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Abstract
Herein, we discuss fast development of the new coronavirus disease COVID-19, emerged in late 2019 in Wuhan, Hubei 
Province, China, the ground zero of the coronavirus pandemic, and associated with relatively high mortality rate. COVID-
19 risk originates from its ability to transmit easily from person to person through the respiratory droplets released during 
sneezing, breathing, talking, singing, or coughing within a range of nearly 1.5–2 m. The review begins with an overview 
of COVID-19 origin and symptoms that range from common cold to severe respiratory illnesses and death. Then, it sheds 
light on the role of nanotechnology as an effective tool for fighting COVID-19 via contributions in diagnosis, treatment, 
and manufacture of protective equipment for people and healthcare workers. Emergency-approved therapeutics for clinical 
trial and prospective vaccines are discussed. Additionally, the present work addresses the risk of severe acute respiratory 
syndrome coronavirus transmission via wastewater and means of wastewater treatment and disinfection via nanoscale mate-
rials. The review concludes with a brief assessment of the government’s efforts and contemporary propositions to minimize 
COVID-19 hazard and spreading.

Keywords Severe acute respiratory syndrome coronavirus · Nanomaterials · Nanosensor · Nano-vaccine · COVID-19 · 
Wastewater

Introduction

The Coronaviridae family is classified into two subfamilies, 
Coronavirinae and Torovirinae [1]. Coronavirinae is subdi-
vided according to phylogenetic studies and antigenic stand-
ards into alpha-, beta-, gamma-, and delta-coronaviruses 
(CoVs) [2]. CoVs are enveloped and non-segmented viruses 
with a positive single-stranded RNA genome [3]. Severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 

that causes coronavirus disease 19 (COVID-19) is a new 
member of the beta-CoVs genus [4] and has high homol-
ogy to several bat CoVs [5]. The biochemical structure of 
coronavirus is included two main compartments, protein 
and non-protein. Coronavirus structural proteins consist of 
spike protein (S), envelope protein (E), membrane protein 
(M), and nucleocapsid phosphoprotein (N) [6]. However, the 
transcribed non-structural proteins are involved open-read-
ing frames (ORFs), ORF1a, ORF1b, ORF3, ORF6, ORF7a, 
ORF7b ORF8, and ORF10 (Fig. 1) [7]. Briefly, the human 
infection with SARS-CoV-2 occurs via the virus entry to the 
epithelial cells of human lung through the S protein which 
interacted with the human receptor angiotensin-converting 
enzyme 2 receptor protein (ACE2) [8].

The spread of pandemic COVID-19 was started in 
December 2019 in Wuhan city when SARS-CoV-2 was 
rapidly spread all over the world as it has been circulat-
ing in some animals species like cats, camels, and bats [9]. 
Nowadays, SARS-CoV-2 can be transferred from animals 
to humans and from humans to humans causing respiratory 
diseases as the ribonucleic acid (RNA) of this pathogen is 
similar to that of SARS-CoV which appeared during 2002 
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in southern China [10]. According to the Centers for Dis-
ease Control and Prevention, most of the patients that have 
COVID-19 disease suffer from mild symptoms that included 
cough, fever, and shortness of breath; however, 20% of them 
have severe disease which is characterized by the incidence 
of pneumonia and respiratory failure, and in late cases, death 
may be occurred [11].

Laboratory diagnosis of COVID‑19

Enormous laboratory diagnosis of COVID-19 is so crucial 
to fight transmission of the virus and diminish the time 
required to isolate and treat the infected cases [11]. There 
are three sorts of laboratory diagnosis: (i) molecular tests 
in which their target is the viral genome, (ii) antigen tests 
which concern with the viral proteins, and (iii) serological 
tests that detect the antibodies against the virus [12].

Molecular diagnosis via real‑time quantitative 
reverse transcription polymerase chain reaction 
(RT‑qPCR)

Sampling

Both upper and lower respiratory tract specimens can be 
considered samples of interest in case of COVID-19 infec-
tion [13]. In the early infection, both oropharyngeal and 
nasopharyngeal swabs are the best advised samples to 

confirm the diagnosis [14], but under severe hygienic and 
controlled conditions, the swabs must remain 10 s and coiled 
three times. Based on previous studies, it was noted that in 
some cases nasopharyngeal swabs were more preferable than 
oropharyngeal to perform RT-qPCR technique [15]. On the 
other hand, in case of late infection, lower respiratory tract 
specimens such as sputum and bronchoalveolar lavage are 
used as they have produced the maximum viral loads and 
such samples gathering from patients must be carried out 
under intubation procedure [16]. Further rectal swabs can be 
used as another source of samples during late infection [17]. 
Regardless the kind of samples, all swabs should be gathered 
in non-toxic synthetic fibers and nylon handles, then put in 
universal viral transport media at 4 °C, and rapidly trans-
ported to the laboratory for investigation.

