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Background and Purpose  Hyperekplexia (HPX), a rare neurogenetic disorder, is classical-
ly characterized by neonatal hypertonia, exaggerated startle response provoked by the sudden 
external stimuli and followed by a shortly general stiffness. Glycine receptor alpha 1 (GLRA1) 
is the major pathogenic gene of the disease. We described the clinical manifestations of ge-
netically confirmed HPX patients and made a literature review of GLRA1-related HPX to im-
prove the early recognition and prompt the management of the disorder. 
Methods  Extensive clinical evaluations were analyzed in 4 Chinese HPX patients from two 
unrelated families. Next generation sequencing was conducted in the probands. Sanger se-
quence and segregation analysis were applied to confirm the findings.  
Results  All four patients including 3 males and 1 female presented with excessive startle re-
flex, a cautious gait and recurrent falls. Moreover, startle episodes were dramatically improved 
with the treatment of clonazepam in all cases. Exome sequencing revealed 2 homozygous 
GLRA1 mutations in the patients. The mutation c.1286T>A p.I429N has been previously re-
ported, while c.754delC p.L252* is novel.
Conclusions  HPX is a treatable disease, and clonazepam is the drug of choice. By studying 
and reviewing the disorder, we summarized the phenotype, expanded the genotype spectrum, 
and discussed the possible pathogenic mechanisms to enhance the understanding and recogni-
tion of the disease. Early awareness of the disease is crucial to the prompt and proper admin-
istration, as well as the genetic counseling.
Key Words  ‌�hyperekplexia, startle reaction, glycine receptor alpha 1, mutation, clonazepam.

Excessive Startle with Novel GLRA1 Mutations 
in 4 Chinese Patients and a Literature Review  
of GLRA1-Related Hyperekplexia

INTRODUCTION

Hyperekplexia (HPX), also referred to as Startle disease, is a rare inherited neurological dis-
order which is clinically characterized by neonatal hypertonia, generalized muscle stiffness 
and exaggerated startle reflexes provoked by sudden, unexpected auditory, tactile, and vi-
sual stimuli.1,2 In 1958 Kirstein and Silfverskiold firstly described a family of which affected 
members suffered sudden falls precipitated by ‘emotional’ stimuli.3 In 1966 Suhren inves-
tigated a large Dutch pedigree with the similar symptoms and firstly named the disorder 
“HPX.”4 Clinically, a generalized stiffness is always noted early after birth, which may be as-
sociated with apnea attacks and sudden infant death syndrome,5 or some may be gradually 
improved in the first few years of life. While excessive startling may last throughout life 
which can occasionally cause serious traumatic injuries and impaired social interactions in 
older children.1 Periodic limb movements in sleep and a characteristic head retraction re-
flex (nose-tapping test) can be observed in most patients with HPX.6 Genetically, the disor-
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der shows genetic heterogeneity.7 Among the causative genes, 
GLRA1 is the major one, which accounts for about 80% of all 
cases.8 To date, the pathogenic mechanism of the disease is 
still not fully understood. However, HPX has relatively a good 
prognosis with clonazepam to effectively respond to the star-
tle episodes.9

Although potentially treatable, HPX is not necessarily a be-
nign condition. In practice, it can be easily misdiagnosed and 
missed the prompt and appropriate treatment due to limited 
attention understanding of the disease.8 Herein, clinical and 
genetic investigation of 4 Chinese patients from two unrelat-
ed families with novel GLRA1 mutations were described, and 
a further detailed literature review of the GLRA1-related HPX 
was made to summarize the clinical manifestations, expand 
the genetic spectrum, and discuss the possible pathogenic 
mechanisms to enhance the early recognition, shed light on 
the pathogenetic studies and improve the systematic manage-
ment for the disorder.

METHODS

Patients
A total of 4 patients from 2 unrelated families were enrolled 
in this study. Clinical diagnosis of HPX was based on the fol-
lowing performances: exaggerated startle reflex, muscle stiff-
ness, a positive nose-tapping test, and a good response to 
clonazepam. All patients came from the neurology depart-
ment of RuiJin Hospital and were evaluated by two senior 
neurologists at least. The ethics committee of Ruijin Hospital, 
Shanghai Jiao Tong University School of Medicine, Shanghai, 
China approved the study (2017-38). All participants or their 
guardians provided written informed consents.

