p,10240, Figure 3C), while 76% of 100 8A/

8D matched 100 DSBs (p,10220, Figure S4B). More detailed

results showing the cumulative curves of distances compared to a

null hypothesis (random) are provided in Figures 3Ci and Figure

S4A,B. Although there are some peaks in the Spo11 profiles,

where 8D.8A, less than 1% of the 500 strongest 8D/8A match

the 500 DSBs, a strong anti-correlation (p,1026) that excludes

that there is significant 8D.8A at DSB sites (data not shown).

Even for the smaller difference between WT and 8A, WT/8A

produces a clear anti-correlation (Figure 3Ci). Being independent

of decile or any other normalization, this analysis indicates that

Spo11 catalysis at nearly all known hotspots is attenuated in the

phospho-mimicking rec114-8D background. Furthermore, the

degree of attenuation is roughly proportional to the hotspot

strength in that the 100 strongest DSB peaks correspond to the

100 strongest Spo11 8A/8D peaks, whereas the 500 strongest DSB

peaks to the 500 strongest Spo11 8A/8D peaks.

Analysis of the smaller differences between Spo11 profiles in

rec114-8A and in REC114 by 5006500 comparison (500 hottest

DSB hotspots against 500 strongest 8A/WT peaks) also produced

a significant, although somewhat weaker, correlation (p,10240,

Figure 3Ci). We thus confirm with high significance, that Spo11

signals in the non-phosphorylatable rec114-8A are more abundant

than in the wild type background, at least for the 500 strongest

hotspots genome wide. The effect of rec114 mutations on the

Figure 2. Effect of rec114-8A and rec114-8D on levels of COs and
DSBs. A. Physical map of HIS4-LEU2 locus showing relevant XhoI
restriction sites (X) and the probe used for Southern analysis [36].
Parental homologs ‘‘Mom’’ and ‘‘Dad’’ and the two CO-products are
distinguished via restriction polymorphism (circled X). Sizes and
identities of species analyzed in (B) are as indicated. ‘‘COs’’:
interhomolog crossover products. B. Southern blot analysis of COs in
REC114, rec114-8A, and rec114-8D strains. The analysis was performed as
described in panel A and Materials and Methods. C. Quantification of
COs in the gel shown in panel B. D. Mapping of meiotic DSBs in ChrIII
by PFGE followed by indirect labeling of one chromosome end using
YCL064C/CHA1. FL: full-length intact chromosomes. DSBs: linear
chromosome fragments extending from the labeled end to the site of
a break. E. PFGE of whole chromosomes probed with the YCL064C/
CHA1 probe from REC114, rec114-8D, and rec114-8A strains in a com1D/
sae2D background; the region of the gel used for DSB quantification is

indicated by brackets on the right of the gel. Quantitative analysis of
the PFGE/Southern gel is presented below. F. Southern blot analysis of
the region around the YCR047C YCR048W DSB-hotspot. Samples were
digested with AseI restrictive enzyme and probed with YCR048W to
assess DSB levels in a REC114, rec114-8A, or tel1D strain in a rad50S
background. Quantitative analysis was performed based on the signal
associated with the DSB-hotspot located within the YCR047C promoter
(*). G. PFGE of whole chromosomes probed with the YHL039W probe
from REC114, rec114-8A, or rec114-8D strains in a dmc1D background;
the region of the gel used for DSB quantification is indicated by
brackets on the right side of the gel.
doi:10.1371/journal.pgen.1003545.g002
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extent of Spo11 catalysis was confirmed further by qPCR analysis

at a strong DSB site (YCR047C, Figure 3Aii). Taken together, these

results strongly suggest genome-wide down-regulation of Spo11

catalysis by phosphorylation of Rec114, at least in the rad50S

background.

In addition to axis-site binding, Rec114 also shows
phosphorylation-sensitive interactions with DSB hotspots

Rec114 is a meiotic chromosome axis protein whose recruit-

ment to the chromosomes is essential for Spo11 catalysis

[17,20,22]. To test whether Tel1/Mec1 phosphorylation might

down-regulate Spo11 catalysis by affecting Rec114’s association

with certain chromosomal positions, we performed genome wide

Rec114 ChIP-chip analysis in strains expressing untagged versions

of Rec114, Rec1148A or Rec1148D using a polyclonal antibody

raised against Rec114 [17].

The analysis of Rec114 ChIP-chip after 4 hours in SPM showed

enrichment of Rec114 at chromosome axes located nearby strong

DSB hotspots (Figure 3Bi) as shown previously [17,21]. Similar to

the Spo11 profiles, the three Rec114 profiles became perfectly

superimposed after decile normalization for many DSB-unspecific

low signal peaks (Figure 3Bi). Within DSB-rich domains of ChrIII,

signals at axis sites were strongest for Rec1148D, followed by

Rec114 and then Rec1148A at axis sites. This relationship was

confirmed by qChIP at one axis site over a meiotic time course

(Figure 3Bii). Thus, Rec114-axis association appears to correlate

negatively with DSB levels. We conclude that the reduction in

DSB levels in a rec114-8D strain is not due to defects in Rec1148D -

axes interaction.