RT‑qPCR technique

The technique must be carried out in a safety cabinet 
under ice-cold conditions. Firstly, nucleic acid extraction 
is done by adding the collected samples to lysis buffer 
that contains guanidinium-based inactivating agent and 
non-denaturing detergent; this lysis buffer can sterilize 
the samples and inhibit RNA SARS-CoV-2 degradation so 
it indirectly hinders the false negative results [18]. After 
that, RNA virus is purified by column-based RNA puri-
fication kits or magnetic beads, and then, the RT-qPCR 
technique will be started. RT-qPCR technique is required 
mainly to forward primer for deoxy nucleic acid (DNA) 

Fig. 1  a Schematic illustration of the SARS-CoV-2 virus structure and its interaction with its host cellular receptor, ACE2. b Design of the full-
length genome of SARS-CoV-2 virus
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synthesis initiation, reverse primer, fluorescent probe, 
and reverse transcriptase and DNA polymerase enzymes. 
After the purification phase, the eluted purified RNA is 
amplified using single or two steps RT-PCR where RNA 
is converted first into complementary DNA, and then, 
each DNA single strand is amplified by RT-PCR (Fig. 2). 
Amplified products can be identified via TaqMan probe 
fluorescence where the probe has two dyes, a reporter and 
a quencher dye, that binds to a specific target sequence 
of SARS-CoV-2 which is found between the forward and 
reverse primers. In the extension phase of the PCR cycle, 
the polymerase enzyme destroys the bound probe, leading 
to the separation of the reporter dye from the quencher 
dye, which results in the elevation of the fluorescent 
signal. The fluorescence intensity is monitored at each 
amplification cycle. The threshold cycle of amplification 
is set to distinguish between positive and negative results. 
The threshold cycle is defined as the cycle number when 
the fluorescent signal exceeds the detection threshold. If 
the virus was not present in the sample, the fluorescence 
threshold is not reached, and the test result is then nega-
tive. The test result is considered positive if the amplifi-
cation is noticed for two or more viral targets, while it is 
considered negative when such amplification is observed 
for only the control RNA sample, and it is not found in 
viral targets.

Advantages and limitations of RT‑qPCR technique

RT-qPCR is a rapid, highly sensitive, and reliable technique 
for the detection of COVID-19 disease and not other CoVs 
even in the early infection, and this is attributed to its capa-
bility to (i) diagnose asymptomatic people at early phase, 
(ii) reduce the cycle times, (iii) use the flurogenic labels for 
virus detection, (iv) detect RNA-dependent RNA polymer-
ase gene and virus that has an envelope protein (E) and target 
the Orf1b and N regions of the virus, and finally (v) allow 
the visualization of the amplification reaction, and also it 
permits the verification via a melting curve plot.

Though all the mentioned advantages, it has multiple lim-
itations such as false negative and positive results which are 
represented a huge matter that affects its benefits and such 
may be attributed to (i) mutations in the used primer and 
probe that target the regions of SARS-CoV-2 gene [19] and 
(ii) low individual skills during the sampling, samples trans-
portation and handling, and technique practice itself [20]. In 
addition, the presence of inadequate viruses or amplification 
inhibitors in the sample may be other hazard issues [21]. 
Further, RT-qPCR is an expensive technique and is not avail-
able to poor patients, and due to the high numbers of affected 
cases there is a big stress on the centralized labs all over the 
world and the results of the samples for the infected person 
may take 28 h. And, shortage of the used kits and reagents 
utilized in this diagnostic test may occur, especially with the 
increased number of infected people [22].

Fig. 2  Schematic representation of RT-qPCR technique for SARS-CoV-2 virus detection
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Therefore, finding other techniques for diagnosing 
COVID-19 is crucial. Nowadays, nanotechnology has a 
vital potential role in the medical field and health problems 
involving viruses; hence, this review focuses on the role of 
nanoscience in diagnosing, treatment, filtration, and environ-
mental protection against COVID-19 hazard.

Nanomaterial‑based potential portable biosensors 
for COVID‑19 detection

Biosensors, one of the analytical devices, have three main 
parts: (i) bioreceptor, (ii) transducer, and (iii) a signal detec-
tor. Briefly, the technique is based on bioreceptor interac-
tion with the specific analytes and an electronic signal is 
produced via the transducer amplification. Biosensors are 
characterized by their sensitivity, specificity, rapid, and cost-
effective methods for virus detection [23]. Additionally, the 
integration between nanotechnology and the biosensor pro-
vides the great capability to detect the pathogens [24, 25].

It was recorded different popular biosensors types that 
contribute to several viruses detection; among them are elec-
trical (EC) biosensors, fluorescence-based biosensor, field-
effect transistor (FET) biosensor devices, surface-enhanced 
Raman scattering (SERS), localized surface plasmon reso-
nance (LSPR), quartz crystal microbalance (QCM), colori-
metric biosensor, and piezoelectric microcantilever sensors 
(PEMS) [26–30]. These biosensors, especially smartphone-
driven biosensors, can be used as a fast detection device 
either at home or the clinic [31].

