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Sleep electroencephalography (EEG) provides an opportunity to study sleep scientifically,

whose chaotic, dynamic, complex, and dissipative nature implies that non-linear

approaches could uncover some mechanism of sleep. Based on well-established

complexity theories, one hypothesis in sleep medicine is that lower complexity of brain

waves at pre-sleep state can facilitate sleep initiation and further improve sleep quality.

However, this has never been studied with solid data. In this study, EEG collected

from healthy subjects was used to investigate the association between pre-sleep

EEG complexity and sleep quality. Multiscale entropy analysis (MSE) was applied to

pre-sleep EEG signals recorded immediately after light-off (while subjects were awake)

for measuring the complexities of brain dynamics by a proposed index, CI1−30. Slow

wave activity (SWA) in sleep, which is commonly used as an indicator of sleep depth or

sleep intensity, was quantified based on two methods, traditional Fast Fourier transform

(FFT) and ensemble empirical mode decomposition (EEMD). The associations between

wake EEG complexity, sleep latency, and SWA in sleep were evaluated. Our results

demonstrated that lower complexity before sleep onset is associated with decreased

sleep latency, indicating a potential facilitating role of reduced pre-sleep complexity in

the wake-sleep transition. In addition, the proposed EEMD-based method revealed an

association between wake complexity and quantified SWA in the beginning of sleep

(90min after sleep onset). Complexity metric could thus be considered as a potential

indicator for sleep interventions, and further studies are encouraged to examine the

application of EEG complexity before sleep onset in populations with difficulty in sleep

initiation. Further studies may also examine the mechanisms of the causal relationships

between pre-sleep brain complexity and SWA, or conduct comparisons between normal

and pathological conditions.
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INTRODUCTION

Sleep medicine has been increasingly recognized as an important
discipline in recent decades; however, the current limitations
of electroencephalography (EEG)-based sleep analysis and
quantification may have led to ongoing controversy. Sleep is a
complex physiological process that involves functions of every
organ system at different levels. Alternative metrics have been
proposed, aiming to provide insights into the dynamics of
sleep. In sleep medicine, EEG is one of the most frequently
recorded biological signals, but it is mainly used as the basis
for scoring sleep stages in sleep laboratories and clinics, as
sleep is classified as either rapid-eye-movement (REM) sleep or
non-REM (NREM) sleep (including sleep stages N1, N2, and
N3). Owing to the non-linear and dynamic features of EEG,
non-linear approaches may lead to better understanding of the
profound complexity of sleep.

Non-linear dynamics theory provides new opportunities for
understanding the behavior of EEG (Acharya et al., 2005).
Previously, EEG has been used tomark features of sleep (He et al.,
2005; Janjarasjitt et al., 2008; Yeh et al., 2013; Abeysuriya et al.,
2014), and it has been reported that nonlinearity depends on
sleep stage (Shen et al., 2003). Recently, studies have increasingly
used non-linear methods to investigate the nature of brain
activities during sleep (Ma et al., 2018), but there are still
limitations in the existing literature. The full advantages of non-
linear approaches have yet to be determined (Ma et al., 2018).

According to the complexity theories, somewhat higher
complexity is associated with relatively improved health
conditions and greater chances of survival (Costa et al., 2002a,
2005), while a reduction in or loss of complexity is often
associated with imbalance or disturbed physiological conditions,
usually implying disease or aging (Goldberger et al., 2002). In
many studies, complexity-based metrics of the dynamics of a
physiological system have demonstrated better prognostic power
(Mejaddam et al., 2013; Lin et al., 2014; Vandendriessche et al.,
2014; Moshirvaziri et al., 2016; Chiu et al., 2017; Ma et al.,
2017). The complexity theories also suggest that different levels
of complexity can indicate whether a system is under stress or
relatively relaxed (Costa et al., 2002a, 2005; Goldberger et al.,
2002). In a novel application of complexity theory, Casali et al.
found that measuring complexity can provide a reliable way
to discriminate the level of consciousness in single individuals
during wakefulness, sleep, and anesthesia, as well as in patients
who had emerged from coma and recovered a minimal level
of consciousness (Casali et al., 2013). When complexity is used
in the evaluation of sleep, studies have shown that complexity
indices (e.g., entropy) decrease as sleep gets deeper, and reach
their lowest level when slow wave sleep (SWS) occurs (Ma
et al., 2018). Moreover, Abásolo et al. found that activated brain
states—wakefulness and REM sleep—are characterized by higher
complexity compared with NREM sleep (Abásolo et al., 2015).
Based on these well-established theories and previous studies,
investigating the sleep-related temporal structure of brain activity
based on measures such as multi-scale entropy (MSE) (Costa
et al., 2002a, 2005), the perturbational complexity index (Casali
et al., 2013), or Lempel-Ziv complexity (Abásolo et al., 2015)

should provide insights that go beyond those obtained with
conventional techniques for signal analysis.

