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Abstract

In this study, we propose a novel way to describe the variety of environmental adaptations of Archaea. We have clustered
57 Archaea by using a non-redundant set of proteomic features, and verified that the clusters correspond to environmental
adaptations to the archaeal habitats. The first cluster consists dominantly of hyperthermophiles and hyperthermoacidophilic
aerobes. The second cluster joins together halophilic and extremely halophilic Archaea, while the third cluster contains
mesophilic (mostly methanogenic) Archaea together with thermoacidophiles. The non-redundant subset of proteomic
features was found to consist of five features: the ratio of charged residues to uncharged, average protein size, normalized
frequency of beta-sheet, normalized frequency of extended structure and number of hydrogen bond donors. We propose
this clustering to be termed phyloecological clustering. This approach could give additional insights into relationships
among archaeal species that may be hidden by sole phylogenetic analysis.
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Technology in Zurich (German: Eidgenössische Technische Hochschule, ETH). The funder had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: anita.krisko@medils.hr

Introduction

Archaea exhibit a large diversity of genotypic and phenotypic

characteristics [1,2]. Several different phenotypes have been

described according to physicochemical properties of archaeal

living habitats. Habitats are characterized by different concentra-

tions of organic and inorganic substances and diverse composition

of mini-atmosphere, all of which eventually shapes the metabolic

profile of a species. Furthermore, some of archaeal organisms

thrive in rather extreme conditions of temperature, salt concen-

tration and/or pH. To mention only few environmental pheno-

types: hyperthermophiles grow optimally at temperatures above

80uC [3]; thermophilic species have optimal growth between 45uC
and 80uC; acidophiles have optimal pH ranging from 1.7 to 6.5

[4]; salt requirements of halophiles range from 1.5 M to extreme

5.2 M NaCl [5]; methanogens produce methane under anaerobic

conditions [6], etc.

Archaeal species are thus highly adapted to life in various

environments. Nucleic acids, proteins and other macromolecules

inside a cell have to be, to a certain extent, adapted to particular

conditions of the habitat where those unicellular organisms live.

One could, therefore, assume that by looking at adaptation of

macromolecules it would be possible to determine the conditions

that an organism tolerates or prefers. Adaptation manifests at

many different levels, and protein and whole proteome adaptation

is surely one of them [7–14]. As the number of available annotated

proteomes rapidly increases (currently over 1700 prokaryotic

proteomes), it is a growing need to globally categorize species

according to their lifestyles.

In this study we have focused exclusively on the adaptation of

proteomes to diverse environmental conditions, by analyzing all

proteins of archaeal species – both globular and membrane

proteins, irrespective of protein families they belong to. We were

interested in studying the relations between quantifiable charac-

teristics of a proteomic sequence (such as average polarity, charge,

hydrophobicity of the entire proteome, etc.) regarding conditions

in the archaeal environmental niche. First, our goal was to define a

non-redundant minimal set of proteomic descriptors that contain

sufficient information about an adaptation to archaeal habitat.

Second, we aimed to organize the diversity of archaeal environ-

mental phenotypes and taxa based on the differences between

their proteomes. For this purpose we used hierarchical clustering

method, which has been widely applied in classification of protein

sequences [15,16], defining protein families [17], proteomic data

mining [18,19] and analyses of microarray data [20].

Results and Discussion

Non-redundant information about the proteomes
Each amino acid can be described with 544 different

characteristics as listed in AAindex database ver.9.1 [21].

However, Atchley et al. [22] showed that these descriptors are

highly redundant. Therefore, we first aimed to select a subset of

features that would contain non-redundant information. In order

to reduce the number of proteomic features to only non-redundant

ones, we have developed a new feature selection procedure, which

yielded the subset of original features that are uncorrelated. The

procedure was unsupervised, which implies that we did not

predetermine conditions or use any model to obtain the final
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subset. The final subset is the result of solely statistical approach

that decreased the redundancy within the dataset. It should be

emphasized at this point that we had not applied other commonly

used methods (e.g. Principle Component Analysis) since we aimed

at using the original proteomic features in the further analysis. Our

intension was to retain full information on proteomic character-

istics after feature selection procedure, in order to discuss more

realistically about possible biological significance of the resulting

proteomic feature subset.

Some previous studies [e.g. 23] have already generated

proteomic feature subsets with the intent to classify organisms

based on their environments. These were applications of

supervised machine learning methods, where one only seeks

answers for specific questions; for example, which proteomic

features distinguish thermophiles from mesophiles. On the other

hand, in our present study, we used unsupervised methods to

generate the smallest possible subset of features that contains

maximal information – the algorithm is not pre-trained to

distinguish proteomic data according to environments. We sought

not to pose any bias on the process of feature selection; our aim

was to categorize adaptations to several (un)known conditions at

once. Archaea have been found in many diverse environments, and

to restrict the description of the environment on the currently

known habitats could decrease the ability to categorize species yet

to be discovered. For instance, the first discovered Archaea were

extremophiles, while mesophilic Archaea were found to exist only in

the last 20 years [24].