Field‑effect transistor (FET) biosensor devices

FET biosensors have a great potential for clinical diagnosis 
owing to their multiple efficacies in sensitive measurements 
through using small amounts of analytes [32]. And, they 
can be integrated with other devices like data analyzers and 
signal transducer. The source (S), the drain (D), and the gate 
(G) are the main parts of them. Their efficiency in biologi-
cal sensing related to the replacing of the semiconductor 
metal of the gate with biological molecules such as DNA, 
enzyme, receptor, or antibody which are specific to the target 
analyte [33].

Seo et al. [34] proposed FET biosensor based on graphene 
nanomaterials functionalized with SARS-CoV-2 spiked anti-
bodies with a low detection limit (LOD) 1 fg/mL that equals 
 10−15 g/mL of SARS-CoV-2 spike protein, and this biosen-
sor could differentiate between SARS-CoV-2 spike protein 
and that of Middle East Respiratory Syndrome Coronavirus 
MERS-CoV. The selection of graphene nanomaterials is 
attributed to its chemical structure as it is a single sheet of 
hexagonal-arranged carbon atoms; these atoms have a high 
surface area-to-volume ratio and high carrier mobility and 

also been characterized by the biocompatibility that enables 
them for binding with the charged biomolecules [35].

Nano‑plasmonic‑based viral biosensors

This group of biosensors is involved in surface plasmon 
resonance (SPR) and localized surface plasmon resonance 
(LSPR). They are characterized by their strong photon-
driven coherent oscillation of the surface conduction 
electrons and high sensitivity to local variations such as 
the refractive index change and molecular binding. There-
fore, they are suitable for real-time detection of microscale 
and nanoscale analyses, and they are also useful in sensi-
tive medical detection and diagnosis of many viruses like 
human immunodeficiency virus (HIV), hepatitis B (HBV), 
and swine-origin influenza A (H1N1) [36]. Nanomaterials 
provide great interest in the plasmonic biosensors owing 
to their unique electrical, magnetic, and optical properties. 
Moreover, their high surface area enables the loading of bio-
logical agents in a wide manner. Various types of inorganic 
nanomaterials utilized in viral plasmonic biosensors like 
fullerenes, carbon nanotubes, otherwise metallic nanoma-
terials such as metal oxide and quantum dots provide great 
importance in plasmonic biosensor. Gold and silver nano-
particles are the most popular nanomaterials that are utilized 
in plasmonic biosensing, in particular LSPR, as they can 
transform LSPR spectra and harvest color variations, pro-
ducing a signal response. LSPR based on gold nanoparticles 
(AuNPs) succeeds in clinical diagnosing and environmental 
monitoring [37].

Recently, Qiu et al. [38] developed new LSPR biosensing 
systems based on two-dimensional gold nanoislands (Au-
NIs) functionalized with complementary DNA receptors to 
detect SARS-CoV-2 viral nucleic acid where Au-NIs can 
enhance the plasmonic photothermal heat energy. Moreover, 
using gold nanoparticles (Au-NPs) to target the sensing plate 
form SARS-CoV-2 RNA or the corresponding complemen-
tary DNA is achieved by [39]. It was noted that the presence 
of a noble element, Au, either in Au-Nis or Au-NPs, gives 
high stability, accuracy, and reproducibility for sensing the 
electrode; therefore, Au is desirable for biomolecules detec-
tions (Fig. 3).

Colorimetric‑based biosensor

The colorimetric technique is the simplest procedure based 
on the detection of various biomolecules such as proteins 
and nucleic acids by the color changes which can be seen 
with naked eyes without complicated equipment. This tech-
nique is proper as a point-of-care (POC) diagnostic devices; 
however, there are some limitations in this technique as it 
lacks in some cases the sensitivity and needs a spectro-
photometer for analysis [40]. Au-NPs are occupied great 
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attention in such types of biosensors as their reactivity and 
aggregation are responsible for the color change, owing to 
the unique optical properties of localized surface plasmon 
resonance, high extinction coefficient, and intrinsic photo-
stability of Au-NPs [41]. Therefore, recently Moitra et al. 
[42] employed such technique for COVID-19 disease diag-
nosis by the naked eye where Au-NPs were capped with 
thiol-modified antisense oligonucleotides that are specific 
for N-gene of COVID-19, and this leads to agglomeration 
occurrence which subsequently makes alterations in its 
SPR, and the used Au-NPS could be detected within 10 min 
(Fig. 4). However, this method shows some limitations as 

it is required single-stranded DNA probes preparation and 
extra intermediate steps like denaturation and annealing of 
the genetic material [43].