In sleep medicine, one question that remains unsolved is
whether the complexity of brain waves in the pre-sleep state or
during sleep latency can determine or predict sleep quality. In
fact, most people with insomnia complain of being unable to
fall asleep because they cannot switch off their “racing” mind
(Lichstein and Rosenthal, 1980; Espie et al., 1989; Harvey, 2000).
Under high mental load, the sense of urgency about falling asleep
adversely affects sleep onset latency (Ansfield et al., 1996). Since
stressful brain activities always show higher complexity, we can
reasonably hypothesize that lower complexity of brain waves
at pre-sleep status can facilitate sleep initiation, reduce sleep
latency, and further lead to a high quality of sleep characterized
by sufficient deep sleep or SWS.

Slow wave sleep SWS is defined as the state in which large-
amplitude, low-frequency waves are dominant and it occurs
when delta rhythm is dominant in the EEG signal. Slow
wave activity (SWA), which is equivalent to delta activity
and encompasses components of the EEG signal in the
frequency range of ∼0.5–4.5Hz, is considered to be one of
the most important functional EEG parameters during sleep
(Brunner et al., 1990; Peter Achermann and Borbély, 2011).
Under physiological conditions, SWA is commonly used as a
quantitative measure of NREM sleep dynamics and an indicator
of sleep depth or sleep intensity (Borbély and Achermann, 1999);
Olivier et al. (2010). Fast Fourier transform (FFT) analysis is
the most popular method for quantifying SWA. However, it
has intrinsic limitations in capturing the underlying dynamics
of brain oscillations (Ma et al., 2018). First, FFT analysis takes
complex EEG oscillations, composed of sine waves with different
frequencies (Campbell, 2009), and decomposes them into
frequency component bands, such as beta, alpha, theta, and delta.
However, it has long been known that brain oscillation is not
a linear combination of these arbitrary frequency components,
a property called “nonlinearity” (Bedard et al., 2006). Second,
FFT analysis assumes that none of these frequency components
changes in amplitude or shape as time evolves, which is clearly
against what has been observed in complex brain oscillations,
a property called “nonstationarity” (Campbell, 2009). In recent
years, ensemble empirical mode decomposition (EEMD) has
been adopted to solve this problem (Wu and Huang, 2005).
EEMD is an adaptive and noise-assisted data analysis method
that is based on local characteristics of the data, requiring no
predefined basis. EEMD decomposes an original non-linear and
non-stationary signal into a series of simple intrinsic mode
functions (IMFs), and has the advantage that every IMF can be
physically meaningful via the quantification of the instantaneous
amplitude and frequency (Wang et al., 2012). EEMD has become
popular for analyzing EEG signals in recent years (Chen et al.,
2010, 2014; Kuo et al., 2011; Bizopoulos et al., 2013; Al-Subari
et al., 2015a,b; Kanoga and Mitsukura, 2015; Bai et al., 2016;
Zeng et al., 2016; Gotz et al., 2017; Hassan and Bhuiyan, 2017).
Employing EEMD to quantify SWA might lead to additional
findings.

Therefore, the aim of the present study was to examine
whether the complexity of brain waves in the pre-sleep state
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is associated with sleep quality. We hypothesized that lower
complexity of brain waves before sleep may play a potential
facilitating role in wake-sleep transition and improve the
subsequent sleep depth. To this end, the MSE method was
applied to EEG signals recorded during the first 5min after light-
off, when the participants were still awake. Sleep latency was
determined by manual scoring, and sleep depth was quantified
by SWA using an EEMD-based approach or traditional FFT
analysis.

