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Abstract: Desiccation cracking frequently occurs in mud, clay, and pavement. Understanding the
evolution of desiccation cracking may facilitate the development of techniques to mitigate cracking
and even prevent it from developing altogether. In this study, experimental investigations were
performed focusing on the effects of fibers on the evolution of desiccation cracking in soil-cement.
Varied types of fibers (i.e., jute fiber and polyvinyl alcohol fiber (PVA)) and fiber contents (i.e., 0%,
0.25%, 0.5%, and 1%) were involved. The digital image correlation (DIC) method was employed
to capture the evolution and propagation of cracks in the soil-cement specimens when subjected
to desiccation. The results show that the presence of fibers imposes significant effects on the crack
propagation pattern as well as the area and length of the cracks in the soil-cement during shrinkage.
The addition of fibers, however, insignificantly affects the evaporation rate of the specimens. The
crack area and crack length of the specimens decreased significantly when more fibers were included.
There were no macroscopic cracks observed in the specimens where the fiber content was 1%.
The DIC method effectively helped to determine the evolution of displacement and strain field
on the specimens’ surface during the drying process. The DIC method is therefore useful for
crack monitoring.

Keywords: fiber inclusion; soil-cement; desiccation cracking; digital image correlation

1. Introduction

The technique of soil-cement is widely used in engineering works (e.g., foundation
treatment [1,2], roadbed improvement [3–5], soft soil reinforcement [6–9], and seepage
prevention [10,11]) due to its advantages of low cost, practicality, convenient construction,
and low permeability. However, soil-cement tends to shrink during dewatering and
expand during watering, which may cause cracks to form. Exploring the mechanism of
the evolution of desiccation cracks and then build potential techniques to reduce cracks is
practical and meaningful.

Many studies have been conducted on the drying shrinkage of soils, focusing on differ-
ent influencing factors such as layer thickness [12–15], size [16], moisture content [17–19],
evaporation rate [20,21], roughness of the bottom contact surface [22], and temperature [23].
Zeng et al. [12] showed that the influence of interface friction and layer thickness has an
obvious coupling effect on the drying and cracking of soil. Khatun et al. [15] showed that
the cumulative total area of cracks increases along with the increase of layer thickness.
Uday et al. [21] showed that the evaporation rate of soil was not affected by the initial
water content and boundary conditions, but it was related to its thickness and temperature.

To reduce the adverse effects of desiccation cracking on the engineering properties of
fine-grained soils and improve soil strength and resistance, researchers have used field and
experimental investigations to study the effects of adding fibers (i.e., polyester fiber [24], flax
fiber [25], straw fiber [26], nylon fiber [27]), sugarcane pith [14], and microorganisms [28])
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and other materials to strengthen the soil. The results indicate that the average length,
width, spacing, and total area of soil cracks decrease obviously with the addition of fibers.
The crack intensity factor, which is defined as the ratio of the area of cracks over the total
surface area, decreases with the increase of fiber content. Once the fibers are included,
a network of fine cracks develops on the surface of the specimens, and the integrity of
the specimens somehow improves. Wang et al. [26] used the digital image correlation
(DIC) method to continuously measure the total strain on the surface of soil specimens and
showed that the stress distribution around cracks could be reliably observed through strain
field analysis. They also showed that most of the crossing cracks intersect orthogonally. In
addition, the DIC method showed that adding fibers into clay could significantly reduce the
main strain and cracking of the clay. Therefore, fiber is considered to be a useful material
to reinforce soil. Here, the strengthening effect of natural jute fiber and synthetic PVA fiber
on soil-cement is investigated.

Published works mainly focused on the mechanisms of dry shrinkage, the cracking of
clays, and expansive soils, targeting different factors, i.e., water evaporation, strain field
distribution, and crack characteristics. However, very few studies have been performed
on the shrinkage and cracking of silts, which have the negative characteristics of forming
mud in the presence of water and forming ash in its absence. Reinforcing soil-cement using
discrete fibers has also been seldomly investigated in the literature.

In this study, the DIC method was adopted to evaluate the effects of the addition
of fibers on mitigating desiccation cracking in cemented soil. Varied types of fibers and
fiber contents were involved. The mechanism of desiccation cracking in fiber-reinforced
soil-cement was explored.

2. Materials and Methods
2.1. Materials

The tested soil was collected from a construction site in Taiyuan (Shanxi province of
China). The index properties are listed in Table 1 and the particle size distribution of soil in
Figure 1.