Nano‑smart sensing devices and point‑of‑care testing

Nanoscience facilitated the fabrication of nano-smart sens-
ing devices with microelectrodes which could detect low 
level of biomarkers with a wide range, and this is crucial for 
the diseases that are caused by viruses’ diagnosis, especially 
in case of the pandemic conditions. Nano-sensing micro-
electrode chips are the advanced approach for developing 

Fig. 3  Schematic diagram 
showed the attachment of 
thiol-modified probe with Au-
NP-modified sensing electrode, 
using standard blocking agent to 
block the non-specific sites on 
the sensing electrode, hybridi-
zation of genetic materials of 
SARS-CoV-2 virus with the 
complementary probe

Fig. 4  Colorimetric assay based on ASO-capped Au-NPs for SARS-CoV-2 virus RNA detection
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portable biosensors that affected the future of personalized 
POC devices which are used for pathogens detection through 
semi-skilled persons, and they are easy to be transported 
[44]. Zhuang et al. [45] developed the first microfluidic 
paper based on origami nanobiosensor to detect HIV through 
saliva antibodies, using zinc oxide (ZnO) nanowires which 
influence the binding capacity via increasing the surface area 
of electrodes, and it was found that this biosensor accom-
plished 60 fg/mL LOD and 99% sensitivity. Recently, Han 
et al. [46] established a microfluidic electrochemical immu-
nosensor for sensing H1N1, H5N1, and H7N9 influenza 
viruses, through ZnO nanorods which are hydrothermally 
grown on the upper inner surface of the polydimethylsi-
loxane sensor region. The suggested immunosensors were 
evaluated using an amperometric technique with LOD 1 pg/
mL that equals  10−12 g/mL, 10 pg/mL, 100 pg/mL, 1 ng/mL, 
and 10 ng/mL of H1N1, H5N1, and H7N9 antigens.

Further, cell phone-based healthcare and wearable sens-
ing are other novel sensing techniques that enable rapid 
detection, date recording, and bioinformatics collection 
during the pandemic and determine the age, gender, and the 
environment of the infected person, and that is very impor-
tant for pandemic management [45]. Kinnamon et al. [47] 
proposed a textile screen-printed biosensor based on gra-
phene oxide (GO) to detect influenza A in biofluid analog 
buffer with a detection limit 10 ng/mL. More recently, Xia 
et al. [48] proposed a smartphone-based microfluidic system 
depending on Au-NPs to distinguish avian influenza virus 
with a LOD of 2.7 ×  104 Egg Infective  dose50/mL  (EID50/
mL). Hence, it is observed after decades of work that nano-
material-based biosensors have made a break in the detec-
tion limit, time, and speed of virus discovery.

Therapeutics and COVID‑19

Pharmaceutical drugs

Since the COVID-19 outbreak organizations and pharma-
ceutical companies are struggling to develop multiple drugs 
to fight the diseases, unfortunately at the same time, those 
drugs were questioned and strongly criticized nowadays 
[49]. This review will through the light on some of those 
developed drugs. The antiviral drugs are used as therapeutic 
agents for COVID-19 that act via inactivation of COVID-19 
spike glycoprotein surface which is responsible for bind-
ing and entry of the virus into the host cells [50]. But till 
now such available antiviral drugs in most treatment pro-
tocols have limited activities which make them less effec-
tive, chiefly after confirming COVID-19 mutation [51]. Not 
only that but also, there is an erroneous prediction that using 
some of those antiviral drugs in high concentrations is effec-
tive, but that leads to multiple adverse effects and toxicity 

to the patients. Further, some antiviral drugs were settled 
but  didn’t approved by US Food and Drug Administration 
(FAD); for example, in Japan, favilavir, one of the antivi-
ral drugs used against the influenza virus, was permitted in 
China to treat COVID-19 [52]. Additionally, remdesivir, an 
antiviral drug, was intended to target Ebola through disrup-
tion of the capability of virus to reproduce by premature 
termination of RNA transcription and was used by China as 
a COVID-19 therapy [53]. But remdesivir had severe side 
effects as it leads to elevation of liver enzymes, hypotension, 
renal disorders, and gastrointestinal tract disturbance after 
treatment of patients [54].

Moreover, some anti-retroviral drugs as the combination 
between lopinavir and ritonavir were developed to be used 
against COVID-19 disease activity, but unfortunately till 
now they proved efficacy only when they blend with some 
drugs as ribavirin and interferon-β [55] and administration 
of ribavirin may lead to hemolytic anemia, and that is con-
sidered another side effect of such combination [56]. Also 
darunavir, another anti-retroviral and an HIV-1 protease 
inhibitor, was used in several trials of COVID-19 disease 
therapy [57]. Otherwise, the potential role of lopinavir 
toward COVID-19 is begun to be studied though it revealed 
hepatotoxic influence in previous studies [58].

Not only that but also chloroquine and hydroxychlo-
roquine, specific drugs for malaria and arthritis therapy, 
respectively, were authorized by the National Health Com-
mission of the People’s Republic of China for COVID-19 
cure [59, 60]. At the moment, chloroquine and hydroxychlo-
roquine are under investigation by the FDA as a treatment for 
COVID-19 because multiple opposing effects were investi-
gated including retinopathy, nausea, digestive illnesses, and 
in severe conditions heart failure may be occurred [61, 62]. 
At the same time, some anti-parasitic drugs were selected to 
decline the risk of COVID-19 between the affected people, 
such as ivermectin that was used in Australia for treatment 
of some COVID-19-affected patients [63].