METHODS

Overnight Polysomnography (PSG)
Overnight polysomnography (PSG) data obtained from the
Sleep Heart Health Study-1 (SHHS-1) were used in this study.
The SHHS was a multi-center cohort study implemented by
the National Heart Lung and Blood Institute to determine
the cardiovascular and other consequences of sleep-disordered
breathing, and its characteristics have been described in detail
elsewhere (Quan et al., 1997; Redline et al., 1998). Unattended
overnight PSG was performed with a portable PS-2 system
(Compumedics, Abottsville, Australia). Sensors were placed and
equipment was calibrated during an evening home visit by a
certified technician. Data collection included C3/A2 and C4/A1
EEGs, sampled at 125Hz; right and left electrooculograms;
a bipolar submental electromyogram; thoracic and abdominal
excursions (inductive plethysmography bands); airflow (detected
by a nasal-oral thermocouple (Protec, Woodinville, WA); finger
pulse oximetry (Nonin, Minneapolis, MN) sampled at 1Hz;
electrocardiogram sampled at 125Hz; body position (mercury
gauge sensor); and ambient light (on/off, by a light sensor
secured to the recording garment). After equipment retrieval, the
data were forwarded to a central reading center (Case Western
Reserve University, Cleveland, OH) for scoring according to a
standard protocol. Finally, every 30 s epoch was scored (Thomas
et al., 2007). The polysomnographic methods, scoring protocol,
and quality assurance procedures were as previously described
(Quan et al., 1997; Redline et al., 1998; Thomas et al., 2007).

Sleep variables derived from visual scoring were calculated for
each participant, including: total sleep time (TST) (time spent
asleep between sleep onset and light-on); wake time after sleep
onset (WASO, total amount of time awake after falling asleep);
and the duration of each sleep stage, calculated as a percentage
of TST. Sleep latency, defined as the period from light-off to the
first three consecutive epochs of stage N1 sleep or an epoch of any
other stage, was also computed.

Subjects
The study included 103 healthy subjects who met the inclusion
criteria: (1) no usual daily alcohol intake; (2) no benzodiazepines
or non-tricyclic antidepressants intake within 2 weeks of the
SHHS-1 visit; (3) no history of diabetes; (4) no history of stroke;
(5) no hypertension status based on second and third blood
pressure readings or current treatment with anti-hypertensives;
(6) no self-reported hypertension; (7) no self-reported sinus
trouble; (8) no coronary angioplasty, heart failure, heart attack,
pace maker, or stroke; (9) apnea–hypopnea index, representing

the number of apnea and hypopnea events with ≥3% oxygen
desaturation per hour of sleep, of <5; (10) the entire recording
was scored, and scoring started before light-off and ended after
light-on; (11) no more than 30min of the sleep period had either
lost or unscorable EEG, respiratory, or oximetry data; (12) the
time spent on sleep was no less than 50% of the total time spent
in bed; (13) at least one epoch during each sleep stage, i.e., REM,
N1, N2, and N3; (14) sleep latency no less than 5min. See the
Supplementary Material for identifiers of the included subjects,
which were created by theNational Sleep Research Resource team
for easier matching with file downloads.

The Theory of Multiscale Entropy (MSE)
MSE was introduced by Costa et al. (2002a,b); Costa et al. (2005)
to quantify the complexity of biologic systems. Entropy-based
methods characterize uncertainty about a source of information
and the probability distribution of the samples drawn from it.
The entropy increases with the degree of disorder and reaches its
maximum in completely random systems. However, an increase
in the entropy may not always be associated with an increase in
dynamical complexity. For instance, a randomized time series
has higher entropy than the original time series, although the
process of generating surrogate data destroys correlations and
degrades the information content of the original signal. This
inconsistency may be related to the fact that widely used entropy
measures are based on single-scale analysis and do not take into
account complex temporal fluctuations. Therefore, MSE has been
proposed as a method for assessing complexity by measuring the
entropy inherent in a time series over multiple time scales.

The procedures involved in calculating MSE have been well
reviewed (Costa et al., 2002a,b, 2005) and can be summarized
in the following three steps (Yang et al., 2013): (1) construction
of a coarse-grained time series according to a scale factor; (2)
quantification of the sample entropy of each coarse-grained time
series; and (3) examination of the sample entropy profile over
a range of scales. The length of each coarse-grained time series
is equal to the length of the original time series divided by the
scale factor. For scale 1, the time series is simply the original
time series. Sample entropy is defined by the negative natural
logarithm of the conditional probability that a dataset of length
N, having repeated itself within a tolerance r (similarity factor)
form points (pattern length), also repeats itself form+ 1 points,
without allowing self-matches (Richman and Moorman, 2000).