Exome sequencing and data analysis
Genomic DNA was extracted using the standardized phenol/
chloroform extraction protocol. Exome sequencing was per-
formed on the proband of each family. The variants were an-
alyzed as follows: firstly, the 1,000 Genomes Project (http://
www.internationalgenome.org), dbSNP database (http://
www.ncbi.nlm.nih.gov/projects/SNP), and the Exome Aggre-
gation Consortium (ExAC, http://exac.broadinstitute.org/) 
were as references to exclude all variants present in the pop-
ulation at greater than 5% frequency. Then, the pathogenic-
ity of the nucleotide and amino acid conservation was pre-
dicted by Mutationtaster (http://www.mutationtaster.org), 
PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2), and 
SIFT (http://sift.jcvi.org). Finally, the pathogenic of the vari-
ant was interpreted and classified following the American 
College of Medical Genetics and Genomics Standards and 
Guidelines.10 Putative pathogenic variants were further con-

firmed by Sanger sequencing, as well as co-segregation anal-
ysis among family members.

RESULTS

Clinical findings
Clinical profiles of the 4 patients are summarized in Table 1. 
Total 4 patients from 2 unrelated families, including 3 males 
and 1 female were enrolled. All patients had no remarkable 
neonatal problems. Muscle stiffness and/or excessive startle 
response were noticed during the neonatal period. The ab-
normal startle response was usually triggered by unexpected 
noises and constituted sudden stiffness, recurrent rigid falls 
to the ground with arms by two sides, but without loss of con-
sciousness. All cases showed a cautious gait with a wide stride 
in adult life. Interestingly, all patients dared not to walk on 
hard ground, but could walk freely without fear on the green-
sward, or with something relied on, such as wall, wheelchair, 
umbrella or stick (the video of the cautious gait and the im-
proved therapeutic effects in siblings of the family 111). The 
non-specific abnormalities in electroencephalogram (focal 
spike or slow waves) were found in two patients (family 1). 
All patients were previously judged as epilepsy or dystonia, 
and endured long time fear and frequent traumatic falls be-
fore correctly diagnosed. There was no developmental delay 
or intellectual disturbance in all patients. The other examina-
tions such as, routine laboratory test, brain imaging showed 
no notable abnormalities in all cases. Moreover, clonazepam 
was administrated to all patients soon after the consideration 
of HPX, stiffness and startle reflex were dramatically or par-
tially improved. 

Genetic findings
Exome sequencing revealed 2 homozygous mutations in 
GLAR1 (NM_000171) (Fig. 1). In consanguineous family 1, 
the two siblings had a novel homozygous deletion mutation 
c.754delC (p.L252*), while their asymptomatic mother is a 
heterozygous carrier. In family 2, the proband and his young-
er brother carried a documented homozygous missense mu-
tation c.1286T>A (p.I429N), his asymptomatic sister and son 
are heterozygous carriers. All the patients showed an autoso-
mal recessive inheritance mode. The mutations above were 
not found in 1,000 Genomes Project, dbSNP, and ExAC da-
tabase, and Mutationtaster predicted the mutations to be dis-
ease-causing.