Nanomaterials as a novel antivirus therapy

Antiviral activity

Nanomaterials have a great opportunity for new drugs devel-
opment against the new viruses, whereas a broad range of 
metal nanostructure have antiviral activity and it can bind 
with biomaterials covers, causing direct inactivation of the 
virus, or may lead to blocking the virus entrance inside the 
host cell via the interaction with the receptors on the host 
cell surface [64]. The nanoscale gives nanomaterials high 
surface area which enables them to interact with the viral 
envelope proteins resulting in either inhibition or prevention 
the viral genome replication if it enters inside the host cells 
(Fig. 5) [65].
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Previous studies utilized silver NPs (Ag-NPs) in antivi-
ral therapy against the  H1N1 influenza virus [66, 67], HIV 
[68], HBV, and herpes simplex virus (HSV) [69]. Ag-NPs 
can bind with the viral envelope glycoproteins, block the 
penetration of the virus inside the host cell, and prevent 
their replications. According to Sarkar [70], Ag-NPs are 
considered an effective tool for COVID-19 treatment where 
low concentrations of Ag-NPs with bronchodilators were 
depressed in a simple nebulizer machine and spread it in the 
lungs of patients who suffer from COVID-19. It was noticed 
that  Ag+ ions were released from the NPs and bounded with 
phosphorus or sulfur-containing bio-molecules of the virus 
[68], and so it was exhibited its antiviral effects. Further, 
 Ag+ ions can alter the pH of the respiratory epithelium to 
alkaline and such media are not suitable for virus survival 
[71].

Furthermore, graphene nanomaterials are considered 
another nanomaterial that could be the first line that contrib-
utes to COVID-19 therapy, and it involves different chemical 
forms as GO and reduced graphene. Graphene nanomaterials 
exhibited antiviral activity due to their ability to bind with 
sulfated antiviral drugs and facilitated the conjugation of the 
drug with the positive-charged virions residue, and so virus 
replication will be blocked [72]. As mentioned by Palm-
ieri, Papi [73] sulfated heparin which is an antiviral drug 
can interact with COVID-19 spike protein type-1 receptor 
and provide great impact for the virus treatment, and in the 
same hand graphene nanomaterials have a crucial role as a 
contact area for adsorption of the negative charge sulfated 
heparin derivatives owing to their large surface area. Oth-
erwise, the functionalization of graphene sheets itself with 
sulfate derivatives leads to the antiviral effect in the case of 
HSV-type 1 (HSV-1) via conjugation of graphene nanosheet 

with polyglycerol sulfate and fatty amine of the virus enve-
lope, and that leads to its disruption (Fig. 6) [74]. Also, 
β-cyclodextrin-functionalized GO composite was developed 
and loaded with curcumin and provided an antiviral effect 
for respiratory syncytial virus infection therapy [75].

Nanocarrier‑based drug delivery

Pandemic COVID-19 has a social and economic impact all 
over the world; therefore, developing new therapies that can 
treat and eliminate this pandemic is so critical and highly 
challenging task. The most challenges that face the new 
virus treatments are represented by the lack of therapeutic 
efficacy, imperfect aqueous solubility, bioavailability, short 
half-life, and toxicity [51].

To overcome these limitations, various nanocarrier-based 
drug delivery platforms have been designed to conjugate with 
antiviral drugs such as polymeric NPs, dendrimers, liposomes, 
and nanoemulsions [76]. Nanocarriers drug delivery system 
enhances the efficiency of the drug via facilitating targeting 
drug release, elevating the bioavailability, eradicating the 
side effect, diminishing the dose, reducing the drug cost, and 
finally protecting the drug from the enzymatic degradation 
[77]. Besides, modification of the nanocarrier surface with fit-
ting linkers leads to an increase in the drug’s ability to interact 
with the virus and enhance the elevation of the drug concentra-
tions in the viral reservoirs. As shown in Fig. 7, the strategy of 
nanocarrier-based drug delivery is depending on development 
of antiviral drugs that are targeting either (i) SARS-CoV-2 life 
cycle through the site of action and that involve blocking the 
virus receptors in the host cells to prevent the enzyme binding 
with the cell membrane, (ii) the nasal mucosa which is the 
primary site of infection and it contains several antibodies and 

Fig. 5  Mechanism of antiviral activity of nanomaterials
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Fig. 6  Inhibition of HSV-1 by sulfated nanographene derivatives via binding with the glycoproteins on the virus envelope with alkyl on gra-
phene derivatives leading to disruption for the virus envelope

Fig. 7  Strategy of nanocarrier-based drug delivery system to targeting the sits of infection
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it is considered the first line of defense, or even iii: the immune 
system of patients to inhibit the inflammatory response caused 
by the virus [78].

Vaccines and COVID‑19

Vaccine development

Vaccines are the most effective strategy for preventing and 
controlling virus infection. They are believed to be the 
best hope for curtailing the pandemic and returning soci-
ety to normality. The major two components of vaccines 
are the antigens that are targets of immune response and 
the adjuvants which are responsible for immune response 
enhancement toward the antigens. There are various for-
mulations used for the immunological responses which 
involved weak viruses, inactivated pathogens, or subunit 
protein antigens [79]. Some limitations that related to the 
current vaccine generations were observed such as (i) the 
use of whole inactivated pathogens, (ii) use of non-path-
ogenic vaccines based on synthetic peptides or recombi-
nant subunit protein that have poor immunogenicity, (iii) 
poor adjuvants that are required to enhance the immune 
response, and (iv) degradation of the antigens in the host 
cell environment [50].