One requirement in the calculation of sample entropy is
to determine the pattern length m and similarity factor r. In
this study, we set m to 2 and r to 0.15 × SD, where SD
is the standard deviation of the analyzed time series. As 30
scales were considered and the entropy on each scale does not
necessarily have a specific physiological meaning, a complexity
index, called CI1−30, was additionally employed in the current
study. CI1−30 was defined as the mean value of the entropies
from scale 1 to scale 30, as in many other published studies
(Vieira et al., 2017). CI1−30 provides insight into the integrated
complexity of the system over the time scales of interest. See
the Supplementary Material for the MATLAB code for MSE
analysis.
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The Theory of EMD and EEMD
Empirical mode decomposition (EMD) is an adaptive data
analysis method based on local characteristics of the data,
requiring no predefined basis. The details of the method can be
found in the work of Huang (2000).

In the EMD approach, the targeted data x(t) is decomposed in
terms of IMFs, cj, i.e.,

x (t) =
∑n

j=1
cj + rn (1)

where rn is the residue of data x(t) after n number of IMFs
have been extracted. IMFs are simple oscillatory functions
with varying amplitude and frequency. In practice, the EMD
is implemented through a sifting process that uses only local
extremes, and the process stops when the residue, rn, becomes a
monotonic function from which no more IMFs can be extracted
(Huang, 2000).

However, mode-mixing, defined as any IMF consisting of
oscillations of dramatically disparate scale, can be caused by
intermittency of the driving mechanisms and obstructs the
true physical interpretations (Wu and Huang, 2005). Therefore,
EEMD was developed to alleviate this drawback, making use
of the facts that adding noise to the data can provide a
uniformly distributed reference scale, and the means of the
corresponding IMFs of different white noise series are likely
to cancel each other out. The detailed steps for EEMD are
(Wu and Huang, 2005): (1) add a white noise series to
the targeted data; (2) decompose the data with added white
noise into IMFs based on EMD; (3) repeat step (1) and
step (2), but with different white noise series each time; and
(4) obtain the (ensemble) means of corresponding IMFs of
the decompositions as the final result. The MATLAB code
for EEMD was shared by RCADA (http://rcada.ncu.edu.tw/
research1.htm).

A Hilbert transform can then be used to calculate the
instantaneous frequency of the IMFs (Feldman and Braun, 1995).
For a IMF c(t), one can define its Hilbert transform ĉ (t) and
analytic signal z (t) as shown in Equation (2) and (3), respectively.

ĉ (t) =

∫ +∞

−∞

c (τ ) h (t − τ) dτ =
1

π

∫ +∞

−∞

c (τ )

t − τ
dτ (2)

z (t) = c (t) + i× ĉ (t) = A(t)ei∅(t) (3)

Here, ∅(t) is the instantaneous phase (IP) of c(t). The
instantaneous frequency f (t) is the derivation of IP and t shown
in Equation (4):

f (t) =
1

2π

d∅(t)

dt
(4)

The Computation of SWA Based on EEMD
Both FFT and EEMD were used for the decomposition of the
EEG signal into its constituent frequency components. Once the
original EEG signal x(t) was decomposed to n number of IMFs
(denoted as ci) and a residue based on EEMD, a different way to

measure SWA (denoted as EEMD-SWA) could be proposed, as
shown in Equation (5).

EEMD− SWA =
∑l

i=k
std(ci)/

∑n

i=1
std(ci) (5)

In Equation (5), function std(ci) refers to the standard derivation
of IMF ci, and the parameters k and l are determined by the orders
of the IMFs that fall into the frequency range of SWA, according
to the instantaneous frequency range of each IMF. Thus, EEMD-
SWA actually reflects the relative power of slow waves in the
signal.

Framework of the Current Research
In this study, EEG signals from derivation C3/A2 was imported
into MATLAB for offline analysis. For each subject, two key time
points were identified, light-off and sleep onset. Figure 1 briefly
shows the analysis protocol. The first 5min EEG immediately
after light-out was analyzed by MSE.

