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COMMENTARY
LRRK2 and ubiquitination: implications for kinase inhibitor therapy
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Pathogenic mutations and risk variants in LRRK2 (leucine-
rich repeat kinase 2) represent the most common genetic
cause of familial and sporadic PD (Parkinson’s disease).
LRRK2 protein is widely expressed throughout the brain and
the periphery. Structurally, LRRK2 contains several functional
domains, including a dual enzymatic core consisting of a kinase
and GTPase domain. Disease-linked variants are found in both
these enzymatic domains as well as in the COR [C-terminal
of ROC (Ras of complex proteins)] and WD40 protein–protein
binding domain. The kinase domain is widely believed to
be linked to toxicity, and thus the thrust of pharmaceutical
effort has focused on developing LRRK2 kinase inhibitors.
However, recent data have suggested that inhibition of LRRK2
activity results in reduced LRRK2 levels and peripheral side
effects, which are similar to those observed in homozygous

LRRK2-knockout and LRRK2 kinase-dead rodent models. In
a recent issue of the Biochemical Journal, a study led by
Nichols reveals that dephosphorylation of LRRK2 cellular
phosphorylation sites (Ser910/Ser935/Ser955/Ser973) triggers its
ubiquitination and subsequent degradation and thus may account
for the loss of function phenotypes observed in peripheral tissues
in LRRK2-knockout/kinase-dead or inhibitor-treated rodents and
primates. Albeit negative from a kinase inhibitor standpoint,
the data open new avenues for LRRK2 biology and therapeutic
approaches to counteract LRRK2 toxicity.
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Since the discovery of LRRK2 (leucine-rich repeat kinase 2)
mutations in 2004 [1,2], a huge academic and pharmaceutical
effort has ensued. Variants in LRRK2 are the most common
genetic cause of Parkinsonism, accounting for a remarkable 40 %
in certain ethnic populations [3–5]. LRRK2 has several features
that make it an attractive therapeutic target. First, and most
obvious, kinases are druggable targets and the most common
pathogenic LRRK2 mutation G2019S happens to reside within
the kinase domain. Secondly, although LRRK2 penetrance is
age-related, it is variable and aged carriers exist that have escaped
disease [6], suggesting that other disease-modifiers must exist and
the progression of disease could potentially be modified. Thirdly,
within LRRK2 families, patients can present with different
pathologies that overlap with other neurodegenerative diseases
such as AD (Alzheimer’s disease) and progressive supranuclear
palsy [2], and, as such, the benefit of a LRRK2-based therapeutic
may extend beyond PD (Parkinson’s disease).

The physiological and pathological roles of LRRK2 are not
yet fully understood, but it is generally accepted that, in the
brain, LRRK2 is involved in neurotransmitter release and neuronal
maintenance and outgrowth. In a general cellular context, LRRK2
has been linked to vesicular dynamics/trafficking, mitochondria
dynamics and autophagy. Outside the central nervous system,
it has become apparent that LRRK2 is a mediator of the
immune system and has been linked to other diseases including
inflammatory bowel disease [7–9], cancer [10–12] and leprosy
[13–15]. Knockout of LRRK2 in rodents does not appear to be
detrimental to the brain, since no abnormal behaviours, neuro-
chemical alterations or neuropathologies can be found; however,
in the periphery, homozygous knockout rodents have kidney and
lung abnormalities [16–19 and 20]. Similar phenotypes have also

been reported in kinase-dead mice, probably due to the ∼75%
reduction in full-length LRRK2 levels in their kidneys [16].
Interestingly, heterozygous knockout mice do not have kidney
abnormalities, possibly indicating that 50% function is sufficient
[17]. Also worth noting is that LRRK2-knockout rodents appear to
be protected against inflammatory insult via lipopolysaccharide
[22], α-synuclein-induced dopaminergic degeneration [23] and
rhabdomyolysis-induced kidney injury [24].

Recent data emerging from studies utilizing LRRK2 inhibitors
suggest that LRRK2 toxicity depends on LRRK2 levels rather
than kinase activity, and inhibition of kinase activity can also
result in a reduction of steady-state LRRK2 levels [16,25,26].
Furthermore, the inhibitor-induced reduction in LRRK2 levels
may also lead to loss of function peripheral phenotypes;
for example, a recent study testing two distinct LRRK2
inhibitors in non-human primates revealed that both of these
kinase inhibitors induced abnormal cytoplasmic accumulation of
secretory lysosome-related organelles known as lamellar bodies
in type-II pneumocytes of the lung [21]. The potential side effects
represent a significant hurdle for LRRK2 inhibitor treatment in
humans, and suggest that targeting what is conceived as LRRK2’s
most promising druggable attribute, its kinase domain, could be
a ‘double-edged sword’.

