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Abstract: Beauveria bassiana, as a well-studied entomopathogenic fungus, has a great potential for
the biological control of insect pests. Lipid metabolism has been linked to the life cycle of B. bassiana;
however, the underlying mechanisms remain unknown. In this study, a homolog of yeast steryl acetyl
hydrolase 1 (Say1) was functionally characterized. The loss of B. bassianaSAY1 (BbSAY1) impaired the
lipid homeostasis in conidia, with a significant reduction in oleic acid content. The ∆Bbsay1 mutant
strain displayed anelevated accumulation of lipid bodies and aweakened membrane permeability.
As for phenotypic aspects, gene loss resulted in significant defects in germination, conidiation,
and virulence. Our findings highlight that Say1, involved in lipid homeostasis, contributes to the
cytomembrane integrity, development, and virulence in B. bassiana.
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1. Introduction

Beauveria bassiana is one of the most prevalent insect pathogens in the eco-system
and has great potential for the biological control of pests [1,2]. Conidia, the major form of
infectious cells, germinate and ingress the host body through the trans-cuticular route. In
the host hemocoel, fungal cells undergo replication and overcome the host defense [3,4].
After the host dies, hyphae grow outside the host body and produce a lot of conidia on
the cadaver. The newly-born conidia will initiate the subsequent infection cycle when
encountering the sensitive hosts [5].

In B. bassiana, conidia form on the ‘zig-zag’-shaped conidiophores and accumulate
a plethora of fatty acids (FAs) and lipids [6,7]. The homeostasis of lipid metabolism is
finely tuned by a series of processes of synthesis and degradation. FAs act as the synthetic
precursors of storage lipids and membranes [8] and can be recycled from the degradation
of lipids and membranes [9]. Oleic acid (OA) is an important unsaturated FA in fungal cells
and is synthesized through the OLE pathway, in which the ∆9-fatty acid desaturase gene
(Ole1) catalyzes the desaturation of palmitic acid (PA), critical for the synthesis of unsatu-
rated fatty acids [10]. HapX represents a family of basic leucine zipper (bZIP) transcription
factors, which are indispensable for iron acquisition in fungi [7,11]. In B. bassiana, the OLE
pathway also contributes to conidial storage of OA and is transcriptionally regulated by
HapX (BbHapX). In addition, BbHapX has a greater influence on lipid homeostasis than
BbOle1 [7]. However, the mechanisms underlying the lipid homeostasis remains enigmatic.
In budding yeast, steryl acetyl hydrolase 1 (Say1) is required for lipid homeostasis [12].
We supposed that the ortholog of yeast Say1 might be required for lipid homeostasis in
B. bassiana.

In this study, we functionally characterized Say1 in B. bassiana by constructing the
gene disruption and complementation mutant strains. Our data revealed that BbSAY1
contributes to conidial lipid reserves, formation, and virulence.
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2. Materials and Methods
2.1. Microbial Strains and Cultivation

The wild-type strain of B. bassiana ARSEF2860 was cultured on Sabouraud dextrose
agar (SDAY: 4% glucose, 1% peptone, 1.5% agar, and 1% yeast extract) for routine main-
tenance. Escherichia coli DH5α (Invitrogen, Carlsbad, CA, USA) for plasmid proliferation
was cultured in Luria-Bertani (LB) medium with appropriate antibiotics. A yeast extract
broth (w/v: 0.5% sucrose, 1% protein, 0.1% yeast extract, 0.05% MgSO4, and 1.5% agar) was
used to culture Agrobacterium tumefaciens AGL-1, which was used in fungal transforma-
tion. Czapek-Dox agar (CZA) (3% sucrose, 0.3% NaNO3, 0.1% K2HPO4, 0.05% KCl, 0.05%
MgSO4, and 0.001% FeSO4 plus 1.5% agar) was used as a chemical-defined medium.

2.2. Bioinformatic and Transcriptional Analyses of BbSay1 in B. bassiana

The protein sequence of S. cerevisiae Say1 (GenBank No.: DAA08353) was used as a
query to search the potential ortholog in the B. bassiana genome [13]. After mapping the
cDNA sequence of BbSay1, a complete open reading frame with upstream and downstream
flanking sequences was obtained. Domain annotation was conducted through an online
portal SMART (http://smart.embl-heidelberg.de/) (last accessed on: 9 September 2020).
The ortholog of yeast Say1 in B. bassiana was determined with the method of reciprocal
best alignment between two species [14]. After searching all the Say1-domain proteins in B.
bassiana, their homologs in other fungi were retrieved via BLAST analyses and proofed via
domain analysis. Tested fungal species included Aspergillus nidulans FGSC A4, A. niger CBS
513.88, A. fumigatus Af293, Candida albicans SC5314, Cordyceps militaris CM01, Magnaporthe
grisea 70-15, Metarhizium acridumCQMa 102, M. robertsii ARSEF 23, S. cerevisiae S288C, and
Yarrowia lipolytica CLIB122.