DISCUSSION

In this study, we investigated the clinical features of 4 patients 
from 2 unrelated families with genetically confirmed diagno-
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sis of HPX. All cases were onset shortly after birth and showed 
an excessive startle response to unexpected stimuli, along with 
a wide-based and stiff gait in adulthood. While delayed diag-
nosis of all patients due to lack of awareness. Two GLRA1 ho-
mozygous mutations in the patients have been detected, in-
cluding 1 novel nonsense mutation (c.754delC p.L252*), 1 
documented missense mutation (c.1286T>A p.I429N).12 All 
mutations were highly conservative in the related species. 
HPX is a rare neuromotor disorder classically characterized 
by neonatal hypertonia and an exaggerated startle reflex, 
which is caused by defects in mammalian glycinergic neuro-
transmission. Only a few cases have been reported in China, 
including 6 patients from 5 unrelated families carry GLRA1 
mutations,12-16 one patient carry GLRB mutation.17 There are 
two clinical forms of the disorder: a major and a minor form. 
The major form is typically characterized by generalized stiff-
ness after birth, excessive startling to a sudden stimulus and 
generalized stiffness after a startle reflex, while the minor 
form only has excessive startle response.1,9 HPX can also be 
complicated by umbilical/inguinal hernia, hip dislocation, 
epilepsy, myoclonus, periodic limb movement during sleep, 
delayed motor development or social dysfunction.6,9,18 Hy-
pertonicity is noted during neonatal or early infancy time, 
which may cause prolonged apnea and even sudden death, 
or gradually diminished spontaneously during the first few 
years of life. Excessive startle reflexes may persist through-
out life, although the severity differs among the patients. The 
disorder always has a neonatal onset, which requires more 
attention in paediatrician’s clinical practice. In our study, the 
electroencephalogram (EEG) abnormalities may be a non-
specific pathological change, which might due to the severe 
craniocerebral trauma caused by the recurrent falls. As report-
ed in previous study, fast spikes followed by slow background 
activity and flattening can be observed on EEG without ep-
ileptic discharges of the patient.19 In addition, phenotype dis-
parities existed between the affected members in the same 
pedigree, which is consisted with the previous reports,1,8,20 
suggesting an underling mechanism of variable expressivity. 
Currently, clonazepam is the drug of choice that dramatically 
improves the exaggerated startling, which through enhancing 
GABA-gated chloride channel function and presumably com-
pensating for the defective glycine-gated chloride channel 
function.9

Pathogenic variants in 5 genes relating to the glycinergic 
neurotransmission system have been identified in HPX. 
GLRA1 and GLRB encode the α1 and β subunit of the post-
synaptic inhibitory glycine receptor respectively. SLC6A5 en-
codes the cognate presynaptic glycine transporter 2. It was 
reported that patients with GLRB and SLC6A5 mutations are 
more likely to have apnea attacks, or mild to severe delay in Ta
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development or speech acquisition.7,21 While the mutations 
in GPHN and ARHGEF9, of which the encoding proteins 
gephyrin and collybistin are involved in GlyR synaptic clus-
tering, have also been reported to result in more complex or 
atypical phenotype.22,23 All these proteins are implicated in the 
normal functioning of inhibitory glycinergic synapses, which 
are located predominantly in the spinal cord and brainstem.24 
In human, four α subunits (α1–α4) and a single β subunit 
formed the GlyRs, which belong to the Cys-loop family of 
pentameric ligand-gated ion channel receptors. Binding with 
its ligand glycine, which is an essential inhibitory neurotrans-
mitter in the adult nervous system, the glycinergic signaling 
plays a vital role in neural development, including spinal cord, 
brain, retinal.24 The abnormalities in electrophysiological 
studies also indicated that abnormal reciprocal inhibition or 
increased excitability in pontomedullary reticular neurons 
may contribute to generalized stiffness in hypereplexia.25,26

The causative gene GLRA1 is the most common one, which 
has 9 exons (Fig. 2A). The encoding protein α1 subunit of 
GlyR contains an extracellular domain (ECD) that harboring 
the neurotransmitter binding site and a transmembrane do-
main (TMD) that comprising 4 α-helices, termed TM1–TM427 
(Fig. 2A). It demonstrated both dominant and recessive in-
heritance in GLRA1. So far, about 77 various mutations have 
been reported, including 64 missense/nonsense mutations, 7 
small deletions (including this study), 5 gross deletions and 
1 gross insertion. The mutations are distributed in all domains, 

clustering in ECD, TM1, TM2 domains and Loop2 (Fig. 2B). 
Among all the mutations, we found that 40.0% (30/77) are 
dominant, 50.6% (39/77) are recessive (missense and non-
sense), 7.8% (6/77) are recessive frameshift variants. Domi-
nant mutations are mainly located in and around TM2 do-
main and Loop2, while the recessive or compound variants 
are scattering in all the domains. Localized at the extracellu-
lar end of TM2 domain, R299 is the most frequent mutant 
locus. Numerous studies suggested that dominant mutations 
could compromise glycine ligand binding, decrease the gly-
cine sensitivity by disrupting the hydrogen bond, or cause 
chloride conductance defects.28 Besides, a few dominant mu-
tations which located in ECD, TM1, TM2 domain could 
cause fast desensitization to limit chloride flux.29,30 For many 
recessive mutations, reduced expression or a deficiency of 
cell surface targeting of GlyRs might be implicated, in which 
the related glycine-activated currents could be observed when 
co-expressed with α1 and/or β wild-type subunits.28,29 Addi-
tionally, as zinc is known to have potentiating effect on glycin-
ergic currents upon neuronal stimulation.31 Studies showed 
that the mutant residues which is to be the binding sites for 
Zn2+ may involve in the loss of zinc potentiation.27,32 Except 
for the loss-of-function mechanism above, some gain-of-func-
tion mutations can also cause HPX. To date, four dominant 
mutations (Y156C, Q254E, V308M, R442H) have been dem-
onstrated to induce spontaneous GlyR activation, which re-
sult in enhanced sodium and calcium influx rates, and direct-