Our unsupervised feature selection generated the final subset

containing five descriptors sufficient to discriminate Archaea

according to their environmental adaptation. These are: average

protein size, normalized frequency of beta-sheet (unweighted),

normalized frequency of extended structure, the ratio of charged

residues to uncharged, and number of hydrogen bond donors.

Based on the previously published data, thermophilic and

hyperthermophilic proteins tend to be significantly shorter than

mesophilic proteins [7,25,26]. Possible mechanisms could involve

deletions in the exposed loop regions [25], which results in

enhanced thermostability of proteins by lowering entropy change

of unfolding [26]. Regarding other structural determinants,

formation of extended structures, such as beta sheets, has

previously been suggested to be a proteomic signature of

thermophilicity [23].

In general, higher content of charged residues is one of the

distinctive characteristics of thermophilic proteins [7]. Ratio of

charged amino acids to uncharged, more precisely, polar residues

[27] has been determined to be the most obvious indicator of

hyperthermophilicity. An increase in the amount of hydrogen

bonds [28], as well as occurrence of ion-pair networks at a protein

surface promotes its thermal stability [29].

Since many acidophilic species are also (hyper)thermoacido-

philes, there have been no detailed studies to deduce proteomic

adaptation only to lower pH [30]. Cytoplasmic pH of these

organisms is close to neutral, thus no specific signatures of

adaptation are expected to be found in the cytoplasmic proteins

[31]. However, it has been suggested that acidophilic extracellular

proteins tend to replace charged residues with neutral polar amino

acids [31].

Several studies proposed an increase in charged residue content

to be, not only a signature of thermostability, but also of

halophilicity [12,23,32]. Halophiles have several different strate-

gies to cope with environments with increased salt concentration:

by having inorganic ions in the cytoplasm, or by producing

organic solutes that maintain osmotic equilibrium [5]. Amino acid

substitution of any residue with acidic residue, especially when

acidic residues are localized at a protein surface, enhances the

protein’s solubility in high osmotic environments by extending

hydration networks [12,32].

Certain genomic signatures, such as GC content, and codon

usage bias surely contribute to defining amino acid composition.

For instance, there are several studies that investigate genomic and

proteomic signatures of mesophiles, thermophiles and hyperther-

mophiles. One of the key observations is that GC content does not

have a significant correlation with optimal growth temperatures of

prokaryotes [7,11], nor any mono-nucleotide composition bias is a

result of salt preferences of species [12]. Furthermore, amino acid

sequence, irrespectively of GC pressure, clearly separates thermo-

philic from mesophilic species [33].

Primary level of adaptation to higher temperatures, as well as

any other environment, is at the amino acid level [11]. However,

codon usage bias exists as an independent adaptation on the

nucleotide level [11,34]. For instance, increase in amount of

purines (A or AG content) in codons correlates with optimal

growth temperatures of prokaryotes, which can be, for instance,

due to the codons of IVYWREL [11], IRLG [34], or IVYE [35]

amino acids and clearly discriminates (hyper)thermophilic from

mesophilic species. The existence of synonymous codon usage bias

has also been confirmed for adaptation towards high salt

concentrations, and it is salt adaptation specific. Codons of amino

acids DEVT are preferred within halophilic species [12].

Our unsupervised selection yielded only features that have

already shown important for environmental adaptations. Howev-

er, we have defined which five features alone are sufficient to

describe the variety of environmental adaptation of Archaea. These

proteomic features appeared to be explanatory enough to

distinguish specific adaptations at the level of entire proteome in

large datasets.

Furthermore, in our study we did not want to show only

connection of abundance of certain amino acids with specific

environmental conditions. We aimed at explaining environmental

adaptation through quantitative description of physical and

biochemical properties of amino acids. Instead of using amino

acid composition as a feature, for instance percentage of glutamic

acid, we tested additional 7 features such as percentage of polar

amino acids, percentage of acidic amino acids, and so forth.

Phyloecological clusters
In order to compare the proteomes, we computed the distances

between each pair of proteomes based on the features subset. The

resulting subset containing five proteomic features was used for

agglomerative hierarchical clustering.

The tree presented in Fig. 1 was built with correlation distance

and average linkage. This tree had the best cophenetic coefficient

(c = 0.7291) of all trees built with different combinations of

distance metrics and linkage functions.

The strong positive correlation between the cophenetic pairwise

distances and proteomic dissimilarities is highly significant

(rho = 0.6540, p-value = 1.9599e-195; r = 0.7291, p-value =

7.6776e-265), suggesting that the representative tree illustrates

quite well the differences in the proteomic properties.

Fig. 1 shows that the differences between these five proteomic

characteristics divide Archaea into three main clusters. It would be

superficial only to describe each main cluster with a single

adaptation. Namely, while certain archaeal species have been

found in specific well-described niches, from our analysis it is

possible to suggest additional environmental conditions in which

the species could live. As already mentioned, Archaea are very

diverse phenotypic group, and each archaeon shows several

phenotypic adaptations, for instance, Methanocaldococcus jannaschii is

Phyloecological Clusters of Archaea
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a deep-sea hyperthermophile, slight halophile, anaerobe and

methanogen (details in Table S1). Therefore, one can character-

ize each cluster by several specific environmental adaptations.