RMM and other Spo11 accessory proteins are proposed to be

anchored at the chromosome axes and interact transiently with

DSB hotspots at chromatin loops to promote cleavage [17–21].

Given the apparent excess of Spo11-accessory proteins relative to

the number of breaks catalyzed (e.g. [20]), such transient

interaction is expected to manifest as small peaks near hotspots

interspersed in a landscape of prominent axis signals. Indeed, for

the hyperactive Rec1148A protein, nearly all of the strong DSB

hotspots show small peaks overlapping the hotspots (Figure 3Bi, at

Figure 3. Rec114 phosphorylation down-regulates Spo11 catalysis and Rec114-DSB hotspot association. A. (i) Spo11-myc ChIP-chip
profiles of REC114 (green), rec114-8A (red), and rec114-8D (blue) in a rad50S background for ChrIII. The centromere is denoted by a circle. For all ChIP-
chip profiles presented in this work, ChIP/whole-cell extract (WCE) signal intensity was plotted against the chromosomal position after smoothing
(bandwidth as indicated) and after decile normalization [17]. Brackets with stars label background peaks that become aligned among the profiles by
this normalization. Cells were collected 6 hours after transfer to SPM, when the DSB level in a rad50S strain is near its maximum. (ii) qPCR results of
ChIP of Spo11-myc in REC114, rec114-8A, and rec114-8D at the YCR047C DSB-hotspot located at position 211.7 kb on ChrIII [17]. B. (i) Rec114 –ChIP-
chip profiles in REC114 (green), rec114-8A (red) and rec114-8D (blue) for ChrIII. Black bars: Hotspot positions [5–7]. (ii) qPCR time course of Rec114 -
ChIP at a previously characterized axis site, located at 219.5 kb [17]. (iii, iv, v) Magnified views of a typical strong hotspot on ChrIV: REC114 (green),
rec114-8A (red), rec114-8D (blue), Spo11-oligo counts from [7](black bars). In (v) all profiles were normalized by wild type, as an example for the mirror-
like behavior of phospho-mimicking versus non-phosphorylatable Rec114 at DSB-hotspots. (vi) qPCR time course of Rec114-ChIP, at a hotspot
(211,7 kb) and an axis site (219 kb) on ChrIII, expressed as ratio of hotspot/core to demonstrate that all three strains increase Rec114 hotspot
occupancy relative to its axis binding as a function of time. Notably the extent of increase is greatest in rec114-8A, followed by REC114, and then
rec114-8D. C. (i, ii) Genome wide correlation between DSB-hotspots and peaks of Spo11-myc and Rec114 ChIP-chip profiles: Both plots describe how
well the 500 strongest peaks of a certain profile colocalize with the 500 strongest DSBs mapped by [7] (see also Method section). The cumulative
fraction of peaks of a specified profile is plotted against the distance from the nearest DSB-cluster (in kb). For example, over 60% of Spo11-myc,
rec114-8A/8D peaks are within 600 bp of one of the 500 strongest DSBs (600 bp distance marked with black line for convenience). A random model
would predict only 7% of overlaps under these conditions. (i) Spo11-myc ChIP-chip profile analysis in the rad50S background: rec114-8A/rec114-8D
(8A/8D), rec114-8A/REC114 (8A/WT), REC114/rec114-8A (WT/8A), random model and 2%, 98% percentiles (black). (ii) Rec114 ChIP-chip profile analysis
in a RAD50 DMC1 background: Rec1148A/Rec1148D (8A/8D, red)), Rec114WT/Rec1148D (WT/8D), Rec1148A/Rec114WT (8A/WT), 1/Rec1148D (1/8D)
Rec114/1 (WT), random model and 2%, 98% percentiles (black). For comparison, Spo11-myc in the rad50S background of rec114-8A/rec114-8D (8A/8D;
bright green) is included.
doi:10.1371/journal.pgen.1003545.g003

Figure 4. Rec114 phosphorylation delays its NDT80-dependent turnover. A and B. Samples from indicated genotypes were collected at the
specified time points and subjected to Western blot analysis using a-Rec114 or a-Hop1 antibodies. The graphs show the level of Rec114 in the
Western blot, normalized to the total Hop1 signal (A) or to the loading control (B), and expressed relative to the t = 0 sample, set to 1. In ndt80D (B),
the quantification of Rec1148D protein only shows timepoints 3, 6, and 12 hours.
doi:10.1371/journal.pgen.1003545.g004
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211.7kb; Figure 3Biii, v, Figure S5). These DSB associated peaks

are stronger in Rec1148A than in wild type and are typically absent

in Rec1148D. At strong hotspots, the profiles reversed their order

noted above and become Rec1148A.Rec114.Rec1148D, al-

though Rec1148D strongly dominates at the immediately adjacent

axis sites (Figure 3Biii, v, Figure S5). Among the 35 strongest

hotspots (as defined in [7]), 33 of them presented Rec1148A.R-

ec1148D (p,1.6610217), and all but one overlapped with local

Rec1148A maximum in the DSB cluster (e.g. Figure 3Biii, iv, v).

