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IntroductIon
The exposure to hyperbaric conditions may incur an inert 
gas load, and a state of inert gas supersaturation will be 
achieved in the blood and tissues when the inert gas tension 
(concentration/solubility) exceeds ambient pressure during 
the subsequent decompression. Thus, inert gas bubbles may 
form under this condition. The presence of bubbles in the 
blood vessels and tissues is a major cause of decompression 
sickness (DCS), though it does not correlate directly with 
clinical manifestations.1,2

Of all the sites where bubbles form from supersaturated 
dissolved gas, most is known about bubbles in the veins. 
It is widely accepted that: (1) Generally, the amount of 
bubbles in tissues and circulation is related to the sever-
ity of DCS though there is individual difference; (2) The 
low amount bubbles might also cause severe DCS if they 
embolize important vessels. Bubbles forming in the veins 
may exert mechanical and biochemical effects in the bloods, 
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directly or indirectly activating leukocytes in the blood and 
subsequently resulting in inflammation.3,4 It is well known 
that lung is directly affected by the high oxygen partial 
pressure during diving. Moreover, the lung as a filter for 
microbubbles is also a target organ of bubbles secondary 
to decompression.5,6 With the development of ultrasound 
technique, increasing studies reveal that not only rapid 
decompression may cause the production of bubbles in the 
blood and tissues, but there are a small amount of bubbles 
in the blood vessels of divers after diving without protocol 
violation.7,8 Although clinical symptoms are not present in 
these divers, ultrasound examination shows the evidence 
of acute interstitial lung edema.9,10 

Macrophages derived from mononuclear phagocytes 
(MP) are an important participant in the inflammatory 
reaction. Under the influence of the different microenviron-
ments, the migrated monocytes give rise to a variety of MP 
subtypes, including mucosal macrophages, dendritic cells, 
and tissue-associated Langherans cells of skin, perivascular 
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macrophages, Kupffer cells of liver, and brain microglial 
cells.11 Macrophages may be activated along two main 
functional pathways. Pro-inflammatory stimuli result in 
classically activated macrophages or M1-cells, which par-
ticipate in the clearance of either infected or transformed 
cells, but simultaneously contributing to tissue destruction. 
Conversely, anti-inflammatory signals induce alternatively 
activated or M2-macrophages that will activate cellular 
programs, promoting tissue regeneration and wound heal-
ing. This is also known as the macrophage polarization.12 

Interferon-γ (IFN-γ)/lipopolysaccharide (LPS), tumor 
necrosis factor-α (TNF-α) and other factors may induced 
the M1 phenotype of macrophages which then produce 
reactive oxygen species (ROS), reactive nitrogen species 
(RNS), TNF-α, interleukin (IL)-1, IL-12, IL-23 and other 
chemokines. However, IL-4/IL-13, IL-10 and transforming 
growth factor-β (TGF-β) may induced the M2 phenotype of 
macrophages which then secrete TGF-β, vascular endothe-
lial growth factor (VEGF), epithelial growth factor (EGF) 
and other growth factors. 

role of MacrophageS In lung dISeaSeS 
Studies have confirmed that macrophages play important 
roles in the pathogenesis of some lung diseases.13 Macro-
phages account for about 3% of cells in the lung. There are 
a variety of receptors on the lung macrophages which can 
sensor and promptly respond to the damage. The activation 
of lung macrophages may secrete some pro-inflammatory 
cytokines (such as IL-1β and TNF-α) and induce the produc-
tion of chemokines and adhesion molecules by other cells, 
involving the early lung injury.14 In addition, the phenotype 
of lung macrophages will change after phagocytosis of apop-
totic cells, leading to the reduced production of pro-inflamma-
tory cytokines and elevated production of anti-inflammatory 
cytokines, which is involved in the protective effects of 
macrophages in late stage of lung injury. In the process of 
lung injury, not only resident macrophages are involved in 
the pathogenesis of lung injury, but circulating macrophages 
will also be activated and then migrate into the lung due to 
chemotaxis, involving in the lung injury and repair. In lung 
injury, on one hand, some cytokines produced in the blood 
may activate circulating monocytes-macrophages and induce 
the expression of chemokine receptors on these cells; in the 
presence of a large amount of chemokines produced in the 
lung, these activated circulating monocytes-macrophages 
may migrate into the lung, involving the early inflamma-
tion of lung injury. On the other hand, a large amount of 
cytokines produced in the lung after injury may also induce 
the change in phenotype of resident macrophages, involving 
the lung injury and repair.15  