Table 1. Index properties of the tested soil.

Specific Gravity Moisture
Content (%)

Dry Density
(g/cm3) Void Ratio Liquid Limit (%) Plastic Limit (%) Plasticity INDEX

2.7 18.3 1.3 1.074 25.5 17.2 9.8
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Figure 1. The particle size distribution of soil. 
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Figure 1. The particle size distribution of soil.

Two types of fibers were used to reinforce soil in this study. Figure 2a,b show the SEM
images of a jute fiber and PVA fiber, respectively. The jute fiber is in the shape of a slender
tube. The cavity inside the jute fiber is round or oval, while the cross-section is mostly
pentagonal or hexagonal. The cross-section of the PVA fiber is round and the surface is
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relatively smooth. The properties of the fibers are given in Table 2. Ordinary Portland
cement (42.5R) was used for the cements in this study.
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Table 2. Properties of fibers.

Fiber Specific Gravity (g/cm3) Length (mm) Diameter (µm) Tensile Strength (MPa)

Jute fiber 1.45 12 100 480
PVA fiber 1.3 12 40 1600

2.2. Specimen Preparation

The soil was oven-dried, crushed, and sieved through a sieve with an opening of
2 mm. The ratio of the cements added was 15%, which is the percentage of the dry weight
of cements over the dry weight of the soil. Varied fiber contents (0%, 0.25%, 0.5%, and
1% by dry weight of the soil) were used to reinforce specimens, while the fiber content
represents the ratio of weight of the fibers over the dry weight of soil. The components
included in each mixture are given in Table 3.

Table 3. Mixture proportions.

Specimen Legend Soil Weight (g) Cement Weight (g) Water Content (%) Fiber Content (%) Fiber Type

PC 100 15 33 0 N/A
P0.25 100 15 33 0.25 PVA
P0.5 100 15 33 0.5 PVA
P1 100 15 33 1 PVA

H0.25 100 15 33 0.25 Jute
H0.5 100 15 33 0.5 Jute
H1 100 15 33 1 Jute

The cements and soil were fully mixed in dry conditions in a blender, and then fibers
were added into the mixture gradually by hand. The fibers were blown using an air
gun to avoid aggregation. Thereafter, enough water was added to produce a soil-cement
slurry, which was then poured into a borosilicate glass mold with a diameter of 95 mm.
Immediately after that, the specimens were vibrated for 1 min to expel bubbles. The height
of the specimens was 8 mm, i.e., an aspect ratio of 11.88 was maintained. Colina et al. [29]
suggested that the minimum aspect ratio for cracks is about 5.8.

2.3. Experimental Method

The evaporation of water from a fresh soil-cement matrix may lead to deformation of
the speckles on the specimen. In this study, speckles were sprayed on the freshly prepared
slurry after drying at room temperature for half an hour. Figure 3a shows the speckle
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pattern on the surface of the specimens. The DIC images were obtained using a charge-
coupled device (CCD) camera with a resolution of 10 million pixels. A heating lamp was
used to heat the specimens. The temperature of the specimens’ surface was controlled
at 50 ◦C through an infrared temperature gun. The relative humidity was maintained at
20% RH. LED light sources were placed on both sides of the device. To investigate the
evaporation rate of water during the desiccation process, an electronic balance (with an
accuracy of 0.1 g) was used to weigh the specimens before and after evaporation. The
variation in the moisture content of the specimens was then calculated according to the
obtained mass loss.
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Figure 3. Schematic representation of the drying shrinkage crack test setup: (a) speckle specimens; (b) schematic diagram of
test device.

For the DIC analysis, post-processing of the images was conducted using GOM
Correlate 2019 software to quantitatively analyze the effects of the addition of fibers on the
early strain field of the soil-cement samples, as well as the area and length of the desiccation
cracks. Due to the continuous evaporation of water in the specimens, the contrast of the
captured images was reduced. In advance of the post-processing, the brightness of all
images was reduced and the contrast was increased using Photoshop software. The images
were taken once every minute over a time span of 300 min. The size of subsets and step
sizes were adjusted according to the results of the pattern quality in the DIC software. The
size of subsets here is 50 × 50 pixels, and the center distance between subsets is 7 pixels.

3. Results and Discussion
3.1. Water Evaporation during the Drying Process

There is a close coupling relationship between the propagation of cracks and the loss
of water. The evaporation rate affects the propagation rate of cracks and the crack pattern.
At the same time, the propagation rate of cracks accelerates the evaporation rate. Figure 4
shows the variation of the moisture content in the specimens during the drying process.