Comparing Rec114 association with a DSB site (YCR047C) and its

neighboring axis site as a function of time, we observed that the

extent of increase at the DSB site (Figure 3Bvi) is greater than the

increase at the axis site (Figure 3Bii). Furthermore, the time

dependent increase in the hotspot associated Rec114 exhibited

Rec1148A.Rec114.Rec1148D (Figure 3Bvi).

Similar to arguments of the previous section, the following

prediction was tested: If more Rec1148A bound to DSB sites than

Rec1148D, peaks of the ratio of the profiles Rec1148A/Rec1148D

(8A/8D) should map to DSB sites. Analysis shows that the

majority of DSB-sites coincide with 8A/8D peaks (Figures S3 B,

E). Indeed, comparison of the 500 strongest peaks and 500 hottest

hotspots revealed a highly significant correlation (Figure 3C,

p,10237). Interestingly, 8A/WT and WT/8D peaks also exhibit

significant correlations with DSB sites (p,10219, 98% confidence

interval of a random model plotted) suggesting the relation:

8A.WT.8D at DSB sites. Inversion of the DSB anti-correlated

8D profile also lead to the observed positive correlation of WT/8D

(Figure 3Cii, ‘1/8D’ red circles), albeit with a weaker correlation

than the 8A/8D (p,1027) and WT/8D ratios (p,.04), lending

solid statistical support to the interpretation Rec1148A.Re-

c114.Rec1148D at the 500 strongest DSB hotspots. Selecting

just 100 strongest sites produced similar significances, while

selecting more hotspots (3600) results in loss of significance, as

the effect of 8A becomes insignificant compared to the effect of 1/

8D for weak hotspots (Figure S4).

The parallel analysis of mutations with opposite effects on DSB

hotspot binding provided an opportunity to unequivocally

demonstrate genome-wide associations of Rec114 with DSB sites.

In addition, these mutants reveal that interaction between Rec114

Figure 6. Model: Multiple mechanisms of regulating Rec114
contribute to meiotic DSB homeostasis. A. Tel1/Mec1 phosphor-
ylation of Rec114 following a successful Spo11-cleavage leads to local
inhibition of DSB formation near the break. Given that most of Spo11-
breaks are generated during leptotene, a feedback mechanism based
on successful Spo11 catalysis would be most effective during this
period, contributing to a large reduction in the DSB-catalyzing potential
of the cell as depicted by A9. B. Synapsis-dependent Rec114-removal
from chromosomes during the zygotene to pachytene transition
contributes to a modest reduction in the DSB-catalyzing potential of
the cell as depicted by B9. C. Ndt80-dependent Rec114-turnover would
lead to irreversible inactivation of DSB-catalyzing potential at the
genome-wide level (C9). The continued DSB formation observed in
ndt80D strains [39] could be attributable to the persistent low level DSB
catalyzing potential. D. Tel1/Mec1 activation of Hop1/Mek1 checkpoint
function inhibits Ndt80, which in turn, ensures that cells do not
progress through meiosis I until DSB repair is complete. Involvement of
Ndt80 in Rec114 degradation (Figure 4) suggests that Tel1/Mec1,
depending on circumstances, might also positive regulate DSB levels by
preventing irreversible inactivation of DSB machinery.
doi:10.1371/journal.pgen.1003545.g006

Figure 5. Effect of Rec114 phosphorylation on its synapsis
dependent removal. A. Temporal and spatial dynamics of Rec114
and Zip1 localization are assessed cytologically using antibodies against
each protein. Presented are representative images of cells in leptotene/
zygotene (i); zygotene/pachytene (ii); and pachytene (iii). The classifi-
cation was based on the extent of Zip1-polymerization. White
arrowheads: examples of the mutual exclusiveness of Rec114 and
Zip1 signals. Scale bar: 5 mm. B. The fraction of REC114 ndt80D cells with
Rec114 foci (black lines) or Zip1-linear stretches (orange lines). Grey
columns; the average number of Rec114 foci per cell. C. (i) Fraction of
Rec114-foci co-localizing with either Zip1-foci (yellow) or Zip1-lines
(green). For each time point, ,500 Rec114-foci collected from ,
REC114 ndt80D nuclei were analyzed. (ii) Fraction of Zip1-lines co-
localizing with Rec114-foci in the same ,50 REC114 ndt80D nuclei per
time point analyzed in panel (i). D. The average number of Rec114 foci
(i), fraction of cells containing Rec114 foci (ii), and fraction of cells
containing Zip1-linear stretches (iii) in REC114 ndt80D (green), rec114-8A
ndt80D (red) or rec114-8D ndt80D (blue) cells.
doi:10.1371/journal.pgen.1003545.g005
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and DSB sites are negatively regulated by Tel1/Mec1 phosphor-

ylation of Rec114.

Rec114 phosphorylation delays the onset of its NDT80-
dependent turnover

The effects of Rec114 phosphorylation on its steady state

protein levels were assessed by Western blot analysis (Figure 4)

using the a-Rec114 antibody [17]. In a rec114-8A culture, a

reduction in the protein levels, most notable at 5 and 6 hours, was

observed (Figure 4A). In rec114-8D, protein persists longer, until

the 6 and 8 hour time points. Thus, phosphorylation of Rec114

appears to increase not only its axis-association but also its steady

state levels.