Until the present, no appropriate vaccine is approved 
for COVID-19 treatment, but many promising vaccines 
that displayed over 90% in clinical trials were developed 
such as (i) Symvivo Corporation established a formalin 

inactivating whole virus particles combined with an alum 
adjuvant, (ii) Moderna industrialized a prefusion stabi-
lized S protein mRNA vaccine, (iii) BioNTech SE/Pfizer 
settled lipid nanoparticle mRNA vaccines, (iv) University 
of Oxford, Jenner Institute, and Astra Zeneca established 
a Chimpanzee adenovirus vaccine vector (ChAdOx1), (v) 
Sinovac Biotech manufactured a formalin inactivating 
whole virus particles combined with an alum adjuvant, 
and (vi) Novavax developed a stable, pre-fusion S protein 
given with adjuvant, Matrix-M [80]. Further, some tri-
als for new vaccines were performed by other developers 
like CureVac, Clover biopharmaceuticals, University of 
Queensland, Sanofi and GSK, CanSino Biologics, Johnson 
and Johnson (Janssen), Institut Pasteur (Themis/Merck), 
and University of Hong Kong [81].

Nano‑vaccine

NPs are an alternative approach as antigen carriers instead 
of traditional vaccines; in many cases, they serve as a car-
rier for the antigen or perform as an adjuvant. Moreover, 
they prevent antigens degradation and enhance the stability 
of them. And, NPs increase the antigens uptaking via anti-
gen-presenting cells (APCs) [82]. The size of selected NPs 
for the immune system must be put in the considerations 
where NPs within the range 20–200 nm enter the APCs 
via the endocytosis and induce T-cell response while the 
large size of NPs (0.5–5 µm) enters via phagocytosis and 
enhances the humoral immune response [83]. The mecha-
nism of the nano-vaccine depends mainly on the ability of 

Table 1  Examples of vaccines based on NPs for respiratory viruses

Nanomaterials Size (nm) Advantages Virus Antigens References

Inorganic nanoparticles
Au-NPs 10–100 It is biocompatible and inert Influenza Swine transmissible 

gastroenteritis 
coronavirus

[84]

SARS-CoV SARS-CoV antigens [85]
Liposomes
DLPC liposomes 30–100 They have high biocompatibility 

and antigen protection and low 
immunogenicity

Influenza  (H1N1) Mitochondrial 2, 
hemagglutinin A 
and nucleoprotein

[86]

Polymer NPs
Chitosan 100–200 They are highly variant in size 

and aspect ratio, and they are 
potential for high drug/antigen 
loading

Influenza  (H1N1) H1N1 antigen [87]
Poly-glutamic acid (ƴ-PGA) Influenza  (H1N1) Hemagglutinin [88]
Hollow polymeric NPs Middle East Respiratory 

Syndrome Coronavirus 
(MERS-CoV)

RBD [89]

Self-assembling proteins
N nucleocapsid
protein of respiratory syn-

cytial virus (RSV)

10–100 They have small size that helps in 
tissue penetration

RSV RSV phosphoprotein [90]

Spike protein NPs MERS-CoV – [91]
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the nanomaterials to penetrate the cell membrane targeting 
specific subcellular materials, and the antigens may be 
conjugated with the surface of the nanomaterials or they 
can be captured inside them; then, antigens are directed 
with the adjuvant to the specific target and enhance the 
immune response [82]. Many NPs act as antigens carriers 
like lipid NPs, polymeric NPs, liposomes, emulsions, and 
inorganic NPs as shown  in Table 1.

In the past few years, NPs have a potential role in deliv-
ering the antigens of viruses, especially that of respira-
tory viruses; however, there is a big challenge to make 
NPs mimic the respiratory viruses in their size, shape, 
and surface to be able to deliver the antigens to the target 
tissues. Moreover, the NPs charge exhibits another chal-
lenge as the immune response and entrapping of antigens 
is affected by the type of charge, where it is supposed that 
NPs with a positive charge are more desirable than those 
with a negative charge surface [83].

Au-NPs are the most common NPs utilized for vacci-
nation because they can be easily recognized by dendritic 
cells and macrophages and then promote their activations 
[92]. Moreover, the great affinity between the thiol group 
and Au-NPs provides them with antiviral properties and 
facilitates their conjugation with antigens [93]. Recently, 
Staroverov et al. [94] exhibited that the conjugation of Au-
NPs with swine transmissible gastroenteritis virus which 
is a type of coronavirus in immunized mice and rabbits 
leads to rising both T-cell proliferation 10-folds and acti-
vation of respiratory macrophage. Additionally, Sekimukai 
et al. [85] designed two types of vaccines for recombinant 
S protein of coronaviruses, and these vaccines structure 
was involved Au-NPs and acted at several sides, immu-
nization, an antigen carrier, and an adjuvant, where IgG 
response was induced by Au-NPs adjuvant protein, but 

both vaccines were failed to reduce eosinophilic infiltra-
tion which appeared in the lung.