The study by Zhao et al. [27] published in a recent issue of the
Biochemical Journal seeks to understand the events underlying
LRRK2 degradation following kinase inhibition by analysing
LRRK2 cellular overexpression models, as well as endogenous
LRRK2 in cells and mouse tissues after treatment with a recently
described LRRK2 inhibitor, GNE1023 [28]. Although the levels
of pSer935 are reduced as expected, the levels of total LRRK2
(overexpressed and endogenous LRRK2 in lung cells and various
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mouse tissues) are lower after GNE1023 treatment. The effect of
GNE1023 was confirmed to be at the protein level since mRNA
levels of LRRK2 remained unchanged in lung cells and in lung,
kidney and brain from drug-treated mice. Total LRRK2 levels did
not change in cells expressing A2016T, an inhibitor-resistant form
of LRRK2, suggesting that kinase activity is somehow responsible
for reducing LRRK2 levels.

Zhao et al. [27] next asked whether LRRK2 degradation
was either via the autophagy–lysosome pathway or via
ubiqutination. They found that in HEK (human embryonic
kidney)-293 cells overexpressing LRRK2, blocking autophagy
induction or progression did not affect GNE1023-induced
LRRK2 degradation; however, proteasomal inhibition reversed
it. Since proteasomal degradation is driven by ubiquitination,
they went on to investigate ubiquitin levels and which potential
ubiquitin linkages could be involved. GNE1023 inhibition
of both overexpressed and endogenous LRRK2 resulted in
increased ubiquitination and linkages to Lys48 and Lys63. Lys48-
linked ubiquitin chains target proteins to the proteasome,
which negatively affect protein stability, whereas Lys63 linkages
are crucially implicated in several non-proteolytic signalling
processes [29]. In human epithelial cells transfected with WT
(wild-type) LRRK2, GNE1023 alone or co-expression of mutant
Lys48 or Lys63 linkages drove LRRK2 into cytoplasmic skein-like
aggregates. Furthermore, GNE1023 plus either ubiquitin-linkage
mutant appeared to synergize this effect. When all of the ubiquitin
lysate linkages were mutated, LRRK2 was still ubiquitinated,
but this could be reduced by mutating the ubiquitin start
methionine to arginine, and likewise when the start methionine
mutant was paired with either the mutant Lys48 or Lys63 linkage,
ubiquitination of LRRK2 decreased. Thus the data suggest that at
least three linkages are involved in LRRK2 ubiquitination. Since
distinct ubiquitin linkage conformations determine decoding
at ubiquitin receptors and subsequent targeting to different
pathways, these new data deepen the complexity of LRRK2
function and add a whole new dimension to downstream LRRK2
signalling.

A known consequence of LRRK2 dephosphorylation of the
cellular sites (pSer910/pSer935/pSer955/pSer973) is loss of 14-3-
3 protein binding to pSer910/pSer935 [30,31]; however, whether
LRRK2 signals to a phosphatase or an upstream kinase to
regulate these sites is unknown. Zhao et al. [27] suspected that
dephosphorylation at these upstream kinase sites was linked to
ubiquitination. By employing a GFP–difopein (difopein is a 14-
3-3 inhibitor) fusion protein that bound 14-3-3 and disrupted
phosphorylation of LRRK2, they showed that dephosphorylation
of LRRK2 at pSer935 (but not pSer1292) increased LRRK2
ubiquitination to levels similar to GNE1023, while still leaving
LRRK2 kinase activity intact. Moreover, difopein–GFP decreased
steady-state protein levels 50% more than GFP alone when
protein synthesis was blocked, indicating that dephosphorylation
at LRRK2 pSer953 is sufficient for the ubiquitination and
degradation of LRRK2. This is curious because the PD mutants
N1347H, R1441C/G, Y1699C and I2020T were found previously
to be more dephosphorylated than G2019S mutant and WT
[31,32] and now these new data show, in fact, that their basal
level of ubiquitination is higher. It was recently reported that
blocking PP1 (protein phosphatase 1) with Calyculin A restores
phosphorylation of the upstream kinase sites following inhibitor
treatment [33]. Zhao et al. [27] consequently studied the effects
of Calyculin A with regard to the impact on ubiquitination in
a series of LRRK2 mutants, and revealed differential responses
of the various LRRK2 mutants. In short, kinase inhibition with
GNE1023 only increased ubiquitination in the G2019S- and WT-
expressing cells, but did not alter the mutants (I2020T, R1441G

and Y1699C) that already had enhanced basal ubiquitination
levels. On the other hand, PP1 inhibition was able to restore
phosphorylation at the upstream sites for all mutants, resulting in
a minimally ubiquitinated LRRK2 species.