Ndt80 is a meiosis specific transcription factor required for

pachytene exit and resolution of joint molecules (JMs). Some

meiotic DSBs persist in an ndt80D background, suggesting its

involvement in curtailment of break formation [38,39], or a failure

to repair some DSBs. To determine whether Ndt80 affected the

stability of Rec114, we repeated the same Western blot analysis in

an ndt80D background. Results revealed that Rec114 becomes

stabilized in a REC114 ndt80D strain for at least 12 hours after

transfer to SPM (Figure 4B), while it rapidly declined in NDT80

after 5 hours (Figure 4A). Thus, timely Rec114 degradation

requires Ndt80. ndt80D also prevented the degradation of

Rec1148A and Rec1148D (Figure 4B), suggesting that the observed

differences in steady state protein levels in the mutants (Figure 4A)

might be caused by differential timing of Ndt80 activation.

Rec114 phosphorylation delays its synapsis-associated
removal from chromosomes

All Spo11-accessory proteins examined to date, including

Rec114, are recruited to the chromosomes before the initiation

of meiotic recombination, and remain chromosome-associated

until Zip1 dependent homolog synapsis takes place [17,20,22,40].

Zip1 is an evolutionarily conserved component of the central

region of the synaptonemal complex (SC), and is required for

homolog synapsis and meiotic recombination [41–43].

In early meiotic prophase, there is little overlap between Rec114

and Zip1; at later stages, Rec114 foci become less abundant and

dimmer in synapsed chromosome regions but remain bright in

unsynapsed regions of the same nucleus [17,22]. These observa-

tions suggest that synapsis might promote the removal of Rec114

and its associated proteins Mei4 and Mer2. Combining this with

the current observation that the extent of Rec114-axis association

is affected by its phosphorylation status (Figure 3B) raised the

possibility that Rec114 phosphorylation might affect the timing of

synapsis. To address this, we performed co-immunostaining

analyses of Rec114 and Zip1 using polyclonal antibodies raised

against each protein (Supplementary Online Information). The

experiment was conducted in an ndt80D background to exclude

any influence by the NDT80 dependent Rec114 degradation

(above).

Rec114 in the ndt80D background behaved as reported [17,22],

with Rec114 foci peaking at mid prophase just before the onset of

synapsis, with little or no overlap between Rec114 and Zip1

staining (Figure 5A,C). The fraction of nuclei containing Rec1148A

-foci decline more rapidly than Rec114, while that of Rec1148D

containing nuclei remain abundant until at least 6 hours in SPM

(Figure 5Di, ii), consistent with synapsis being affected by the status

of Rec114 phosphorylation (Figure 5D iii). These observations

show that synapsis-associated dissociation of Rec114 is Ndt80

independent. Depending on the Rec114 allele and the associated

DSB frequency, synapsis occurs earlier or later, entailing earlier or

later Ndt80 independent Rec114 removal. In ,30% of ndt80D
cells, some strong Rec114 foci persisted up to 6 hours into meiosis

(Figure S6), consistent with the stabilization of the protein in

ndt80D (Figure 4). Most of the Rec114 positive ndt80D cells

exhibited dimming and/or disappearance of signal along SCs and

a persistent polycomplex (PC) (Figure S6i, ii), in agreement with

‘SC-decay’ in ndt80 mutants [38]. All prominent Rec114 foci were

on Zip1-free areas or in PC (Figure S6i, iii), suggesting that they

might be aggregates of stripped Rec114 that cannot be degraded

in an ndt80 background. The abundance of residual Rec114

present at these late time points is consistent with the aberrantly

late DSBs observed in ndt80D [39].

Discussion

Rec114 is an evolutionarily conserved essential component of

the meiotic DSB-machinery [17,20,22,44–48]. Here we present

evidence that phosphorylation of Rec114 reduces both its

interaction with DSB-hotspots and DSB formation. Furthermore,

it prolongs Rec114-axis association and delays the onset of NDT80

dependent turnover, suggesting the existence of a feedback system

that couples the steady state DSB levels to post-leptotene

regulation of Rec114 activity.

DSB-dependent Tel1/Mec1 phosphorylation of Rec114
Three independent studies have implicated a role of the ATM

kinases in down-regulating Spo11 catalysis [8,9,11]. The evidence

presented here implicates Rec114 as a physiologically relevant

Mec1 and/or Tel1 target in this regulation. Results show a robust

reduction of function for phospho-mimicking Rec1148D and a

subtler increase in function in the rad50S background for

Rec1148A. Why are these effects not symmetric? One trivial

explanation could be that introducing eight aspartic acid residues

into Rec1148D may render the protein partially non-functional,

aside from mimicking phosphorylation. However, Rec1148D is a

stable protein that binds well to chromatin, excluding general

protein stability-, nuclear import- or chromatin-binding defect for

Rec1148D. Furthermore, since Rec1148D behaves similar to

Rec1142D (T175D, S187D) in terms of reduction of DSBs,

inferred based on reduced spore viability in a spo11-HA

background (Table 1), and two aspartic acid exchanges are less

likely to strongly damage the protein, we favor an interpretation

involving constitutive phospho-mimicking as explanation. If so,

phosphorylation is sufficient to tune down DSB formation (e.g.