The transcriptional analyses of the Say1-domain protein genes were performed as the
methods documented [15]. Conidia of the wild-type were cultured on a SDAY plate at
25 ◦C, and mycelia were sampled at 2, 3, 4, and 5 d. Total RNA was extracted from the
mycelial samples with the RNAisoTM Plus Reagent (TaKaRa, Dalian, China), and cDNA
was reverse transcribed using the PrimeScript® RT reagent Kit (TaKaRa). The resultant
cDNA was used as templates to perform the qRT-PCR reaction on a Mastercycler® EP
Realplex (Eppendorf, Hamburg, Germany) cycler. All primers are listed in Table S1. The
relative transcript level of each gene was calculated as the relative expression of different
time points over 2 d using the fungal 18S rRNA as an internal reference and the 2−∆∆Ct

method [16].
Localization of BbSay1 was performed as described previously [17]. Primers sequences

were listed in Table S2. The coding sequence of BbSay1 was amplified with primers PL1 and
PL2, and then, it was fused to the green fluorescent protein gene (GFP) by ligating into the
NcoI/EcoRI sites of pBMGB. The resulting vector was transformed into the wild-type strain.
The transformant was screened on CZA plates with 200 µg/mL glufosinate and cultured
on an SDAY plate at 25 ◦C. Fungal cells were sampled, and the fluorescent signals were
observed under a laser scanning confocal microscope (LSM 710, Carl Zeiss Microscopy
GmbH, Jena, Germany).

2.3. Gene Disruption and Complementation

The methods for gene disruption and complementation were the same as those de-
scribed previously [18]. All primers arelisted in Supporting Information Table S2. Up-
stream (0.81 kb) and downstream (1.14 kb) flanking sequences of the BbSAY1 open reading
frame (ORF) were amplified by PCR with the paired primers P1/P2 and P3/P4, respec-
tively, using genomic DNA as the template. The amplified PCR fragments were digested
with EcoRI/BamHI and XbaI/HpaI, respectively, and then successively cloned into the
EcoRI/BamHI and XbaI/HpaI sites of p0380-bar [19]. The resulting plasmid was named
p0380-bar-Bbsay1 and used for gene disruption. The candidate disruptants were screened
by PCR with the primers P5 and P6. To complement the gene loss, the intact BbSAY1 was
ectopically integrated in the gene disruption mutant strain. The BbSAY1 ORF plus 1.85 kb of

http://smart.embl-heidelberg.de/
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upstream and 0.34 kb of downstream sequences was amplified with primers P7/P8, and the
resultant fragment was recombined into the vector p0380-sur-gateway with a sulfonylurea
resistance cassette [19], generating the plasmid p0380-sur-Bbsay1. The plasmids were trans-
formed into the B. bassiana strain using an Agrobacterium-mediated transformation method.
Putative disruption mutants were screened on CZA supplemented with phosphinothricin
(200 µg/mL), and the complemented strains were screened on CZA plates with 10 mg/mL
chlorimuron ethyl.

Southern blotting analyses were used to further confirm the transformants. Fungal
genomic DNA (30 µg) digested by SacI/NcoI were resolved on a 0.7% agarose gel and then
electronically transferred to a Biodyne B nylon membrane (Gelman Laboratory, Shelton,
WA, USA). Target fragments were hybridized with the probes prepared from the templates
amplified with the primer pair P9/P10 and visualized with the DIG-High Prime DNA
Labeling and Detection Starter Kit II (Roche, Penzberg, Germany).

2.4. Biochemical and Phenotypic Assays

The indicated strain was cultured on SDAY plates at 25 ◦C for 7 days, and the resultant
conidia were suspended in a 0.02% Tween-80 solution. All phenotypes were compared
among the wild-type, ∆Bbsay1, and complementation mutant strains with three parallel
experiments [7,20].