The first cluster (highlighted in yellow) is comprised of

hyperthermophilic species, non-halophilic or halotolerant (few

halophiles), with growth pH ranging from acidophilic to neutro-

philic values, and captures majority of aerobic species. The

members of the second cluster (highlighted in blue) are halophilic

and extremely halophilic Archaea, growing in the various temper-

ature ranges (mesophilic, thermophilic or hyperthermophilic

values), and conditions of neutral pH or alkaliphilic. The third

cluster (highlighted in red) contains mesophiles (mostly mesophilic

methanogens) and thermophilic Archaea, non-halophiles or halo-

tolerant (few halophiles), growing in acidic or neutral pH

conditions.

We suggest such clustering to be termed phyloecological

clustering.

By using only the phylogenetic analysis, lineage of Nanoarchaea

still remains doubtful [36]. However, our approach emphasizes

symbiotic nature of Nanoarchaeum equitans and places it in the same

cluster with its marine host, Ignicoccus hospitalis, based on the

similarities of their proteomes. Furthermore, Pyrococcus horikoshii

(Thermococci) is closer to Thermoprotei, Crenarchaeota than to

its own phylogenetic clade. It groups with the majority of

hyperthermophiles, in the cluster highlighted in yellow, possibly

because its proteomic signature of hyperthermophilicity is stronger

than signature of halophilicity. Methanobacterium thermoautotrophicum

is a halophile with optimal growth temperature higher than in

other members of Methanobacteria. Therefore, it belongs to

different phyloecological cluster than other members of his clade,

it is a part of the ‘‘blue’’ cluster that is characterized by higher salt

requirements and temperatures until thermophilic and hyperther-

mophilic values.

On the other hand, there are two examples in which our

method misclassifies species. The proteomic features of mesophilic

Methanoculleus marisnigri are more similar to thermophiles and

hyperthermophiles than to other mesophilic methanogens within

the ‘‘red’’ cluster. Also, Haloquadratum walsbyi is not sharing the

cluster with the rest of extreme halophiles. H.walsbyi lives in NaCl-

Figure 1. Phyloecological cluster tree of Archaea. A. The cluster tree was built with average linkage of distances based on correlation metric by
using the 5-features subset. Cut-off distance for the formation of clusters was 1.0. The tree is divided into three main phyloecological clusters. The first
cluster (highlighted in yellow) is comprised of hyperthermophilic species, non-halophilic or halotolerant, and aerobic hyperthermoacidophiles. The
members of the second cluster (highlighted in blue) are halophilic and extremely halophilic Archaea, growing in the various temperature ranges
(mesophilic, thermophilic or hyperthermophilic values), and conditions of neutral pH or alkaliphilic. The third cluster (highlighted in red) contains
mesophilic (mostly methanogens) and thermoacidophilic Archaea, non-halophiles or halotolerant. B. Leaves of the tree display names of phyla for
each species from A.
doi:10.1371/journal.pone.0048231.g001
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saturated and MgCl2 enriched aquatic ecosystems, and has

phototrophic growth [37].

Testing validity of clusters
In order to check if the archaeal phyloecological clustering was

obtained as a coincidence, we have performed the clustering of

data with permuted values of each feature. The observed

clustering did not divide species into phyloecological clusters (data

not shown). This implies that randomly assembled set of five actual

proteomic features does not contain information on phyloecolo-

gical properties of the species. Moreover, we computed correla-

tions between proteomic pairwise distances of permuted dataset

and proteomic pairwise distances of the original 5-features dataset,

and repeated the procedure 10 times. Neither rank nor linear

correlations were significant when calculated in all ten cases (p-

values.0.15).

Different clustering technique confirms formation of
phyloecological clusters

Archaeal habitats per se do not contain hierarchical informa-

tion, however, the proteomic features are, indeed, hierarchies. To

confirm that hierarchical clustering gives important and robust

information, we have applied k-means clustering. We predefined

the number of clusters, k = 3, and as a result we have obtained

almost identical clusters, as compared to the ones obtained by

hierarchical clustering (see Fig. S1; cluster 1 corresponds to the

‘‘blue’’ cluster, cluster 2 resembles the ‘‘yellow’’ cluster, and

member of ‘‘red’’ cluster are joined together in cluster 3). There

were only two archaea that were clustered differently than by

hierarchical clustering. Methanoculleus marisnigri now became a

member of cluster of methanogenic archaea, which corresponds

more accurately to its ecological niche. Caldivirga maquilingensis, an

anaerobic hyperthermophilic archaeon, joined the cluster com-

prised of hyperthermophiles. Therefore, it appears that, when

applying k-means clustering method, this species’ preferences

towards high temperature and low pH appeared dominant,

whereas anaerobic trait prevailed when hierarchical clustering was

applied.

Overall, k-means clustering generated well-separated clusters –

there were no negative silhouette values, and the mean silhouette

value was 0.4059. Predefining k to a higher number, k = 4, 5, 6, or

7, did not improve the quality of clustering (the mean silhouette

values were 0.3816, 0.3601, 0.3695 or 0.3608, respectively; also,

negative values appeared in these computations).