Rec1148D or Rec1142D), while other effects might prevent the

observation of a strong increase in break levels under constitutive

‘‘on’’ conditions (e.g. Rec1148A).

Several models (e.g. [14,17,49]) propose that a first negative

feedback may be locally restricted to the activated DSB-machine

and its surrounding chromatin loops. Phosphorylation of Rec114

would be ideally suited to mediate such a control. However,

repeated cleavage of the already broken chromatid is not expected

to lead to an increase of the DSB signal. Cleavage of hotspots on

the intact sister chromatid could be responsible for the 20–30%

increase observed by the ChIP-chip analysis in the rad50S

background. Increased DSB formation in Rec1148A, even if only

moderate, identifies Rec114 as a rate limiting target of negative

feedback at least in the com1D/sae2D or rad50s background. On the

other hand DSB formation is strongly impeded in Rec1148D (or

Rec1142D), suggesting that phosphorylation affects a critical

function of Rec114. Importantly, phosphomimicking Rec1148D

shows a reduced interaction with DSB-hotspots suggesting a

plausible mechanism explaining its reduced activity.
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Synapsis dependent removal of Rec114
Budding yeast Rec114 physically interacts with Mei4 and Mer2,

two other components of the DSB-machinery, to form a complex

referred to as RMM (Rec114-Mei4-Mer2) [20,22]. RMM foci

become abundant in early meiotic prophase and the proteins

accumulate on DNA sequences, which organize the chromosome

axis upon condensation; when chromosomes synapse, RMM foci

become dimmer and eventually disappear [17,22], an observation

confirmed here in a strain expressing untagged Rec114 (Figure 5).

The strong correlation between the appearance of Zip1-lines and

the disappearance of Rec114 foci from the synapsed regions of the

chromosomes suggests that the process of synapsis itself could be

removing RMM foci. Synapsis dependent removal of RMM

occurs independently of Tel1/Mec1 phosphorylation and Ndt80

(and thus protein degradation), consistent with being an indepen-

dent mechanism of down regulating DSB levels.

NDT80 dependent Rec114-turnover
During normal meiosis, steady state levels of meiotic DSBs

decrease to the background level as cells proceed beyond

pachytene with complete cessation of DSBs depending on Ndt80

[39]. The Ndt80 dependent Rec114 degradation reported here

(Figure 4) presents a plausible mechanistic explanation for the

latter.

Normally, Ndt80 activation is coupled to meiotic DSB-repair

and synapsis. In response to defects in either process (e.g. in a

rad50S, dmc1D or zip1D background), Tel1/Mec1 prevent Ndt80

activation by hyper-phosphorylating Hop1/Mek1 [50]. Hop1 is

an evolutionarily conserved meiotic chromosome axis protein that

functions as a meiotic paralog of Rad9 in the Tel1/Mec1 signaling

cascade [14]. Hyper-phosphorylation of Hop1, in turn, activates

the checkpoint function of Mek1, a meiotic chromosome axis

associated serine/threonine kinase, and a meiotic paralog of

Rad53/Chk2 [14]. Importantly, the Tel1/Mec1-Hop1/Mek1-

Ndt80 signaling pathway appears to also regulate normal meiotic

progression [12,38,51–53], raising the possibility that the observed

earlier or delayed onset of NDT80 dependent Rec114 turnover in

rec114 phospho-mutants might be under Tel1/Mec1 regulation

(Figure 6).

Meiotic DSB homeostasis, the tendency to maintain
similar DSB levels under different circumstances

The term ‘‘meiotic DSB homeostasis’’ was originally introduced

to refer to the phenomenon, whereby the accumulated DSB

frequency in a chromosomal region appeared to be maintained at

a constant level [54]. Here, we expand the meaning to include that

the break frequency might be regulated not only at the regional,

but also at genome wide level. A sophisticated system controlling

chromosome synapsis and recombination is expected to operate, at

least, at two levels:

First, the DSB machinery needs to be ‘‘informed’’ about the

success of a particular DSB catalysis. This local negative feedback

should be limited to the immediate environment and should

prevent repeated cleavage of the already broken chromatid near

the break. One manifestation of this local down regulation would

be DSB interference, or ‘‘competitive inactivation’’ of weaker

hotspots, by a nearby strong hotspot [54–57]. We show evidence

that phosphorylation of Rec114 is a key step in communicating

DNA breakage to the DSB machinery via Mec1 and/or Tel1.

Second, nucleus wide (global) signaling of successful completion

of homolog synapsis and meiotic DSB repair should precede

irreversible global inactivation of the DSB machinery. We present

evidence for two feedback based mechanisms of such regulation:

synapsis dependent removal and Ndt80 dependent degradation of

Rec114. Linking the progression of synapsis to down regulation of

DSB formation conveniently ensures that enough DSBs have been

formed to guarantee successful homology search. However,

synapsis alone does not appear to lead to irreversible inactivation

of the DSB machinery. This ultimate decision is instead linked to

the exit from pachytene, when the activation of Ndt80 provides

some guarantee that early prophase events have successfully

completed.