2.4.1. Quantification of Conidial FAs

Conidia (100 mg) were suspended in 10 mLCMW mixture (chloroform:methanol:water =
2:1:1, v/v/v) and placed at −20 ◦C for 2 h. Then, 3 mLCM mixture (chloroform:methanol
= 2:1, v/v) was added and the conidial suspension stood for 1 h. The bottom layer was
carefully collected and dried. FAs were methylated and analyzed on a Focus series gas
chromatograph (Thermo Scientific, Waltham, MA, USA), using a standard mixture of fatty
acid methyl esters (47885U) (Sigma, St. Louis, MO, USA) as the internal references.

2.4.2. Vegetative Growth

Fungal radial growth was determined on CZA and SDAY plates. Conidial suspension
(1 µL, 106 conidia/mL) was inoculated on the plates. After 7 d of incubation at 25 ◦C, the
colony diameter was examined. A feeding assay was conducted by adding oleic acid (0.3%)
in medium. Oxidative stress was caused by including manedione (0.02 mM) into CZA
plates. Conidial suspension was point inoculated on the plates and cultured at 25 ◦C.The
colony diameter was determined at 7 d. Relative growth inhibition was calculated using
the diameter on the CZA plate as a control.

2.4.3. Conidial Production

An aliquot of conidial suspension (100 µL, 107 conidia/mL) was uniformly smeared on
SDAY plates and incubated at 25 ◦C for 9 d. From the sixth day after incubation, a mycelial
disc (5 mm in diameter) was sampled, and conidia on the disc were washed into a 0.02%
Tween-80 solution by vigorous vortexing. The conidial concentration of the suspension
was quantified and used to calculate the conidial yield as the number of conidia per square
centimeter. In the feeding assay, 0.3% oleic acid was added to the SDAY plates, and conidial
production was also quantified as described above. Additionally, a transformant for the
sub-cellular localization of BbSay1 was used to evaluate the effect of the over-expression of
BbSAY1 on conidiation.

2.4.4. Conidia Germination

To simulate conidial germination under an oligotrophic condition, the conidial suspen-
sion was inoculated on a water agar plate (WA) (1.2% agarose). After an incubation of 24 h
at 25 ◦C, the germination percentage was calculated. For each sample, at least 100 conidia
were counted. A chemical feeding test was performed by adding oleic acid (0.3%) into
the WA plates. To simulate conidial germination on the host cuticle, a conidial suspension
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(107 cells/mL) was sprayed on the locust hindwings. After an incubation of 24 h at 25 ◦C,
the conidial morphology was observed under a microscope.

2.4.5. Insect Bioassay

To determine fungal virulence, the larvae of Galleria mellonella were used as the insect
hosts. Last-instar larvae (~300 mg in weight) were used in this study [21]. In the trans-
cuticular assay, larvae (30−35 individuals) were dipped in a conidial suspension (40 mL,
107 conidia/mL) for 15 s. All infected insects were reared at 25 ◦C, and the mortality
was recorded daily. The median lethal time (LT50) was calculated by a Probit analysis for
three replicates of each bioassay. In the feeding test, oleic acid (0.3%) was added into the
conidial suspension.

2.5. Lipidomic Analyses

The total lipid sample was prepared with the methods used in FA extraction as
described previously [7]. Lipids in the sample were resolved and analyzed on UPLC-
MS/MS (QE Plus™) (Thermo Scientific). A non-targeted lipidomics analysis platform
combined with the Lipid Search™ software was applied for lipid identification and data
processing. Data for the molecule intensity were plotted with the CV% method, which
indicatedthe difference in the relative content in the total lipids between the WT and
∆Bbsay1 mutant strains.

To view the variation of total lipids in mycelia, a conidial suspension was grown on
the SDAY for 3 d at 25 ◦C. The resulting mycelia were stained with observed hyphae with
the lipid-specific dye BODIPY493/503 (Thermo Fisher Scientific, Waltham, MA, USA).

2.6. Assay for Membrane Integrity

Nucleus staining with SYTOX Green was applied as previously described [7]. The
conidia suspension was inoculated onto the SDAY plates and cultured for 12 h at 25 ◦C. The
resultant germlings were collected and stained with SYTOX Green for 10 min away from
light. The green fluorescence was detected under a laser scanning confocal microscope
(LSM 710, Carl Zeiss Microscopy GmbH, Jena, Germany), and the percentage of stained
cells (PSC) was calculated by counting at least 100 cells.