It can be observed that the evaporation process in the specimens of each group shows
the same trend. The evaporation rate is not affected by the fiber type and the fiber content.
The addition of fiber has an insignificant effect on the drying and water loss process. The
shrinkage process during drying of the specimens may be divided into three stages: the
constant rate stage, the deceleration rate stage, and the residual stage.

In the initial stage of drying, the specimen is in the constant rate stage. The moisture
content decreases linearly with the increase in the desiccation time. The water that is sup-
plied to the soil–water interface for evaporation also decreases gradually. Moreover, with
the increase in the matric suction, the resistance to the movement of the water molecules
becomes greater. Therefore, the evaporation rate decreases gradually, and the curve shows
a turning point after which the slope decreases. It can be seen in Figure 3 that the moisture
content of the PC specimen in the residual stage is slightly lower than P0.25, which may
be caused by the larger crack area. The water retention of jute fiber is lower than that of
PVA fiber, which may be because the jute fiber is a natural fiber. The SEM image of the jute
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fiber shows a porous structure consisting of multiple lumens [30,31]. As a consequence,
jute fiber has good moisture absorption performance and disperses water quickly.
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3.2. Evolution of Cracking in the Plain Cement Soil

Figure 5 is a schematic diagram showing the dry cracking of the plain soil-cement [32].
The initiation of cracks is caused by the evaporation of moisture from the surface of the
specimens. In the initial stage of drying, the moisture content is large, the soil-cement
particles are completely immersed by free water, and the specimens are in the form of fluid
mud. At this stage, the deformation in the specimens is mainly vertical settlement. With
the elapsing of drying time, as the free water between the particles begins to evaporate,
the capillary water effect may be triggered. Water in the lower section of the specimens
continuously migrates to the upper water–air interface. The moisture content of the
specimens decreases continuously. The formation of capillary water bridges and the
increase in the pore water surface tension leads to the formation of a meniscus (also
denoted to be shrink film) between the surface pore water and the soil-cement particles.
The surface tension of the shrink film exerts a certain horizontal tensile stress and vertical
compressive stress on the soil-cement particles, which is coupled with the capillary water
pressure and gravity, causing the soil-cement particles to move close together in the
horizontal direction, with consolidation occurring in the vertical direction. Each soil-
cement particle on the surface is subjected to the tension induced by the capillary water
of the surrounding particles. A tensile stress field is formed in the upper layer. Once the
tensile stress generated in the soil-cement exceeds the tensile resistance of the soil-cement,
desiccation cracks develop on the surface and the tensile stress is released. Therefore, it can
be inferred that matrix suction and tensile strength are the two main factors controlling the
dry cracking of soil-cement.

Nahlawi et al. [14] reported that drying shrinkage cracks can be categorized into
main cracks, secondary cracks, and tertiary cracks based on the progressive order of their
occurrence. It can be seen from Figure 6 that with the evaporation of water, when the
cracks generated from the edge expand and widen to the center, secondary cracks are
generated and expand. The direction of propagation of the secondary cracks seems to
remain perpendicular to the main crack and parallel to the edge. As more time elapses,
the cracks’ length mostly becomes stable, while the cracks’ width continuously increases.
The development of the cracks approaches stability after 100 min. The crack network
mainly includes three types of polygons, i.e., triangles, quadrilaterals, and pentagons. The
crack segments intersect with each other, and the intersection angles approximately range
from 90◦ to 150◦. This phenomenon may be explained by the maximum stress release
criterion. When a crack develops, the surrounding tensile stress is gradually released.
The direction of the maximum tensile stress is parallel to the direction of the crack. The
crack tends to expand along the direction perpendicular to the local maximum main stress.
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Therefore, the secondary cracks are perpendicular to the primary crack and intersect with
the tertiary crack.
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3.3. Deformation Field of the Fiber-Reinforced Soil-Cement during Drying Shrinkage

The post-processing software used in this study provides information about the
surface deformation of fiber-reinforced soil-cement specimens during drying. The strain
data is the value of the partial derivative of the displacement, so the displacement gap is
represented as the local extreme value of the strain, i.e., the surface crack.