Proteomic features as a signature of environmental
adaptation

The distribution of several single adaptations within the clusters

is given in Table 1. The single adaptation that is perhaps the best

inferred with this clustering is adaptation to salt; 61% of all

halophiles are grouped within the ‘‘blue’’ cluster. This result

supports findings of the two previous studies [38,39], which state

that salt requirement determines composition of microbial

community better than temperature or other environmental

factors.

Since the vast majority of halophilic species occupies the ‘‘blue’’

cluster, we considered possibilities that could explain why few

halophiles are members of the other two clusters. Our hypothesis

was that some other adaptation could have stronger proteomic

signal than salt adaptation in this specific case. All halophiles that

are not in the ‘‘blue’’ cluster and have hyperthermophilic

adaptation are members of the ‘‘yellow’’ cluster, and all halophiles

that are meso- or thermophilic are in the ‘‘red’’ cluster; which

corresponds to the previously described characteristics of these two

clusters. This suggests that temperature adaptation signature has

primacy over salt adaptation signature in the proteomes of the

halophiles outside of the ‘‘blue’’ cluster.

The heat map in Fig. 2 illustrates the values of five proteomic

features across different archaeal species, and, in the same time,

displays clustering of Archaea based on their phyloecological

characteristics. Coloring that is in accordance with normalized

values of the features depicts variation in protein properties

throughout the different archaeal habitats. In this figure, the

quantitative differences in each proteomic property are noticeable.

For instance, METJA (hyperthermophile and halophile) and

METKA (hyperthermophilic slight halophile) have the highest

number of hydrogen bond donors, followed by NANEQ

(hyperthermophilic halophile); moreover, they exhibit an increase

in the amount of charged residues. In general, mostly hyperther-

mophilic halophiles have the highest ratio of charged residues over

uncharged, followed by halophiles, and then hyperthermophiles.

The lowest ratio of charged amino acids to uncharged mostly have

(hyper)thermoacidophiles and mesophilic methanogens. Further-

more, it can be seen that hyperthermophiles have smaller average

protein size than mesophilic methanogens. The ‘‘yellow’’ cluster

containing hyperthermophiles and hyperthermoacidophiles also

displays an increase in occurrences of extended structures and

beta-sheets.

Subset of five proteomic features contains more
information than the entire dataset

We have also assessed if the tree built on the 5-features subset

represents the proteomic data more accurately than the tree built

on the entire set of 58 features. Therefore, we performed

hierarchical clustering on the entire set by using the same

parameters: correlation metric and average linkage. First, the

cophenetic coefficient was worse (c = 0.7014) for this tree. Second,

the correlation between the cophenetic distances and proteomic

pairwise dissimilarities was not as strong as for the tree built upon

the 5-features subset (rho = 0.5855, p-value = 1.6878e-147;

r = 0.7014, p-value = 1.2228e-236). This means that the tree built

with the entire dataset does not represent the proteomic distances

as faithfully as the 5-features subset, and that the 5-features tree

has more power to discriminate the phyloecological clusters.

Third, we asked how much these two datasets (two pairwise

matrices) are actually similar. The correlation between dissimilar-

ities computed between 5 features and dissimilarities computed

between 58 features was strong and positive (rho = 0.7245, p-

value = 0; r = 0.7382, p-value = 7.8547e-275), suggesting that there

is sufficient amount of information already in the 5-features subset.

To conclude, the tree built by using the 5-features subset shows

more precisely the differences between the species, and at the same

time still captures the significant portion of total proteomic

information.

Assessment of the proteomic features’ variation within
habitat space

We have tested if the subset of five proteomic features has

consistent values when analyzed in less dimensions of the multiple

habitat-space, for instance, if hyperthermophilic/mesophilic hal-

ophiles show similar proteomic feature signals for temperature

adaptation as hyperthermophilic/mesophilic non-halophiles. For

this purpose, we applied Mann-Whitney test and Kolmogorov-

Smirnov test (for two independent samples) to determine if

medians and distributions of the proteomic features are the same

Phyloecological Clusters of Archaea
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across one environmental adaptation irrespective of the second

environmental adaptation.

The proteomic signature of mesophiles is consistent, regardless

if the mesophiles are halophilic or non-halophilic (Table S1,

assessment of variation). When analyzing only hyperthermophiles,

three proteomic features are significantly different between

hyperthermophilic halophiles and hyperthermophilic non-halo-

philes. Normalized frequencies of extended structure and beta-

sheet are significantly higher in non-halophiles than in the subset

of hyperthermophilic halophiles. Ratio of charged amino acids to

uncharged is also significantly higher in halophilic hyperthermo-

philes than in non-halophilic hyperthermophiles. On the other

hand, the feature describing average protein size has almost the

same value between the groups of hyperthermophilic halophiles

and hyperthermophilic non-halophiles (Table S1, assessment of

variation). This feature has been uniquely attributed to temper-

ature adaptation, where hyperthermophilic proteins tend to be

significantly shorter than mesophilic proteins [7,25,26], and it is

thus possible that does not capture differences in salt adaptation.

Other proteomic features most likely capture synergistic or

antagonistic effect of multiple adaptations. Nonetheless, as

discussed above, it is very difficult to claim that the proteomic

signal is attributed to a single, particular adaptation.