2.7. Data Analyses

All measurements from biochemical and phenotypic assays were subjected to a one-
way ANOVA. The significant difference was determined by a Tukey’s honest significance
test (Tukey’s-HSD).

3. Results
3.1. Bioinformatic Analysis and Molecular Manipulation of BbSay1

Based on the results of the BLAST search, the gene of BBA_02920 was significantly
homologous to steryl acetyl hydrolase 1 in S. cerevisiae (GenBank No.: DAA08353) (E-value:
1 × 1010) and was designated as BbSay1. The open rearing frame of BbSAY1 was 1453 bp in
length with 3 introns, encoding a 386-amino acid protein. The domain analysis indicated
that BbSay1 contained a domain of Say1_Mug180 (PF10340.9), and the domain annotation
revealed that there were 10 Say1-domain-containing proteins in the B. bassiana genome.
Their orthologs in other fungi were revealed via sequence alignment and domain annotation
analyses (Table S3). Phylogenic analyses indicated that BbSay1 has a closer relationship to
the orthologs from filamentous fungi than those of yeast species (Figure S1A). qRT-PCR
analyses indicated that the Say1-domain protein genes displayed different expression
patterns during growth in the nutrient medium. (Figure S1B). Under a fluorescent field, the
green signals of the BbSay-Gfp protein distributed evenly in cytoplam (Figure S2). This
indicated that BbSay1 dominated in the cytoplasm.

To uncover the physiological functions of BbSay1, its disruption mutant was con-
structed with a strategy of homologous replacement. To complement the gene loss, the
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entire ORF of BbSAY1 and its promoter region was ectopically integrated in the genome
of the ∆Bbsay1 mutant strain. All candidate strains were screened, verified with PCR, and
successfully confirmed by Southern blotting analyses (Figure S3).

3.2. Effects of Gene Loss on Fungal Phenotypes

The B. bassiana conidia mainly accumulated four FAs, including stearic, palmitic, oleic,
and linoleic acids. The ablation of BbSAY1 resulted in a significant reduction in the content
of oleic acid, and the reduction was 50.2%. However, the contents of the other three FAs
were not significantly influenced (Figure 1).
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Figure 1. Fatty acid content in the B. bassiana conidia. The indicated strain was cultured on SDAY
plates for 8 d, and the levels of fatty acids were determined in the conidia. The B. bassiana conidia
accumulated four free fatty acids (stearic, palmitic, oleic, and linoleic acid) in the conidia. The gene
disruption of BbSAY1 led to a significant decrease in the level of oleic acid. The asterisk on the column
indicates the significant difference in the fatty acid content between the ∆Bbsay1 and the wild-type or
complemented strains (Tukey’s HSD: p < 0.05). Error bars: standard deviation.

As shown in Figure 2A,C, the ∆Bbsay1 mutant strain exhibit a significant decrease
in colony size, with approximatelya 48.6% and 9.1% reduction on the CZA and SDAY
plates, respectively, when compared with those of the wild-type (2.17 ± 0.05 cm (CZA) and
2.23 ± 0.05 cm (SDAY)) (mean ± standard deviation). Feeding oleic acid could increase the
colony sizes on both the CZA and SDAY plates. This indicated that exogenous oleic acid
could restore vegetative growth under an aerial condition. The colony morphologies on
the CZA and SDAY plates areshown in Figures 2B and 2D, respectively.