Evidence here and elsewhere indicates that cells have the means

to prevent excessive DSB formation via negative feedback

[8,9,11]. But what happens when the break level is too low? A

key feature of these nested feedback loops (Figure 6) is that a

reduced Spo11 activity, independent of its cause, will delay the

completion of synapsis and the onset of Ndt80 activation, and thus

provide more time to accumulate breaks, even at a low rate. For

instance, delayed synapsis and Ndt80 activation in the DSB poor

rec114-8D mutant, would delay RMM inactivation, likely pro-

longing its active lifespan and raising the level of DSBs eventually

produced. Indeed, Rec1148D remained longer and in greater

abundance at chromosome axes than Rec114 or Rec1148A. DSB

homeostasis could also account for the apparent ‘catching up’ of

break levels in a rec114-8D dmc1D strain (Figure 2G). For instance,

defective recombination and synapsis in the mutant would severely

compromise Zip1 dependent RMM removal, while dmc1D
activation of Mec1-Hop1/Mek1 checkpoint response would

prevent Ndt80 dependent Rec114 degradation, thus allowing

Rec1148D to remain active. The fact that break levels in rec114-8D

rad50S remain low, apparently unable to catch up, suggests that

DSB repair beyond rad50S arrest point (e.g. endonucleolytic

removal of Spo11 followed by break resection) might be required

to activate the synapsis and/or Ndt80 based feedback loops

(Figure 6).

DSB homeostasis may contribute significantly to the relatively

mild effect on spore viability of mutants (e.g. spo11-hypomorphs)

with a low rate of DSB formation that was up to now solely

attributed to CO homeostasis. But clearly, postponing the

inactivation of the DSB machinery in response to problems in

synapsis and break repair helps to provide more DSBs, on which

CO homeostasis can act to ensure correct chromosome segregation.

Materials and Methods

Standard yeast manipulation procedures and growth media are

utilized. All strains were of the SK1 background (Table S1).

Specific [S/T]Q to AQ and DQ mutations were introduced and

sequenced to ensure that no additional mutations were created

during the mutagenesis. Standard Western blot, Southern blot,

and spread surface immunofluorescence techniques were used.

Chip on CHIP and qPCR were performed as described in [17].

Yeast strains and media
Standard yeast manipulation procedures and growth media

were utilized. All strains are of the SK1 background; relevant

genotypes of the strains are listed in Table S1.

Construction of rec114 strains
The myc13 tag from a REC114-MYC13-HYGRO plasmid

(pNS2) was removed to generate pJC15, an integration plasmid

without an epitope tag. Specific [S/T]Q to AQ or DQ mutations

were introduced into either pNS2 or pJC15 utilizing the

QuickChange Multi Site-Directed Mutagenesis kit (Stratagene).

The entire open reading frame (ORF) of each allele was sequenced

to ensure that the allele did not contain any incidental mutation(s).

Controlling Meiotic DSB Levels through Rec114

PLOS Genetics | www.plosgenetics.org 10 June 2013 | Volume 9 | Issue 6 | e1003545



Each rec114 allele was introduced into a rec114D::KanMX4 haploid

strain (RCY336/337), where the endogenous REC114 gene was

replaced by a kanamycin resistant gene. Transformants were

identified based on their ability to grow on hygromycin plates but

not on kanamycin. Southern blot and PCR analyses were

performed on candidate colonies to confirm integration of a single

copy of a specific rec114-HygroMX4 allele at the endogenous locus,

replacing the rec114D::KanMX4 allele. Correct rec114 haploid

transformants of each allele were taken through standard yeast

genetics manipulation to generate corresponding rec114 homozy-

gous diploid strains suitable for meiotic analyses.

Generation of phospho-specific Rec114 antibodies
Three of the eight S/T[Q] consensus sites in Rec114, T175,

S187 and S256, were selected for generation of phospho-specific

antibodies. T175 and S187 were chosen based on the fact that

replacing these residues with a non-phosphorylatable alanine (A)

confers haploinsufficiency and synthetic interaction with spo11

hypomorphic alleles (Table 1). S256 was chosen because it was one

of the six residues within Rec114 that were predicted to be the

most likely ATM/ATR phosphorylation sites (GPS2.1 software

[58]). Specificity of each phospho-specific antibody was confirmed

by Western blot analysis of rec114 strains, each expressing a rec114

allele missing a specific phosphorylation site(s).

Synchronous meiotic time course
Induction of synchronous meiosis is carried out according to the

established protocols [17,59]. All pre-growth and meiotic time

courses were carried out at 30uC except for mec1-4ts tel1D sml1D
meiosis, where the culture was kept at 23uC and shifted to 30uC
2 hours after transferring into sporulation medium (SPM).

Protein purification and manipulation methods
GST-REC114 and GST-rec114-8A plasmid-construction and

protein expression were carried out as described [60]. To purify

Mec1-myc18 from yeast cells, 500 ml of logarithmically growing

cell cultures were subjected to 1 hour incubation with 0.1% methyl

methanesulfonate (MMS) followed by Immunoprecipitation using

Goat anti-myc-agarose antibodies (AbCam). Mec1-myc immuno-

precipitates were mixed with reaction cocktail containing kinase

buffer, cold ATP, and either GST-Rec114 or GST-Rec1148A. The

mixtures were incubated at 30uC for 25 minutes and subjected to

electrophoresis on SDS gels. Gels were transferred onto a

nitrocellulose membrane and subjected to Western blot analyses

using anti-Rec114 or phospho-specific antibodies.