Fig. 1. The family pedigrees with a diagnosis of hyperekplexia. The family trees, the chromatograms and the mutations located in the highly-con-
served region of proteins are shown from left to right respectively. A: Homogenous GLRA1 c.754delC (p.L252*) identified in the two siblings (IV:1 
and IV:3), their asymptomatic mother (III:2) is a heterozygous carrier. B: Homogenous GLRA1 c.1286T>A (p.I429N) identified in the proband and 
his younger brother (II:1 and II:4), his asymptomatic sister and son are heterozygous mutation carriers (II:2 and III:1). 
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ly contribute to the reduction in the glycine-induced current 
amplitude.28,29 Nevertheless, the exact mechanism of GLRA1 
mutations still beyond fully understand and requires more 
investigation.

Due to the overlapping clinical signs, HPX can be initially 
misdiagnosed as epilepsy, cerebral palsy in infancy period, 
or adult-onset anxiety neurosis. The disorder has a neonatal 
onset, when newborns showed diffuse muscular rigidity, ep-
isodic tonic spasm, apnea, aspiration pneumonia, it should 
be considered the possibility of HPX. Nose-tapping test can 
make a preliminary judgement. Once acute hypertonia and 
apnea episodes occur, a simple intervention called the Vigeva-
no action (flexing of the head and limbs toward the trunk) 
can relieve the event.33 Fortunately, HPX is a potentially treat-
able disease. Clonazepam, which can specifically upgrade the 
GABARA1 chloride channels, is the main and most effective 

administration for HPX patients.9 The treatment is recom-
mended to start with a dose of 0.5 mg daily, adjust dosage 
based on effects, up to 6 mg daily if necessary.34 Some other 
antiepileptic drugs, like carbamazepine or phenobarbital, can 
also be used while their therapeutic effect is still in debate. 
For the psychological problems like social anxiety, timidity 
and self-basement, psychotherapy and family support are 
crucial for personality development and alleviating mental 
problems.

In conclusion, HPX is a treatable neurogenetic disorder, 
and clonazepam is the drug of choice. Mutations in GLRA1 
account for the most. By studying and reviewing the disorder, 
we summarized the phenotype, expanded the genotype spec-
trum, discussed the possible pathogenic mechanisms, to en-
hance learning, awareness-raising of the HPX and shed light 
on the pathogenetic studies. Early recognition of the disease is 

Exon 1 Exon 2 Exon 4

ECD

Exon 3 Exon 5 Exon 6

Loop 1

TM1 TM2 TM3 TM4

Loop 2 Loop 3

Exon 8 Exon 9Exon 7

(Signal Peptide) (N terminal) (C terminal)

A  

B
Fig. 2. Schematic drawing of the GLRA1 gene and protein domains, and distribution of all GLRA1 mutations. A: Schematic drawing of the GLRA1 
gene and protein with domains. B: Diagram of all GLRA1 mutations (NM_000171). Mutations in black: recessive or compound heterozygous mu-
tations; mutations in blue: dominant mutations. The mutations detected in this paper are marked in red. The five gross deletion mutations, includ-
ing 170 kb inclusive exon 1–7 (–93.3 kb upstream of ATG), 305 kb incl, 329647 bp exon 1–7, exon 4–7 and inclusive exon 1–6. One insertion: du-
plication 95 kb. ECD: extracellular domain, TM: transmembrane domain.
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helpful for prompt and appropriate treatment, to avoid the se-
rious adverse events and improve the quality of life. More-
over, prompt genetic analysis may be useful for early defi-
nite diagnosis, genetic counseling and safer care for affected 
neonates.
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