The conidial germination on WA plates was significantly decreased by gene disruption
(Figure 2E). The germination percentage for the ∆Bbsay1 mutant strain was 23.3 ± 2.1%;
however, the wide-type and complementation strains displayed a germination percent-
age of approximately 35%. After adding oleic acid, there was no significant difference
in the germination percentage among the wild-type, ∆Bbsay1, and complementation
strains. On the hindwing of a locust, the conidia of the wild-type germinated well
and developed into a germling; however, the ∆Bbsay1 mutant displayed aretarded ger-
mination (F). Under oxidative stress by menadione, the gene disruption mutant dis-
played a significant defect in vegetative growth (G). The conidial yield was evaluated
on SDAY plates (Figure 2H). Gene disruption caused a slight reduction in the conidial
yield at three sampling time points. At 8 d post incubation, the conidial yield for the
∆Bbsay1 mutant strain was 4.58 ± 0.35 × 108 conidia/cm2, and that of the wild-type was
5.89 ± 0.67 × 108 conidia/cm2. Exogenous oleic acid could reduce and eliminate this defect
in the ∆Bbsay1 mutant strain. A transformant with over-expression of BbSAY1 generated
5.76 ± 4.48 × 108 conidia/cm2, which did not significantly differ fromthe wild-type.
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Figure 2. Fungal vegetative growth, germination, and conidiation. Fungal strains were inoculated
on CZA (A) and SDAY (C) plates. After an incubation of 7 d at 25 ◦C, the colony diameter was
examined. Photographs were taken for the colonies on the CZA (B) and SDAY (D) plates. Bars:
1 cm. (E) Conidial germination under an oligotrophic condition. The conidia were inoculated on
a water agar plate (only with agarose) and cultured for 24 h at 25 ◦C, followed by determining the
germination percentage. (F) Microscopic view of germlings on the hindwing of a locust. Bar: 20 µm.
(G) Growth under oxidative stress. The conidial suspension was inoculated on a CZA plate plus
menadione and cultured at 25 ◦C. Seven days later, the colony diameter was measured and used
to calculate the relative growth inhibition (RGI). A CZA plate without manedione was used as a
control. (H) Conidial production. Fugal strains were inoculated on SDAY plates and cultured at
25 ◦C. The conidial yield was examined at 6, 7, and 8 d post incubation. A chemical feeding assay
was conducted by adding oleic acid (OA) to the indicated medium. The asterisks on the bars indicate
the significant difference in the indicated phenotype between the ∆Bbsay1 and the wild-type (WT) or
complemented strains (Tukey’s HSD: p < 0.05). Error bars: standard deviation.

In a cuticle penetration bioassay, the survival trend for the ∆Bbsay1 mutant showed a
significant delay when compared to the wild-type (Figure 3A). The LT50 for ∆Bbsay1 mutant
was calculated as 7.13 ± 0.23 d (mean ± standard deviation), with a slight delay, when
compared with that of the wild-type (5.43 ± 0.11 d) (Figure 3C). When adding oleic acid,
there was no significant difference in the survival trend and LT50 between the wild-type
and ∆Bbsay1 mutant strains (Figure 3B,D).
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Figure 3. Fungal virulence. Conidial virulence was assayed for the wild-type (WT), ∆Bbsay1, and
∆Bbsay1::Bbsay1 strains. The conidial suspension was flooded onto the host cuticle, and then, the
inoculated insects were cultured at 25 ◦C. The survival trend was recorded daily (A), and the
accumulative mortality was used to calculate the median lethal time (LT50) with a Probit analysis (C).
In the feeding test, oleic acid (OA) was included in the conidial suspension, and accumulative
mortality was used to calculate the survival trend (B) and LT50 (D). A Tween-80 solution was used
as blank control. The asterisk on the column indicates the significant difference in the LT50 value
between the ∆Bbsay1 and the wild-type or complemented strains (Tukey’s HSD: p < 0.05). Error bars:
standard deviation.

3.3. Gene Loss Affects Cellular Lipidomics and Membrane Integrity

As shown in Figure 4A, the ablation of BbSAY1 resulted in an enhanced accumulation
of diacylglycerols (DG) and a decrease in the content of triacylglycerols (TG). Four kinds
of phospholipids were detected in the B. bassiana conidia, including lysophosphatidyl-
choline (LPC), lysophosphatidylethanolamine (LPE), phosphatidylcholine (PC), and phos-
phatidylethanolamine (PE), in their cationic or anionic forms. Gene disruption resulted
in a significant decrease in the content of phospholipids (e.g., LPC) (Figure 4B). The loss
of Bbsay1 led to poor membrane integrity in germlings. Without oleic acid, nearly all
germlings were stained by SYTOX, while only 1% of the WT cells were stained (Figure 4C).
Interestingly, exogenous oleic acids significantly reduced the percentage of the stained
cells (PSC) in the ∆Bbsay1 mutant strain. The microscopic view indicated that the size of
lipid bodies was significantly increased when compared with that in the wild-type and
complemented strains (Figure 4D).
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Figure 4. Assay for lipid homeostasis in B. bassiana. The lipidomic assay indicated that the ablation of
BbSAY1 resulted in the impaired homeostasis of a neutral lipid (A) and phospholipid (B). (C) Sytox-
green nucleus staining. The ∆Bbsay1 mutant strain displayed anincreased cytomembrane permeability,
and its nuclei were easily stained by fluorescent dye. (D) Staining lipid bodies. The fluorescent dye
BODIPY was used to stain the lipid bodies in fungal cells. The ∆Bbsay1 mutant strain accumulated the
enlarged lipid bodies, which indicatedthe unbalanced lipid metabolism after the ablating of BbSAY1.