On the other hand, SWA was calculated at the beginning
of sleep episodes (90min after sleep onset) and over the whole
night’s sleep after sleep onset, respectively. EEMD were applied
to each 30 s EEG epoch in each time scope. As each 30 s EEG
epoch is a time series with 3750 data points, the values of EEMD-
SWA for all the epochs in each duration were calculated and
averaged, resulting in two metrics, denoted as EEMD-SWA90

and EEMD-SWAall, for each participant. For comparison, the
traditional FFT-based evaluation of SWAwas applied in a similar
way and resulted in another two metrics, denoted as FFT-
SWA90 and FFT-SWAall, respectively. In the calculation of FFT-
SWA90 and FFT-SWAall, power spectral density was estimated
via the period-gram procedure with direct current filtering and
Hamming windowing. SWA for each 30 s epoch was calculated
by taking the power in the 0.5–4.5Hz range as a percentage of the
total signal power in the frequency range (0.5–62.5Hz). See the
Supplementary Material for the MATLAB code for FFT-SWA.

Then, the correlations between the proposed complexity
index CI1−30 and sleep latency, EEMD-SWA90, EEMD-SWAall,
FFT-SWA90, and FFT-SWAall, were evaluated to investigate the
associations between EEG complexity and proposed measures
during the wake-sleep transition and overall sleep. When
sleep pressure accumulates, slow brain waves gradually become
significant or dominant, which may be in line with a decline in
EEG complexity. Inspired by this hypothesis, we investigated the
association between brain wave complexity and sleep pressure
during pre-sleep wakefulness. Theta activity (4–8Hz), which
is generally considered as a marker for the build-up of sleep
pressure (Fattinger et al., 2017), was thus measured by averaging
the FFT-based relative power (percentage of the power in the
frequency range 0.5–62.5Hz, denoted as Ptheta in this study) for
all the 30 s EEG epochs in the first 5min after light-off, the same
time course as that used for the MSE analysis.

We further analyzed whether early SWA in sleep can be
predicted by the pre-sleep EEG complexity using median
split subgrouping, where we divided the subjects by ranked
SWA into top 50% vs. bottom 50% groups according to
EEMD-SWA90 or FFT-SWA90. Such a strategy of median
split has an enormous popularity in consumer research,
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FIGURE 1 | Schematic diagram of the timeline regarding EEG analysis.

psychology, and numerous other fields (Iacobucci et al.,
2015a,b). For instance, Nordström et al. investigated whether
age is a suicide risk factor for each sex by median split
(Nordström et al., 2010). In addition to that, the subgrouping
in the current study provided us an intuitive way to
investigate the statistical difference in the values of sample
entropy between the two groups over multiple time scales,
making a meaningful complementation to CI1−30 used in
regressions.

Statistical Analyses
SPSS version 19.0 (IBM SPSS Statistics, NY, United States) and
MATLAB (MathWorks R2014a, Inc., Natick, MA, United States)
were used for the statistical analyses. The demographics and
sleep variables derived from visual scoring were reported as mean
with standard deviation if data were normally distributed, and as
median with lower and upper quartiles otherwise. Comparisons
of the demographics and sleep variables between subgroups from
the median split were assessed by chi-square test for categorical
variables and unpaired t-test or two-sided Wilcoxon rank sum
test for continuous ones. A p < 0.05 was considered statistically
significant.

Since sleep may vary with age and sex, and high body mass
index (BMI) is a strong risk factor for sleep disorders (Hou et al.,
2016), these three variables were included as covariates in the
statistical test for correlation between pre-sleep EEG complexity
and sleep latency, as well as subsequent sleep quality. General
linear models (GLM) were thus employed for the statistical
analyses in SPSS 19.0 between CI1−30 and sleep latency, EEMD-
SWA90, EEMD-SWAall, FFT-SWA90, FFT-SWAall and Ptheta,
controlling age, gender, and BMI.

For each scale in the MSE analysis, the statistical difference
in the sample entropy between the EEMD-SWA90 top 50% and
bottom 50% groups, as well as between the FFT-SWA90 top 50%

and bottom 50% groups, were investigated by covariance analysis,
controlling age, gender, and BMI. The false discovery rate (FDR)
procedure was included for multiple testing.