Phyloecological tree vs. phylogenetic tree
We sought to compare the clustering results obtained herein

with the distances in the tree obtained by phylogenetic tools.

We computed correlations between pairwise phylogenetic

distances generated by Jukes-Cantor model and pairwise proteo-

mic distances calculated in this study by using correlation metric.

The correlation between phylogenetic distances and proteomic

distances was significant and weakly positive (rho = 0.2497, p-

value = 4.1240e-24; r = 0.0774, p-value = 0.002). Moreover, we

have computed Mantel correlation, another method used to

correlate pairwise distances generated by two different approaches.

Mantel correlation between pairwise phylogenetic and proteomic

distances revealed a correlation coefficient of 0.2497 and p-value

of 0.0.

This indicates that the phyloecological tree does not dominantly

represent the phylogenetic relationships between the species, and

likewise captures their common environmental adaptations

(aspects of archaeal evolution and phylogeny are discussed in

[36,40–42]).

Herein, we have focused on physicochemical properties of the

proteome: such properties are a consequence of environmental

adaptation of species to their environment, but not only the

adaptation that happened recently in evolutionary history. The

reconstruction of evolutionary history relies on available DNA or

specific protein sequences and, nowadays, many mathematical

models tend to explain evolutionary relatedness among species.

Since it seems unlikely that a single phylogenetic framework or

sequence standard, such as 16S rRNA, will be sufficient for

classifying all prokaryotic organisms, it is possible to suggest a

possibility to explain evolutionary and environmental relations

based on physicochemical properties of the proteome. When

taking the whole proteome into account, one does not discard the

influence of horizontal gene transfer and, also, avoids trees built on

concatenated proteins that probably follow different models of

evolution. Thus, it could be achievable to describe the properties

of a proteome in the framework of the environmental niche in

which it has arisen as a consequence of adaptive evolution. Since

species that share older evolutionary history (and also adaptations

that happened a long time ago in evolution) are phylogenetically

related, there will always be similarities between phylogenetic and

phyloecological trees.

Phylogenetic trees can be built by using various methods: 16S

rRNA sequences, concatenated protein sequences, whole-genome

comparison based on gene content, genome conservation meth-

Table 1. Abundances of environmental phenotypes within the clusters.

Adaptation Abundance of Phenotypes

Environmental Phenotype Yellow Cluster Blue Cluster Red Cluster

temperature Thermophiles 0.364 0.273 0.364

Hyperthermophiles 0.538 0.423 0.038

Mesophiles 0.063 0.250 0.688

Others/Unknown 0.000 0.750 0.250

salt Halophiles, Extreme Halophiles 0.194 0.613 0.194

Non-halophiles 0.400 0.050 0.550

Others/Unknown 0.833 0.167 0.000

pH Acidophiles 0.636 0.000 0.364

Neutrophiles 0.250 0.469 0.281

Others/Unknown 0.286 0.429 0.286

O2 Aerobes 0.571 0.286 0.143

Anaerobes 0.250 0.444 0.306

Others/Unknown 0.286 0.143 0.571

metabolism Methanogens 0.105 0.316 0.579

pressure Piezophiles 0.143 0.857 0.000

The table presents abundances of specific environmental phenotypes. It is hard to infer adaptation to a single condition as the dominant phenotype for each main
cluster. Perhaps only one environmental phenotype could be emphasized, and that is halophilicity, which is dominant within the ‘‘blue’’ cluster. The bolded numbers
depict phenotypes that are prevailing within the respective clusters, however, they are mainly coupled with another adaptation; e.g. mesophilic methanogens in the
‘‘red’’ cluster or hyperthermoacidophiles in the ‘‘yellow’’ cluster.
doi:10.1371/journal.pone.0048231.t001
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ods, and so forth (examples in [36,40,43]). In this study, we have

put emphasis on the proteome sequence because it is a primary

indicator of certain environmental adaptations [11]; however, we

aimed at avoiding the usage of simple sequence alignment

procedures. All proteins, regardless of having deleted or inserted

parts of sequences in comparison to their orthologs, needed to be

adapted on existing conditions of a habitat. In the study of Tekaia

and Yeramian, amino acid composition of proteomes showed a

straightforward discrimination of species according to unified

lifestyle-phylogenetic classes [10]. Correspondingly, our method

allows us to investigate the signatures of both phylogenetic history

and ecological adaptation, and therefore we named this analysis

phyloecological clustering.