4. Discussion

FA/lipid metabolism plays an important role in the interaction between entomopathogenic
fungi and insect hosts [22]. This study has revealed that the ortholog of yeast steryl acetyl
hydrolase 1 (Say1) contributes to lipid homeostasis, which is required for development and
virulence in B. bassiana.

Lipid homeostasis is maintained by a series of biochemical reactions of esterification
and transesterification, as well as the interaction among different catalytic pathways [9].
In S. cerevisiae, Say1 catalyzes the reaction of sterol deacetylation, which is required for
sterol homeostasis [12,23]. In B. bassiana, BbSay1 contributes to the homeostasis of lipid
metabolism. Its loss leads to a comprehensive fluctuation in the cellular lipidome, although
more investigations are needed to reveal the direct effects of BbSay1 in B. bassiana. This
finding suggests the conservative role of Say1 in lipid metabolism. It is well known
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that triacylglycerol is synthesized by the conjugation of acyl coenzyme A (acyl-CoA) to
diacylglycerol, which is catalyzed by acyl-CoA:diacylglycerol acyltransferase [24]. After
disrupting BbSAY1, B. bassiana accumulated a high level of diacylglycerol and a low level
of triacylglycerol. Additionally, BbSay1 contributes to maintaining the morphologies of
lipid bodies and the conidial reserve of oleic acid. Lipid droplets are organelles that store
neutral lipids (i.e., triacylglycerols and steryl esters) and maintain the homeostasis of stored
lipids and free fatty acids [25]. These results suggest that BbSay1 is further involved in
lipid metabolism via modulating the biogenesis of lipid bodies. Considering the Say1 role
in sterol homeostasis [23], our findings further suggest that there might exist an interaction
between triacylglycerol and sterol homeostasis.

The conidial capacity to germinate and penetrate through the host cuticle is deter-
minant for successful infection by a fungal entomopathogen [3]. Particularly, conidial
germination on the nutrient-limited cuticle is critical for infection initiation [26]. Addi-
tionally, the cytomembrane functionality of germlings is critical for fungal virulence [7].
BbSay1 contributes to fungal virulence, which is due to its roles in conidial germination
under the oligotrophic condition and the cytomembrane integrity. Several physiological
processes have been linked to the cytomembrane integrity of the germling in B. bassiana,
including the biosynthesis of unsaturated FA (e.g., BbOle1) [7]), lipid trafficking (e.g., Bb-
Scp2) [27], and thioesterification of FA (e.g., BbFaa1) [28]. In addition, a lectin-like protein
functions at the interface between the cell membrane and wall and contributes to the
cytomembrane functionality [29]. These findings reinforce that the homeostasis of lipid
metabolism and the cell wall is essential for membrane integrity.

Conidia, generated through asexual development, are essential for entomopathogenic
fungi to survive and disperse in the environment [14,30].BbSay1 contributes to conidiation
in anoleic acid-dependent manner, and it maintains the morphology of lipid bodies during
vegetative growth. In A. nidulans, two ∆9-stearic acid desaturases catalyze the biosynthesis
of oleic acid, which is required for fungal development [31]. In filamentous fungi (e.g.,
Blumeria graminis), the oxidation of unsaturated fatty acids is involved in the conidiation
process [32]. In Magnaporthe oryzea, the elevated accumulation of lipid bodies leads to
severe conidiation defects [33]. Considering the roles of oleic acid in energy supply and
the membrane integrity, our findings suggest that BbSay1 might affect multiple aspects
in B. bassiana conidiation. In addition, BbSNF1, an AMPK protein kinase, mediates the
amino-acid homeostasis during conidiation in B. bassiana [30]. These findings suggest that
primary metabolism is essential for conidiation in filamentous fungi.

5. Conclusions

In conclusion, B. bassiana contains 10 Say1-domain-containing proteins. BbSay1, the
ortholog of yeast Say1, maintains lipid homeostasis, which contributes to the cytomem-
brane integrity, development, and virulence in B. bassiana. In future, more investigations
are needed to functionally identify other Say1 proteins, which should provide novel in-
sights into the lipid metabolisms involved in the differentiation and virulence of ento-
mopathogenic fungi.
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bassiana Say1-domain-containing proteins in other fungal species.
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