RESULTS

Modes Analyses From EEMD
In practice, there are three parameters that should be determined
for the application of EEMD: the ratio of the standard deviation
of the noise to the target data (denoted by ε), the number of
prescribed IMFs (denoted by NI), and the number of ensemble
members (denoted by NE). In this study, ε was set to 0.1, NI
to 7, and NE to 200. Figure 2 shows a typical result of EEMD
on a 30 s EEG epoch derived from a subject in the current
study.

Further estimation of the frequency range of IMFs was
performed on all epochs in the current study according to
Equations (2–4). For each IMF signal, Table 1 lists its frequency
range, which uses two quartiles, the 2.5 and 97.5 centiles, and
leaves 5% of normal outside the “normal range.” As shown
in Table 1 and Figure 2, the IMF1 decomposition was mainly
associated with the brain beta rhythm (13–30Hz), while IMF2
decomposition was associated with the alpha rhythm (8–13Hz),
IMF3 decomposition with the theta rhythm (4–8Hz), and IMF4,
IMF5, IMF6, and IMF7 decompositions with the delta rhythm
(<4Hz). Therefore, in this study, we set the values of k, l, n in
Equation (5) to be 4, 7, and 7, respectively.

Demographics and Sleep Variables Derived
From Visual Scoring
As shown in Table 2, the sample had a median age of 57 years
and mean BMI of 25.6 kg/m2. A majority of the participants
were identified as being of normal weight (BMI: 18.5–25 kg/m2)
or overweight (BMI: 25–30 kg/m2). The standard PSG scoring
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FIGURE 2 | The EEMD results of a 30 s EEG signal derived from a 69-years-old woman (subject ID in SHHS-1 is 200301). x(n) is the original EEG signal, ci (i =

1,2,…,7) are the IMFs, and r7 is the residual part of data x(n) after 7 IMFs were extracted.

TABLE 1 | Frequency range in seven IMFs of EEMD.

Signal Frequency

range (Hz)

Associated

brain rhythm

IMF1 25.2 [20.2–38.1] beta

IMF2 12.1 [10.3–16.9] alpha

IMF3 6.3 [5.5–8.8] theta

IMF4 3.5 [2.8–4.9] delta

IMF5 2.1 [1.3–3.5] delta

IMF6 1.5 [0.6–3.5] delta

IMF7 1.1 [0.3–3.9] delta

The frequency range is expressed as median [the 2.5 centile - the 97.5 centile].

results revealed that the mean TST was 371min, while the
percentages of scored sleep stages N1, N2, N3, and REM sleep
were ∼ 4, 55, 20, and 21%, respectively. These results are
consistent with the general sleep architecture in adults (Berry,
2012).

The demographic characteristics were balanced between the
top and bottom 50% groups, with no significant differences
regarding age, gender, or BMI. Sleep variables for the EEMD-
SWA90 top 50% and bottom 50%, as well as for the FFT-SWA90

top 50% and bottom 50%, are also shown in Table 2. Between
the groups divided by EEMD-SWA90, significant differences were
found between REM sleep and SWA. However, for the FFT-
SWA90 top 50% and bottom 50% groups, in addition to the
quantified SWA, WASO, N1, N2, and N3 also showed significant
between-group differences. For studied measures (Table 2), no
significant differences were found between the two partitions

when the same grouping rules (top 50% vs. bottom 50%) were
applied.

Association Between EEG Complexity and
Sleep Measures
As shown in Table 3, GLM revealed a significant positive
correlation between CI1−30 and sleep latency (r = 0.328, p =

0.001), indicating that higher complexity level was moderately
associated with prolonged sleep latency.

In the regression model, where we adjusted for age, gender,
and BMI, EEMD-SWA90 showed a statistical trend for a weak
correlation with CI1−30 (r = −0.190, p = 0.06), whereas
no association was found between FFT-SWA90 and CI1−30.
However, for the whole-night data, no correlation was found
between CI1−30 and EEMD-SWAall or FFT-SWAall. Furthermore,
the GLM model, controlling age, gender, and BMI, revealed a
significant positive correlation (r = 0.373, p = 0.0001) between
Ptheta and CI1−30.