Western blot analysis
Whole-cell extracts (WCE) were prepared from cell suspensions

in 20% trichloroacetic acid (TCA) by agitation with glass beads.

Precipitated proteins were solubilized in SDS-PAGE sample

buffer, and appropriate dilutions were analyzed by SDS-PAGE

and Western blotting. Antibodies for Western blotting were mouse

monoclonal anti-myc (1:1000, AbCam), rabbit polyclonal anti-

Rec114 (1:1000), anti-Phospho-Rec114-S187, anti-Phospho-

Rec114- T175, anti-Phospho-Rec114- S265 (1:1000, Cambridge

Research Biomedicals), goat anti-mouse IgG conjugated to

horseradish peroxidase (1:10,000; Sigma-Aldrich), and donkey

anti-rat IgG conjugated to horseradish peroxidase (1:10,000;

Sigma-Aldrich).

Southern blot analysis
Southern blot analysis following Pulse Field Gel electrophoresis

(PFGE) using DNA prepared in agarose plugs or standard agarose

gel electrophoresis were performed as described [61]. Exception

was that the PFGE gels shown in Figure 2G and Figure S1A were

run with the following modifications: initial switch time; 15 sec –

final switch time; 32.5 sec, in order to better separate large

chromosomes. For quantifying the level of DSBs, only the signals

associated with breaks proximal to the probe was utilized to

maximize the detection of chromosomes that acquired more than

one break (see [3] for discussion).

Chromatin Immunoprecipitation on CHIP (ChIPchip) and
quantitative PCR (qPCR)

Rec114 and Spo11-myc chromatin immunoprecipitation

(ChIP), quantitative PCR (qPCR), and microarrays hybridiza-

tion/analysis were performed as described [17].

Cytological methods
Surface spread meiotic chromosomes were prepared as

described [14]. Staining was performed as described [14] with

the following primary antibodies: rabbit polyclonal anti-Rec1141

(1: 100, F. Klein, MFPL), mouse monoclonal anti-HA (12CAS,

1:100, S. Ley, NIMR), mouse monoclonal anti-MYC (9E10,

1:100, S. Ley, NIMR goat polyclonal anti-Zip1 (1:50, SantaCruz

Biotechnology). Secondary antibodies (Invitrogen) were used at a

1:500 dilution: chicken anti-mouse Alexa-488, anti-goat Alexa-

488, chicken anti-rabbit Alexa-594. Chromosomal DNA was

stained with 1 ug/ml 4,6-diamino-2-phenylimide (DAPI). Images

were recorded and analyzed using a Deltavision (DV3) workstation

from Applied Precision Inc. with a Photometrics CoolSnap HQ

(10–20 MHz) air cooled CCD camera and controlled by Softworx

image acquisition and deconvolution software.

Significance
For comparing proportions (e.g. matching versus non-matching

peaks) significance values were computed using Fisher’s exact test

(http://www.langsrud.com/fisher.htm).

Statistical analysis of the Chip on CHIP
data was done as described [17]. Briefly, CEL files were

converted using Affymetrix’s ‘‘tiling array software’’ (TAS) and

expressed as ChIP relative to WCE (whole cell extract) or as ChIP

relative to another ChIP. The output of TAS (intensities per

chromosome position) was smoothed using bandwidths between

250 and 1000 bp (ksmooth, statistic package R) and plotted for all

chromosomes. For microarrays ‘‘decile normalization’’ was used.

It is often a good choice for automatic background correction [17].

For the profiles to be compared in this work, a single correction

factor was determined per profile F = 1/(0.1 percentile). These

factors were usually very close to 1. After multiplying all profile

intensities with their correction factors, they were precisely

superimposing on all background peaks (compare Fig. 3A 0–

30 kb, and 115–155 kb, see brackets with asterisk).

Peak calling and peak matching
Peaks were called automatically as described previously [17]. To

quantify the overlap between peaks of one profile and the meiotic

hotspot map published by [7], we used their simplified list of

hotspots, organized in 3600 blocks, listing start and end of each

hotspot array and the number of mapped 59-ends detected. We

defined the distance of a peak to its nearest hotspot as the distance

to the nearest edge of a hotspot block (even when the peak mapped

inside the block). Most of these arrays have a very narrow width,

(median 180 bp, mean 252 bp, 0.9 quantile 507 bp). In order to

simulate random distributions, we generated random positions
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corresponding to the numbers of peaks to be tested and mapped

them relative to the hotspot-blocks, the same way as the

experimental data. (Simulations were repeated 100 times to obtain

the 2% and 98% percentiles plotted). For example, for the

comparison of the 500 highest peaks with the 500 strongest

hotspots, the hotspots were sorted according to strength, the peaks

were sorted according to strength and then the top 500 of each list

were compared. For each of the 500 highest peaks, the distance to

the nearest hotspot-block was determined and the distances

accumulated and plotted.