So how do we put these findings in perspective and what are
the implications for the development of LRRK2 inhibitors? From
a safety standpoint, the potential for loss-of-function phenotypes
will certainly heighten concerns around the potential side effects.
Zhao et al. [27] suggest that one solution could be molecules
selective for mutant LRRK2 activity or agents that are highly
selective, but have low-affinity inhibition. However, data from our
laboratory may indicate that G2019S mutant preferring inhibitors
may not be effective clinically in heterozygous patients. We have
tested HG-11-31-01 (which is structurally almost identical with
GNE1023 and has a 30-fold preference for the G2019S mutant)
for its rescue potential of dopamine-release deficits in G2019S
knockin mice [34]. HG-11-31-01 was only effective at restoring
dopamine release in homozygous knockin mice, but had no effect
in heterozygous mice [35]. Analysis of both the pSer910 and
pSer935 sites revealed that HG-11-31-01 was significantly more
effective at inhibiting phosphorylation in the homozygous mice.
The lack of effect in the heterozygous mice may be attributable
to mutant-induced alterations in protein folding around the
binding site or, alternatively, the inhibitor may confer differential
kinase affinity on the phosphatase acting on Ser910/Ser935 sites.
Assuming the dopamine-release phenotype is relevant to PD, this
may have clinical implications since most G2019S patients are
heterozygous. Thus we have reasoned that kinase inhibitors that
have a similar affinity for WT and mutant LRRK2 may have
more therapeutic potential. In the light of the new data by Zhao
et al. [27], the considerations for developing LRRK2 inhibitors
and their clinical efficacy has intensified further. Future therapies
may require different inhibitor types depending on which LRRK2
mutation the patient has.

Interestingly, West’s group [36] recently published a systematic
study of how small molecules differentially target trans-
and cis-phosphorylation activities and suggested that the
multidimensional aspect of LRRK2 kinase activity may strongly
influence the success or failure of a particular compound in pre-
clinical models. In trans-peptide assays, most of the inhibitors
had more potency towards G2019S LRRK2 compared with WT
LRRK2. It was suggested that the catalytic pocket may adopt
different conformations depending on the nature of the substrate,
and the small-molecule inhibitors may show different binding
affinities for these different conformations (or not bind at all).

It is prudent to point out that much of the data generated
by Zhao et al. [27] was performed in cellular/overexpression
systems. Currently, there is no genetic evidence for patients with
multiplication of LRRK2, and the jury is still out as to whether
splice variants influence LRRK2 expression in humans [37–40].
Also, the absence of anti-LRRK2 antibodies that can be used
for immunohistochemistry in human brain [41] precludes the
assessment of skein-like inclusions of LRRK2 in humans, so it
is unclear whether this is a result of overexpression systems, or
whether this can also occur in the physiological setting. Certainly
aggregation of proteins such as α-synuclein, β-amyloid and
tau in PD and AD is well characterized, but then again one
school of thought is that protein aggregates are actually a cell-
protective/coping mechanism. As Zhao et al. [27] suggest, it
will be important to define the ubiquitination linkage types on
LRRK2 under various pathogenic conditions, as well as fully
determining tissue- or cell-population-specific differences. It will
also be informative to study the phosphorylation, ubiquitination
and degradation cycle in physiological LRRK2 animal models.
Indeed, it will be very interesting to see how this cycle differs
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with a range of different LRRK2 inhibitor types in G2019S
and R1441C knockin mice [16,34,42]. Lastly, determining the
ubiquitination status of the LRRK2 risk factor variants, i.e.
R1628P and M1646T in the COR domain and G2385R in the
WD40 domain [43–45] could also reveal clues to how they
influence PD risk.

The discovery of this pSer935-mediated mechanistic switch
which can alter LRRK2 ubiquitination and downstream stability
and function could certainly widen the potential for therapeutic
intervention. The UPP (ubiquitin–proteasome pathway) is critical
for normal nervous system function and is implicated in
neurodegenerative disease including PD and AD, where toxin
protein aggregates accumulate in certain vulnerable brain
regions. Many crucial nervous system pathways are regulated
by post-translational conjugation of ubiquitin to target proteins.
Equally important is the reversal of ubiquitination, controlled
by DUBs (deubiquitinating enzymes) which have important
roles in determining neuronal fate, axonal pathfinding, and
synaptic connection and plasticity [46]. Several of the 80
known DUBs have already been linked in some manner to
PD, including UCHL1, USP24 USP30, USP40 and OTUB1,
which, interestingly, is found in Lewy bodies in post-mortem
PD brain (reviewed in [47]). Targeting specific DUBs has
already been proposed as a potential therapeutic route in some
neurodegenerative diseases [48]. A situation can be envisaged
whereby LRRK2 inhibitor treatment could be supplemented by
co-treatment with drugs that targets specific DUBs to thwart the
unwanted signalling outcomes.

Another key component of the UPP is the ubiquitin ligases, the
enzymes that selectively recognize and mediate the ubiquitination
of substrates, involving the transfer of E2-conjugated ubiquitin
to lysine residues of the target substrate. Like DUBs, ubiquitin
ligases are also potential PD targets. Parkin functions as an
ubiquitin ligase and was shown to be protective in LRRK2
G2019S in Drosophila [49]. Several ubiquitin ligases are also
implicated in the turnover of α-synuclein, including CHIP, MDM2
and HRD1 [50]. The work of Zhao et al. [27] opens up new
avenues for LRRK2 biology, and future work to determine
the ubiquitin ligases and DUBs that interact with differentially
phosphorylated forms of LRRK2 and possible mechanistic links
to other PD genes and pathways are sure to be enlightening for
the field.
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