The X-direction strain field distributions of the jute fiber and PVA fiber-reinforced
soil-cement specimens were measured at 70 min, and the results are shown in Figure 6. The
cracks observed in Figure 7a are mainly confined to the high tensile region. The edges of the
cracks have a high tensile strain (the strain field is shown in red), and the strain field at the
corner of two intersecting cracks is even higher (dark red). The occurrence of desiccation
cracks leads to a redistribution of the stress, and the strain field in the area adjacent to the
cracks is negative, resulting in a greater compressive strain. As can be seen from Figure 6b,d,
three disjoint cracks developed in the specimen reinforced with 0.25% jute fiber, indicating
that the addition of fiber changes the propagation direction and stress distribution of cracks.
Disjoint cracks also appeared in the middle of the specimen reinforced with 0.5% jute
fiber, but the crack length and strain were significantly smaller than those in the H0.25
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specimen. Similar to the jute fiber specimens, three cracks developed in the middle of the
P0.25 specimen. The strain at these cracks was between 1% and 2.5%, while the lengths of
these cracks were shorter than that in the H0.25 specimen. In addition to the cracks that
developed at the edges of the P0.5 specimen, short disjoint non-perforating macro-cracks
developed in a scattered manner in the middle of the specimen, and the P0.5 specimen had
relatively dispersed and uniform micro-cracks. The strain distribution in the H1 and P1
specimens was uniform, and no macro-cracks were found in the middle of these specimens,
except at the edge of the container. It can be seen that the addition of fibers altered the
propagation direction and stress distribution of cracks. The development of cracks in the
specimens with fiber initiated parallelly from the middle of the specimens. The increase of
the fiber content was able to reduce the length and width of the cracks.
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A horizontal line through the center point of the specimens may be drawn to represent
the positions of interest, as shown in Figure 8. The strain values in the X-direction of the
horizontal axis of the specimen’s center, changing with their position along the drawn
horizontal line, are shown in Figure 7. It can be seen from Figure 7 that the maximum
tensile strain at the center of the crack in the plain soil-cement is 4.7%. The tensile strain
caused by the crack position on the horizontal axis is between 0~4.7%, while the range
of compressive strain is between 0~5.1%. For the H0.25 specimen, the maximum tensile
strain at the crack at the center line of 18 mm is 4.1%, and the tensile strain at the crack
at the center line of 54 mm is 1.9%. Except for the crack areas, the tensile strain at the
crack position is in the range of 0~1.3%, and the average tensile strain is reduced by the
inclusion of fiber. The large compressive strain on the center line is located at 36 mm,
43 mm, and 45 mm, which is different from that of plain soil-cement where the larger
compressive strain is not located around the crack. The maximum tensile strain of the
specimens is 2.47% at P 0.25. Figure 7b,c show that the addition of the two types of fibers to
the soil-cement reduces the tensile and compressive strains in the peak and non-peak areas
of the soil-cement cracks and that the fiber reduces the stress concentration around the
cracks by transferring the stress to the soil-cement matrix. In addition, it can be noted from
the figure that the location of the strain peak is consistent with the location of the cracks.
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Figure 8. The strain curve along the X-direction of the horizontal axis of the specimen center at
70 min: (a) εx-PC; (b) εx-H0.25; (c) εx-P0.25.

3.4. Characterization of Cracks in the Fiber-Reinforced Soil-Cement

The crack length and crack area were investigated to get to know the mechanism of
desiccation cracking. The crack length is regarded as the total surface crack length, and the
crack area is regarded as the total surface crack area. Figure 9a,b show the curves of the
total crack length and crack area of the specimens during the drying process. The addition
of the two types of fibers reduces the crack length and crack area. Cracks appear in the
plain cement soil specimens 18 min after the initiation of the drying. The time spent on the
formation of the first crack in the specimens reinforced with two fibers when fiber content
is 0.25% is delayed. The crack length in the specimens including jute fibers of 0.25% and
0.5% decreases by 11.1% and 32.5%, respectively. The crack length in the specimens with
0.25% and 0.5% PVA fiber decreases by 16.8% and 47.7%, respectively, when compared with
that in the plain soil-cement. When compared with the plain soil-cement, no macroscopic
cracks were observed in the specimens with 1% jute and PVA fiber. It can be inferred that
the addition of fiber can significantly reduce desiccation cracking in soil-cement.
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Figure 9. Quantitative results of desiccation crack: (a) curve of the crack length versus time; (b) curve of the crack area 
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Figure 9. Quantitative results of desiccation crack: (a) curve of the crack length versus time; (b) curve
of the crack area versus time.