Supporting Information

Figure S1 Effect of rec114-8A, rec114-8D and tel1D on the levels

of DSBs in a com1D background. A. 0, 5 and 6 hour samples from

REC114 com1D, rec114-8A com1D, and rec114-8D com1D cultures

were analyzed for the extent of chromosome breakage in ChrV

and ChrVIII using YER180C and YHL039W as probes, respec-

tively. The region of the gel used for DSB quantification is

indicated by an *. B,C. Quantification of signals in the region

specified in A. D. PFGE/Southern analysis of ChrIII using

YCR098C as a probe in tel1D, REC114, rec114-8A, in a com1D
background at the indicated time. The region of the gel used for

DSB quantification is indicated by an *. E. Quantification of

signals in the region specified in D.

(PDF)

Figure S2 Mimicking Rec114 phosphorylation leads to a modest

reduction in DSB levels at HIS4-LEU2 hotspots. A. (i) Represen-

tative image of a Southern analysis of HIS2-LEU2 artificial

recombination hotspot. Relevant DNA fragments are as described

in Figure 2A; parental homologs ‘‘Mom’’ and ‘‘Dad’’, the two CO-

products, and DSBs. (ii) Darker exposure of the ‘‘DSB’’ region. B.

Quantification of signals in the DSB region in A.

(PDF)

Figure S3 DSB sites match peaks of Spo11-myc and Rec1148A

profiles. A. Spo11-myc profile of a rec114-8A rad50S strain

normalized (divided) by Spo11-myc profile of a rec114-8D rad50S

strain (green, ‘‘Spo11-8A/8D’’). Red bars represent Spo11-oligo

counts per hotspot cluster [7] Small chromosome VI is shown as

an example to illustrate genome wide colocalization between

Spo11-8A/8D peaks and DSBs. B. Rec114 profile of rec114-8A

normalized (divided) by Rec114 profile of rec114-8D (blue,

‘‘Rec114 8A/8D’’) and REC114 normalized by rec114-8D (bright

green, ‘‘WT/8D’’). Red bars represent Spo11-oligo counts per

hotspot cluster [7]. Small chromosome VI is shown as an example

to illustrate genome wide colocalization between peaks of

Rec1148A/Rec1148D and Rec114/Rec1148D and DSBs. C. At

axis sites defined by peaks of the axis protein Hop1 [17], ‘‘1’’ was

plotted, if 8D/8A exceeded a certain threshold (0.5), while ‘‘0’’ was

plotted otherwise. Both, groups of ‘‘1 s’’ and groups of 0 s’’ cluster

together in the hot and cold DSB domains, respectively (50 axis

sites). E., D., F. As in A., B., C. but on the larger chromosome IX.

F. is built from 78 axis sites.

(PDF)

Figure S4 Genome wide correlation between DSB hotspots and

peaks of Spo11-myc and Rec1148A profiles. A. The cumulative

fraction of peaks of a specified profile is plotted against the distance

from the nearest DSB cluster (in kb). Results of comparison

between 3600 DSB sites [7] and the 1135 strongest peaks of

various profiles are presented. B. Same as in A, but the

comparison was between 100 strongest DSB hotspots and 100

strongest peaks of various profiles.

(PDF)

Figure S5 Additional examples of the mirror-like behavior of

Rec1148A versus Rec1148A at DSB hotspots. Rec114 ChIPchip

profiles of REC114 (green), rec114-8A (red), and rec114-8D (blue)

are shown for selected regions in ChrVI (A), ChrIX (B), and

ChrXI (C). * denotes strong DSB hotspots where Rec114 signal is

highest in rec114-8A followed by REC114 and then by rec114-8D

(upper panel). Ratio between signals from each mutant over wild

type (lower panel) shows that majority of DSB hotspots are loci

showing 8A.WT.8D quantitative relationship, while nearby axis

shows 8D.WT.8A. For very weak hotspots, however, it is

difficult to discern the 8A.WT.8D relationship as the positive

effect of rec114-8A becomes insignificant compared to the negative

effect of rec114-8D.

(PDF)

Figure S6 Rec114 foci persist in the ndt80 background. A.

Representative images of REC114 ndt80D cells at t = 6 hours

showing persistent Rec114 foci in Zip1 free regions or a PC (stars).

B. Fraction of cells showing a polycomplex (PC) in REC114

NDT80 (black columns) or REC114 ndt80D (white columns) cells as

a function of time. C. Fraction of cells showing a PC at t = 6 hours

in the indicated strain background. Majority of PCs contained

both Zip1 and Rec114 signals (yellow).

(PDF)

Table S1 S. cerevisiae strains used in this study. All strains are

MATa/MATa diploids homozygous unless specified. For HI-

S4LEU2 hotspot recombination assay diploid strains JCY1193

(REC114), JCY1195 (rec114-8AQ) and JCY1197 (rec114-8DQ) were

derived from NHY187 (Mata, ho::hisG, leu2, ura3, HIS4-LEU2New-

BamH) and NHY285 (Mata, ho::hisG, leu2, ura3, his4X-LEU2New-

BamH-URA3).

(PDF)

Text S1 Supplementary methods.

(DOCX)
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