Nanotechnology approach 
for environmental management of utilizing 
personal protective equipment (PPE) 
during COVID‑19 pandemic

In the case of pandemics, using appropriate PPE such as face 
masks, face shields, gloves, goggles, gowns, and aprons is 
vital matters to protect the individuals, in particular health-
care workers from the infection. However, the contamina-
tion of the PPE is an acquisition environment to spread the 
infection [95]. Many workers in the health field died during 
the Ebola outbreak in West Africa in 2014 as a result of 
insufficient or unsuitable PPE.

On the other hand, through epidemic conditions, the 
demand for single-use PPE elevates leading to the accumu-
lation of solid waste all over the world, and the management 
of PPE waste is one of the most challenges that face the com-
munities nowadays. As improper landfilling, incineration, or 
even recycling these disposable PPE threats the environment 
and health, consequently sustainable and safe recovery and 
treatment of PPE are very crucial. Based on the nanoscale, 
new research was developed to reusing the medical PPE to 
eliminate the waste that generates from the medical PPE.

PPE based on graphene nanomaterials

Graphene and their derivatives like GO have a prospective 
role in PPE treatment [96], they contribute in the manufac-
turing of an effective protective face masks and air filtration, 
as they can capture the particles and bacteria (Fig. 8) [97]. 

Fig. 8  Role of graphene in 
manufacturing PPE
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Moreover, a new research provides the solution of reusing 
and recycling of the surgical mask via deposition of few 
layers of graphene into low molten temperature masks by 
using a dual-mode laser-induced forward transfer technique, 
this method increases the hydrophobic properties of the 
mask, and it can be sterilized by sunlight; besides, it can 
be recycled to use in solar desalination outlet [98]. On the 
other hand, coating of GO with metals like Ag-NPs provides 
antimicrobial and disinfection capability as reported by [99] 
who investigated the antiviral activity of GO with Ag-NPs 
against enveloped and non-enveloped viruses.

The hydrophilic nature of GO improves their interaction 
with polymer matrix and fibers which enables the GO to 
integrate with textiles for protective clothes manufacturing. 
Kinnamon et al. [47] developed a screen-printed GO textile 
biosensor to detect the influenza virus through conjugation 
with specific protein antibodies for influenza virus, as simi-
lar for that the researcher could develop smart protective 
clothes with COVID-19 sensor for controlling the virus 
spread.

PPE based on Ag‑NPs

Ag-containing substance shows wide antibacterial and anti-
viral activity, and that owing to the interaction of  Ag+ ions 
with thiol groups of bacterial protein-membrane causes 
induction of oxidation stress, lysis, and killing of the cell. 

Hence, Ag substances, especially their nanomaterials, are 
added value to reduce the infection risk between health-
care workers. Nakamura et al. [100] developed an Ag-NPs 
chitin nanofiber sheet (CNFS) to resist E-Coli bacteria and 
H1N1, so these materials could be useful in manufactur-
ing protective clothes, masks, and gloves. Besides, V. et al. 
[101] incorporate Ag-nitrate NPs with polyvinylidene fluo-
ride (PVDF) nanofibers using the electrospinning method 
for air filtration applications and the results showed that the 
bacterial filtration efficiency for the synthesized PVDF-Ag 
nanofibers reaches to 99.86%.

PPE based on copper oxide (CuO) nanomaterials

The biocidal properties and antiviral activity of CuO lead to 
the impregnation of CuO-NPs into respiratory mask N95 by 
Borkow et al. [102], to reduce the risk of influenza viruses 
without a change in the filtration efficiency for the mask. 
Moreover, Ungur, Hrůza [103] developed CuO-polyurethane 
nanofibers for air filtrations, and the results have proved 
that CuO is suitable for polyurethane modification for air 
filtrations.

Fig. 9  Transmission of SARS-CoV-2 virus via waste water in sewer system
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COVID‑19 pandemic and wastewater

SARS-CoV-2 is infected and replicated inside the human 
gastrointestinal tract via mucosa proteases which enhance 
the penetration of the virus inside the enterocytes [104], and 
it is reported that SARS-CoV-2 RNA is found in human 
feces which excreted into the wastewater; therefore, the 
insufficient treatment of wastewater may lead to fecal–oral 
transmission of COVID-19 [105]. It should take into account 
that the presence of SARS-CoV-2 in the sewer system results 
in the spreading of the pandemic through various pathways 
as shown in Fig. 9; the collection of sewer wastewater for 
treatment and reuse in agriculture and in some times for 
drinking water lead to increase the possibility of the virus 
transmission. On the other hand, the direct discharge of sew-
age water into aquatic environments like seas and oceans 
elevates the infection rate [106]. The collected samples from 
some patients of Zheijiang Province hospital displayed that 
SARS-CoV-2 can survive in stool samples within a range 
from 4 to 22 days while it remains in respiratory samples till 
18 days and in serum samples till 16 days [107]. Therefore, 
it is of great importance to develop safe wastewater manage-
ment to ensure harmless recycled water and eliminate the 
infection rate.