evIdence on the role of MacrophageS In dcS 
Induced lung Injury
Decompression may induce the switch of macrophage 
phenotype
Clinical trials have revealed that diving activities with 
routine decompression may still induce the activation of 
neutrphils and platelets in the blood.3,16 In rats with acute 
DCS, pro-inflammatory cytokines (such as TNF-α, IL-6 
and IL-1β) increased significantly in the lung, accompanied 
by the elevation of circulating pro-inflammatory cytokines 
(TNF-α, IL-6 and IFN-γ).17,18 As above mentioned, TNF-α 
and IFN-γ are two major cytokines inducing the M1 pheno-
type of macrophages. Thus, we assume that decompression 
may induce the switch of macrophage phenotype in the 
blood and lung. However, whether bubbles produced in the 
veins directly induce the switch of macrophage phenotype 
and/or bubbles induce the production of relevant cytokines 
by other cells to indirectly activate macrophages is still 
unclear. During the decompression, vascular endothelial 
cells and resident cells of the blood are first group of cells 
encountering bubbles in blood vessels and affected directly 
by the decompression induced bubbles. In recent years, 
increasing studies focus on the influence of decompression-
induced bubbles on vascular function and confirm that 
bubbles may cause damage to vascular endothelial cells, 
inducing vascular dysfunction.19-21 This has been validated 
in our studies.22,23 In addition, the improvement of vascular 
function was also found to be protective on DCS.24 Our 
study revealed that bubbles secondary to decompression 
could induce the production of microparticles22 which also 
induced the polarization of macrophages.25 In addition, 
microbubbles in the blood vessels may cause ischemia and 
subsequent alteration of vascular permeability, leading to 
the leakage of plasma.6 Under this condition, circulating 
pro-inflammatory cytokines may migrate into the lung 
and secret a large amount of pro-inflammatory cytokines, 
inducing the switch of macrophage phenotype. The plate-
lets activated by bubbles16 may also produce a great deal 
of pro-inflammatory cytokines and chemokines to induce 
the activation, adhesion and chemotaxis of circulating 
monocytes-macrophages. Thus, it is possible that bubbles 
may act on vascular endothelial cells and/or platelets to 
indirectly induce the switch of macrophage phenotype. 

Decompression induce adhesion and migration of macro-
phages 
Studies have also revealed that the expression of intra-
cellular adhesion molecule-1 (ICAM-1), E-selectin, L-
selectin and MHC-II increased significantly in rats with 
DCS,16,17 which was confirmed by our study and found to 
be positively related to the decompression rate.22,23 More-
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over, thromboxane and leukotriene B4 produced in blood 
also markedly increase following decompression, and 
leukotriene B4 has been confirmed as a potent chemokine 
of monocytes and may induce the invasion of monocytes 
into the lung.26,27 Furthermore, bubbles may also directly 
or indirectly increase the microvascular permeability, 
facilitating the chemotaxis of circulating monocytes-
macrophages into the lung.6,28.

hyperbaric treatment affects the switch of macrophage 
phenotype 
A recent study indicates that hyperbaric oxygen may 
induce the shift of macrophage phenotype from M1 to 
M2.29 The spinal cord is relatively rich in lipid and thus 
susceptible to form bubbles after decompression. Gener-
ally, the spinal cord is also regarded as one of organs af-
fected by DCS. Hyperbaric oxygen is one of treatments 
for DCS and has been widely used in the treatment of type 
I DCS or as an adjunctive therapy following hyperbaric 
treatment. Other studies also reveal that hyperbaric air 
treatment also increases the number of M2 macrophages 
in the muscle30; hyperbaric oxygen may reduce the IL-
6, matrix metalloproteinase-9 (factors produced by M1 
macrophages) and macrophage inflammatory protein (an 
important chemokine), and increase the IL-10 (a factor 
inducing M2 phenotype)31,32 and IL-4.32 These findings 
indicate that hyperbaric treatment is able to regulate the 
macrophage polarization, which might be related to the 
therapeutic effects of hyperbaric treatment on DCS.

concluSIon
On the basis of available findings, we speculate that mac-
rophage polarization is involved in the pathogenesis of 
decompression induced lung injury. Thus, treatments with 
the capability to regulate the phenotype of macrophages 
may exert protective effects on DCS and improve the out-
come of DCS.  
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