All features – except average protein size – exhibit
significant phylogenetic signal

We have used Generalized linear mixed model with Markov

chain Monte Carlo estimation [44] to infer influence of

phylogenetic relationships in the formation of the phyloecological

clusters. We computed how much of the variance of each

proteomic feature is explained by phylogenetic signal, and which

fraction carries the signature of the ecological niche. The only

feature that has not shown significant correlation with the

phylogeny is the one describing average protein size, the only

feature that does not depend on amino acid composition of the

proteome. In that case, phylogenetic distance explained only

28.4% of its total variance, whereas 71.6% of the variance was due

to the affiliation with the phyloecological clusters (Table S1,

Figure 2. Heat map visualization of archaeal proteomic properties across phyloecological clusters. In this heat map, the rows
correspond to each species and the columns correspond to the proteomic features; therefore, each row depicts the subset of 5 proteomic features
per given archaeon. Normalized values of each feature are associated with the colors in the heat map as shown on the legend on the left side. The
cluster tree was built with correlation metric and average linkage, same as in Fig. 1. Three main phyloecological clusters are highlighted with three
different colors of the branches (yellow: hyperthermophiles and hyperthermoacidophiles; blue: halophiles and extreme halophiles; red: mesophilic
methanogens and thermoacidophiles).
doi:10.1371/journal.pone.0048231.g002

Phyloecological Clusters of Archaea
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MCMC variance). Phylogenetic relationships explained more than

98% of the total variance of the remaining four features, which is

due to the fact that these features were deduced from amino acid

composition of the proteome.

Moreover, we used the same model to infer the extent to which

each feature contributes to the definition of clusters, given their

phylogenetic signal. When corrected for phylogenetic relation-

ships, the features still contributed significantly to separation of the

phyloecological clusters (Table S1, MCMC). This analysis

confirmed the results discussed above: biochemical and physical

nature of each feature reveals clear environmental signals. The

feature describing average protein size has appeared important for

separating mesophilic species in the ‘‘red’’ cluster from thermo-

philes and hyperthermophiles. Ratio of charged amino acids to

uncharged, as well as frequency of beta-sheet proved to be

significant for gathering halophiles in the ‘‘blue’’ cluster, separately

from non-halophilic hyperthermophiles and mesophilic methan-

ogens. Frequency of extended structure seemed to be important

for distinguishing between the members of the ‘‘yellow’’ cluster

and the ‘‘red’’ cluster, possibly due to different values for salt

concentration, pH and temperature in the niches that are

characterized by these two clusters. The feature describing

number of hydrogen bond donors contributes the least to the

definition of the phyloecological clusters.

Predictive power of the phyloecological clustering
We were interested if our method is able to predict environ-

ments of species whose proteomes were not included in the

analysis described herein. We added to our dataset five species

whose proteomes became available after the beginning of our

study [45], and performed clustering on 62 species by using 5-

features subset. We found that our phyloecological tree puts these

species in the clusters corresponding to their environmental niche

(Fig. 3). METPS, a mesophilic methanogen, became a member of

the ‘‘red’’ cluster. HALBP and HALMD are extreme halophiles

and, therefore, they merged with other halophilic species in the

‘‘blue’’ cluster. VULDI, hyperthermoacidophile, and IGNAA,

hyperthermophilic moderate acidophile, both joined the corre-

sponding ‘‘yellow’’ cluster.

Including extremophilic bacteria in the analysis
Most of the recent studies focus on adaptations of prokaryotic

species [11], and some of the analyses also include a certain

number of eukaryotes [7–10]. However, it has been argued that

bacterial and archaeal species show clear differences at the

proteomic level [23]. We have included features of several

extremophilic bacteria (halophiles, acidophiles, hyperthermo-

philes, etc.) in the clustering, which changed significantly the

topology and interpretation of the cluster tree shown in Fig. 1
(data not shown). One of the explanations for the variability of the

cluster tree could be that the features distinguishing Bacteria from

Archaea largely influence the outcome of clustering [23]. Although

adaptation to diverse environmental conditions should be univer-

sal, we focused only on Archaea to reduce any possible domain of

life bias.

Conclusions and Future Directions

The approach of recursive search for uncorrelated features has

allowed us to identify five non-redundant physicochemical

properties of the archaeal proteomes. Clustering upon these five

features led to grouping of Archaea according to their environmen-

tal adaptations and contributed to better understanding of

relations within this domain of life. Therefore, we applied two

different procedures, both of which are unsupervised. In general,

unsupervised methods have been proved quite useful to deducing

from large datasets. In the recent study, unsupervised binning was

used to reveal phylogenetic signals from metagenomic sequences

[46]. Assuming that entire metagenome was imposed to same

environmental pressure, resulting dis(similarities) within sequenc-

ing data can be attributed mostly to species origin.

Similar to sequence binning that sorts contigs and scaffolds of

multiple species in a metagenome [46], our method can be

described as proteome binning based on proteome sequence

features that results in bins of proteomes with common environ-

mental adaptation. In addition, we may propose an approach that

would allow for binning of individual protein sequences based on

their environmental adaptations. In such a procedure, a non-

redundant subset of protein properties can be applied to cluster

sequences according to their physicochemical properties within

ecological niches and discussed in the framework of protein

function adaptation to environmental conditions.

Further availability of sequenced proteomes will certainly

increase the quality of such analysis of archaeal phyloecological

clusters. For example, our current dataset comprises 7 species that

Figure 3. Assessing predictive power of phyloecological
clustering. We added five new species to the dataset and preformed
hierarchical clustering with the established parameters. The new
species became a part of the clusters defined with similar environmen-
tal conditions as it is found in their respective niches. One archaeon
joined the ‘‘red’’ cluster with other mesophilic methanogens; two
species merged with the members of halophilic ’’blue’’ cluster; and two
hyperthermoacidophilic organisms became members of the corre-
sponding ‘‘yellow’’ cluster.
doi:10.1371/journal.pone.0048231.g003
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live in the deep-sea habitats (piezophiles or barophiles [47]). Our

analysis puts 6 species in the ‘‘blue’’ cluster (Methanococcus aeolicus,

M. jannaschii, Methanopyrus kandleri, Pyrococcus abyssi, Thermococcus

gammatolerans, Thermococcus onnurineus). Analyzing more piezophiles

with available proteomes could improve statistical relevance of

categorizing species with such adaptation. Also, in future one

could ask, if there are additional habitats where certain species

could be found, and which Archaea could co-exist with it.