Many techniques are used nowadays for water disinfec-
tion and treatment like UV inactivation, ozone treatment, 
and reverse osmosis [108]. Recently, using nanomaterials 
to deactivate viruses in wastewater has a great potential 
and it becomes a wide approach; several types of nano-
materials remove viruses in the wastewater such as metal 
ions, fullerenes, photocatalysts, and membranes integrated 
with nanomaterials [109]. The metal ion in nanoscale has 
an antibacterial capacity and can disinfect the water, and 
there are many types of them such as (i) titanium oxide-NPs 
 (TiO2-NPs) which are photocatalysts with optical and elec-
trical properties and can remove the bacteria and harmful 
pathogens from water [110], (ii) Ag oxide-NPs  (Ag2O-NPs) 
that have a particular size and shape enable them to inacti-
vate waterborne pathogens and they can damage the bac-
terial membrane resulting in enzymes denaturation [111], 
and (iii) carbon nanotubes such as fullerenes which possess 
antimicrobial characteristic owing to their unique properties 
of size, surface functionalization, and the length and layers 
of the tubes [112].

From previous information, it is expected that nanotech-
nology has a potential role in struggling the viruses, but we 
need further studies that recover all the fields of nanotech-
nology that serve to fight COVID-19 as well as their limita-
tions and challenges.

Limitations and challenges of nanomaterials

Nanomaterials have significant potential in the medical field. 
They are used broadly in bio-applications; however, there is 
certain toxicity associated with these materials as they could 
produce reactive oxygen species (ROS) and genotoxicity to 
the organism during inhalation and ingestion, besides they 
have an adverse effect on the respiratory system when they 
consumed with high concentrations. Further, nanomaterials 
are translocated through the body and bound with proteins 
leading to a loss of enzyme activity, fibrillation, unfolding, 
and thiol crosslinking [73].

Yang et al. [113] studied the cytotoxicity, genotoxicity, 
and oxidative effects of four types of nanomaterials involv-
ing single-wall carbon nanotubes, carbon black, silicon 
dioxide, and ZnO through methyl thiazolyl tetrazolium and 
water-soluble tetrazolium assays, and the results showed 
that ZnO produces much greater cytotoxicity than non-
metal NPs and that attributed to the oxidative stress which 
may be caused by NPs, while Jia et al. [114] highlighted in 
vitro and in vivo toxicity of different sizes of graphene and 
GO and the study revealed that the exposure to them gener-
ated ROS and induced DNA damage and the degree of toxic-
ity was depended on the size of these nanomaterials and the 
oxidation states. Another study investigated variance in the 
cytotoxicity and genotoxicity of ZnO-NPs on HepG2 cell 
lines where the cytotoxicity and DNA damage were based on 
the NPs concentrations and the exposure time to the HepG2 
cells [115]. Moreover, Park, Neigh [116] examined the effect 
of different concentrations of Ag-NPs on developing inflam-
mations, cytotoxicity, and genotoxicity via in vitro assays, 
and the results indicated that 20 nm of Ag-NPs was more 
toxic than the larger NPs and the effect of NPs on the cell 
damages was more than the Ag ions.

From the previously collected data, it is found that there 
are breakthroughs in utilizing nanomaterials in medical 
fields, but it is important to manage their safety to eliminate 
their toxicity and maximize their bio-applications.

Conclusion and future prospects

Collaborative networks should be established between the 
governments, research academies, and the industries for the 
pandemic preparedness and prevention of infection spread-
ing, and cooperation between different communities should 
be based on developing new techniques for diagnosing and 
increasing the mass production of the COVID-19 tests. 
Nanobiotechnology may have a vital role in the struggle of 
the pandemic through emerging new biosensing techniques 
that are portable, easy to use by the infected persons, with 
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reliable mass production, and with minimum cost and time 
consumptions.

Several attempts to produce a safe and an effective vac-
cine for SARS-CoV-2 are proceeding and become the prom-
ising hope so further studies are recommended to carry out 
on the nano-based vaccine in animal models, and developing 
antiviral drug delivery systems based on nanomaterials may 
be effective to fight that virus.

Numerous studies were proved the capacity of nanomate-
rials to solve the problems of the production of safe protec-
tive clothes and masks for healthcare worker protection and 
so the integration between the scientific community and the 
industry should be established to face the challenge and the 
shortage in the PPEs all over the countries.

Not only that but also, further studies and investigations 
should be performed on wastewater as it is a potential source 
for virus transmission. Wastewater treatment and disinfec-
tion are other challenges during COVID-19 epidemic, and 
extensive research should be developed for SARS-CoV-2 
removals from the wastewater to eliminate the risk of 
fecal–oral transmission and maximize the reusing and recy-
cling of wastewater via the epidemic period.

Overall, recently nanoscience achieved progress in medi-
cal applications, diagnosis, and treatments; however, more 
facilities and effort should be carried out to improve the cur-
rent technologies to face sudden infectious diseases.
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