The inclusion of fibers reduces desiccation cracking in soil-cement, because fibers can
reduce the tensile stress generated in the cement material by interacting with the matrix,
and they can also transfer the tensile stress from the matrix to themselves; and it can be
seen from Figure 10 that there is a considerable gap between jute fiber and the surrounding
matrix, indicating poor fiber–matrix interfacial bonding. The interfacial gap between
PVA fiber and the matrix is reduced, and the bond is close, indicating that PVA fiber and
the matrix have good interfacial bond performance. The Oushabi and Chhetri [33,34]
studies showed that good interfacial bonding ensures load transfer from the matrix to
the fiber, which helps to reduce stress concentrations and postpones crack initiation and
propagation. At the same time, PVA fiber has a larger specific surface area than jute
fiber, and the formation of a strong chemical bond between the hydroxyl group in its
molecular structure and the matrix of the soil-cement makes it slightly better than jute fiber
in reducing desiccation cracks.
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4. Mechanism of Desiccation Cracking of Fiber-Reinforced Soil-Cement

It should be noted that the desiccation cracking of soil-cement is a form of tensile
failure. When the tensile stress caused by the suction of the matrix exceeds the tensile
strength of the soil-cement, desiccation cracking occurs. Matrix suction and tensile strength
are two main factors controlling desiccation cracking. When different types and contents
of fibers were added, the desiccation cracks of the soil-cement matrix significantly reduced
mainly due to the following reasons:

(1) The tensile strength of fiber is much greater than that of soil-cement. After the
formation of the initial cracks, the fibers in the crack area bear the tensile stress,
which alleviates the stress concentration near the cracks. The interaction between the
soil-cement matrix and the fibers is effective in suppressing desiccation cracking.

(2) According to Figure 11, when tensile cracks appear in the soil-cement matrix, the fibers
improve the strain field of the soil-cement matrix by providing a bridge relay across
the cracks, which decreases the development of the width, area, and propagation of
the cracks so that more fine cracks appear rather than fewer but wider cracks. Tang
et al. [35] conducted a pull-out test on a single fiber embedded in a soil matrix and
found that the interfacial shear strength increased with the decrease in the water
content; the increase in the interfacial shear strength helped the fiber to restrain the
movement of the separated soil clumps when cracks were initiated, and the bridging
effect caused by the addition of the fiber increased.

(3) Figure 12 shows that a large number of cement hydration products adhered to the
surface of the fibers, which have greater strength and cementation, effectively limiting
the relative motion of the fiber. Therefore, the fibers distribute the stress in a wide
area and inhibit cracks from forming or propagating. Therefore, the combination
of fiber and cement inclusion improves the efficiency of load transfer from the soil
matrix to the fiber.
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Figure 11. Model of fibers restraining crack formation in soil-cement.

In addition, the hydration of cement binds the soil particles together and makes the
soil particle structure more compact, resulting in an increase in the normal stress and
effective contact area around the fiber body, thus increasing the coefficient of static friction
between the fibers and the soil-cement matrix and increasing the mechanical pulling force
between the fibers and the soil matrix.
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5. Conclusions

In this study, tests on the drying shrinkage of fiber reinforced soil-cement were per-
formed. Varied amounts of fibers and different types of fibers were engaged. The effects of
fiber-reinforcement on the evolution of desiccation cracking in a soil-cement matrix were
investigated by adopting the DIC method. Several conclusions may be drawn from the
test results.

(1) The drying shrinkage process of fiber-reinforced soil-cement may be categorized
into three stages: the constant rate stage, the deceleration rate stage, and the residual stage.
The evaporation water loss curves of each group of specimens show similar trends. The
moisture content is not affected by the types and contents of fibers. The inclusion of fiber
does not significantly affect water loss during the drying process.

(2) The addition of fibers alters the propagation direction and stress distribution of
cracks. The desiccation cracks of plain soil-cement can be categorized into main cracks,
secondary cracks, and tertiary cracks. The intersection angles of the cracks in the crack
network ranges from about 90◦ to 150◦.

(3) The presence of fibers reduces the tensile and compressive strains in the peak and
non-peak areas of the soil-cement cracks, and the stress concentration neighboring the
cracks is improved due to stress transfer between the fiber and the soil-cement matrix. The
DIC method shows that the strain peak position is consistent with the crack location.

(4) The presence of fibers delays the time spent before the formation of the first crack-
ing. The increase of fiber content significantly reduces the length and area of desiccation
cracks. There are no macroscopic cracks observed in specimens with 1% jute and PVA fibers.
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