As recently reviewed in Zaneveld et al. [48], combining existing

tools in phylogeny with ’’-omics’’ approaches is necessary to

address questions of microbial adaptation to habitat. Therefore,

we propose this type of phyloecological analysis as a source of

additional information to the basic phylogenetic methods.

Considering how fast new proteome sequences are becoming

available, we propose re-analysis of the few-fold more archaeal

proteomes by using our method of phyloecological clustering. It

would be interesting to evaluate the results on larger datasets.

Adding to the list more archaeal species with different habitats will

further estimate the robustness of this method; the same principle

has been already applied to different methods of analysis of

proteomic signatures [27].

Methods

Archaeal environments and the proteomes
We have analyzed a total of 57 archaeal species: all archaeal

proteomes available at the beginning of this study with accurate

description of their environmental niche. The proteome sequences

were collected from the HAMAP database [45] UniProtKB/

Swiss-Prot Release 57.7 of 01-Sep-2009, which is based on manual

annotation of the proteins from the closed genomes. We have

described each proteome with 58 features in total: 50 amino acid

attributes as suggested by Atchley et al. [22], including 8 more

features defined herein and listed in Table S1. Each proteomic

feature was based on amino acid composition of the proteome and

gave information about physical and chemical characteristics of

the proteome (e.g. negative charge, hydrophobicity, propensity of

secondary structures, etc.). Additionally, we included a feature that

describes the average length of a protein within the proteome.

The proteomic features were computed as follows. First, every

archaeal protein was described with 58 features based on its amino

acid composition. Finally, all features were computed for every

protein within a proteome, and then averaged over all proteins in

the proteome. A contribution of an amino acid unique for

methanogens, pyrrolysine [49], was not included in the following

analysis, except for the feature explaining average protein size.

Furthermore, we harvested databases and other literature

sources to retrieve information about physicochemical properties

of the environment where each organism optimally lives (Table
S1). We have organized this information into the database

available at http://cbb.medils.hr/penbase.

Unsupervised feature selection
We performed unsupervised feature selection by recursively

discarding proteomic features correlated more than 0.5 (sample

correlation).

The procedure was as follows:

N i) correlation coefficients were computed between each pair of

features,

N ii) a pair of features with the highest absolute value of the

correlation coefficient was noted. Between these two features,

the one that is discarded is the one with the highest correlation

coefficient towards a third feature. This way, the user only

determines the threshold: our final feature subset is comprised

of features correlated among themselves less than 0.5.

Herein described computational procedures, as well as all

analyses mentioned in the further text were performed in Matlab,

version MATLAB_R2010b (the scripts are assembled in File S1).

Clustering of the subset
We calculated the distances between each pair of proteomes

based on the features subset and performed agglomerative

hierarchical clustering (see File S1).

The input matrix for hierarchical clustering consisted of rows,

corresponding to the archaeal species, and columns, correspond-

ing to the proteomic features. First, we normalized the values of

the proteomic features (values of each proteomic feature now had

zero mean and unity variance). Then we applied four distance

measures (Euclidean distance, correlation distance, cosine similar-

ity, city block distance) to compute pairwise distances between

species based on the features subset. Two linkage methods

(unweighted average distance (UPGMA), weighted average

distance (WPGMA)) were applied on the pairwise distances in

order to build cluster trees. Thus, each cluster tree was built by

applying one distance metric and one linkage method. The

goodness of each clustering was evaluated by computing the

cophenetic correlation coefficient. Cutting the branches below

defined distance led to formation of clusters from the tree. The tree

that had the best cophenetic coefficient was chosen to be a

representative result. In order to assess how the representative tree

illustrates the differences in the proteomic features, we computed

correlations between pairwise distances (i.e. proteomic dissimilar-

ities) and cophenetic distances.

Matlab functions pdist, linkage, cophenet and dendrogram (Statistics

Toolbox) were used to build the cluster trees.

The heat map was created for the same representative tree to

illustrate the quantitative differences between proteomic features

across different archaeal clusters (see File S1). Matlab function

clustergram, which is a part of Bioinformatics Toolbox, was used to

create the heat map.

Statistical evaluations of clustering
The procedures were evaluated statistically by using Pearson’s

linear (calculating r) and Spearman’s rank (calculating rho)

correlations.

The validity of formed clusters was tested as follows. For each

feature (each column) we permuted the values within the feature.

Therefore, each species now had different values of its proteomic

features. We applied clustering on the resulting dataset with

permuted values of each feature (see File S1).

k-means clustering of the subset
We applied k-means clustering on the subset of the proteomic

features (Matlab function kmeans, Statistics Toolbox; correlation

distance metric, initial cluster position selected at random, and

repeating the procedure 8 times, see File S1). This type of

clustering uses a point-assignment algorithm, which is a different

algorithm than the one used for hierarchical clustering. We used

the hierarchical cluster tree in order to predefine number of

clusters k, however, we also performed clustering on different

values of k. Mean silhouette value was computed to evaluate

validity of the clusters, i.e. to show how similar are the members

within each cluster.
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Clustering of the entire dataset
We performed hierarchical clustering on the entire set of

proteomic features by using the same parameters as for the

representative tree. We aimed to compare the tree built on the

entire set of 58 features with the tree built on the features subset

and computed: (1) cophenetic coefficient of the tree built upon the

entire set, (2) linear and rank correlations between the cophenetic

distances and dissimilarities for the tree based on the entire set (3)

linear and rank correlations between pairwise distances computed

from the features subset and pairwise distances computed from the

complete set of the features.

Variation of proteomic features
In order to assess variation of proteomic features within

multidimensional habitat space, we divided the dataset into 2

subsets: halophiles (31 species) and non-halophiles (20 species). We

further divided each of these 2 subsets into three groups depending

on temperature preferences of the species: hyperthermophiles,

thermophiles and mesophiles. For each group coming from the

different subsets we performed Mann-Whitney test (for two

independent samples) on each proteomic feature to determine if

the medians of the proteomic features of two subsets are the same.

We also performed Kolmogorov-Smirnov test (for two indepen-

dent samples) to determine if the proteomic features of two subsets

come from the same distribution (see Table S1). Both of these

tests were performed by using SPSS statistical software, version 19.

Phylogenetic tree
The 16S rRNA sequences of all Archaea were gathered from

NCBI database. The phylogenetic distances were computed by

using Jukes-Cantor model on the multiple alignment of the 16S

rRNA sequences (see File S1). Jukes-Cantor pairwise distances

were then used to build the tree of archaeal species with the

linkage method UPGMA. The phylogenetic tree was finally saved

as Newick-formatted file. Matlab functions fastaread, multialign,

seqpdist, seqlinkage and phytreewrite (Bioinformatics Toolbox) were

used for this purpose.

Linear and rank correlation coefficients were then computed to

assess the correlation between the phylogenetic pairwise distances

(Jukes-Cantor model) and the proteomic pairwise distances.

Mantel test was also used to test for correlations between the

pairwise phylogenetic and proteomic distances (Matlab custom

script [50]; 2509000 iterations). This test is usually used in ecology

to assess, for example, the relation between pairwise geographical

and genetic distances [51].

Phylogenetic comparative analysis
We have used the Markov chain Monte Carlo (MCMC)

approach to fit Generalized Linear Mixed Model to the subset of

the normalized proteomic features. Models were run for 2009000

iterations including a burn-in of 309000 iterations, and a thinning

interval of 150 (taking into account only every 150th iteration,

which reduces the autocorrelation between iterations). We

performed this analysis by using ‘MCMCglmm’ in R, version

2.10.1 [44] (see File S1). Flat priors were set according to [52],

and the lower and upper modes of 95% highest posterior densities

were parameter estimates accessible in Table S1, MCMC. This

method has certain advantages over classical Independent

Contrasts – for instance, it allows analysis of traits that are not

normally distributed, and supports multi-response models where

the responses can follow different distributions [53].

Predictive power of the cluster tree
We have tested if the clusters formed on 57 species can predict

the environmental conditions of several archaeal species whose

proteomes were not included in the feature selection, and cluster

formation and analysis. We have randomly selected five new

species: Halogeometricum borinquense (HALBP), Halomicrobium mukoha-

taei (HALMD), Ignisphaera aggregans (IGNAA), Methanocella paludicola

(METPS) and Vulcanisaeta distributa (VULDI), which were included

in HAMAP database after we had started this project [45]. We

associated their positions in the tree with the corresponding

environment they were originally isolated from.

Testing universality of environmental adaptations
We included five extremophilic bacteria in the clustering based

on the features subset: Acidothermus cellulolyticus (aerobic thermo-

acidophile), Acidiphilium cryptum (acidophile), Aquifex aeolicus (halo-

philic hyperthermophile), Salinibacter ruber (extremely halophilic

aerobe) and Thermus thermophilus (thermophile). Our aim was to

observe whether cluster tree retains its environmental clusters or it

changes topology due to phylogenetic differences between Bacteria

and Archaea.

Supporting Information

Figure S1 The result of k-means clustering. The clusters

made with this method confirm the result of hierarchical clustering

and presence of phyloecological signal in the proteomic features.

(TIFF)

Table S1 Information on the archaeal species. The table

provides the list of 57 archaeal species analyzed in this study;

the links to HAMAP webpage, http://us.expasy.org/sprot/

hamap/, where the proteomes have been described; the

description of the ecological niches gathered from the original

papers or databases; archaeal taxonomy according to NCBI

taxonomy database, http://www.ncbi.nlm.nih.gov/taxonomy;

and details of some analyses done in this study.

(XLS)

File S1 The Matlab and R scripts used in this study.

(PDF)

Acknowledgments
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