When sample entropies on scales 1–30 were compared
between the EEMD-SWA90 top 50% and bottom 50% groups,
significant differences (controlled by the FDR procedure) were
found on all the chosen scales, except that of scale 1. As presented
in Figure 3, the group with the higher EEMD-SWA90 in sleep
showed a reduced complexity of pre-sleep brain dynamics. When
the FFT-SWA90 top 50% and bottom 50% groups were compared,
as shown in Figure 4, a similar negative correlation was observed,
but significant differences (p < 0.05) between the two groups
were found only on the short time scales (scales 2–9). However,
after FDR controlling, no significant differences remained for any
of the 30 scales, indicating that the EEMD-based method might
provide a more robust way to measure SWA.
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TABLE 2 | Demographics and sleep variables derived from visual scoring.

All EEMD-SWA90 FFT-SWA90

N = 103 top 50% N = 52 bottom 50% N = 51 top 50% N = 52 bottom 50% N = 51

Gender 19M/84F 6M/46F 13M/38F 7M/45F 12M/39F

Age (years) 57.3 ± 11.4 58.8 ± 11.9 55.8 ± 10.8 57.6 ± 11.9 57.0 ± 11.0

Body mass index (kg/m2) 25.6 ± 4.1 25.8 ± 4.3 25.3 ± 4.0 25.6 ± 4.3 25.6 ± 4.0

Total sleep time (min) 370.5 ± 58.6 379.6 ± 58.2 361.1 ± 58.0 380.8 ± 61.2 360.0 ± 54.3

Wake after sleep onset (min) [20.5,62.5] [19.0,55.8] [22.9,69.9] [18.3,52.0] [25.8,67.9]*

Stage N1 sleep (%) [2.6,5.2] [2.6,4.7] [2.5,5.3] [2.4,4.2] [2.7,5.7]*

Stage N2 sleep (%) 54.9 ± 10.9 53.1 ± 9.3 56.8 ± 12.2 51.8 ± 9.0 58.2 ± 11.9*

Stage N3 sleep (%) 20.3 ± 11.8 21.4 ± 11.3 19.1 ± 12.2 23.3 ± 11.2 17.2 ± 11.6*

REM sleep (%) [16.7,24.6] [18.8,25.4] 19.4 ± 5.3* 21.2 ± 4.9 19.8 ± 5.9

Sleep latency (min) [10.0,34.0] [8.3,29.3] [10.5,34.4] [8.0,29.3] [10.6,34.4]

Slow wave activity (%) 0.744 ± 0.046 0.635 ± 0.086* 0.752 ± 0.037 0.626 ± 0.078*

Descriptive statistics were reported as mean ± standard deviation if data are normally distributed and as median [lower quartile, upper quartile] otherwise. The symbol ‘*’ indicates

significant difference (p < 0.05, unpaired t-test in the case of normally distributed data or two-sided Wilcoxon rank sum test in other case) between values of the bottom 50% and the

corresponding top 50% group.

TABLE 3 | Correlations between pre-sleep EEG complexity or demographics and sleep measures in GLM models.

Dependent

Independent CI1−30 Age Gender BMI

R P R P R P R P

Sleep Latency 0.328 0.001 0.074 0.434 0.080 0.398 −0.059 0.541

EEMD-SWA90 −0.190 0.060 0.024 0.805 0.065 0.513 0.009 0.931

FFT-SWA90 −0.165 0.103 −0.035 0.729 0.029 0.771 −0.093 0.358

EEMD-SWAall −0.017 0.863 −0.058 0.561 0.009 0.930 0.202 0.046

FFT-SWAall 0.063 0.529 −0.123 0.220 −0.051 0.607 0.125 0.217

Ptheta 0.373 0.0001 −0.021 0.822 0.071 0.449 0.095 0.316

R, correlation coefficient; P, probability.

FIGURE 3 | Complexity indices (sample entropy, mean ± SD) on scale 1–30 in groups classified by the rank of EEMD-SWA90 (top 50% vs. bottom 50%). The symbol

‘*’ indicates significant difference between groups (p < 0.05, covariance analysis, controlling the age, gender, and BMI). After the procedure of FDR, the significant

differences all remained.
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FIGURE 4 | Complexity indices (sample entropy, mean ± standard deviation) on scale 1–30 in groups classified by the rank of FFT-SWA90 (top 50% vs. bottom 50%).

The symbol ‘*’ indicates significant difference between groups (p < 0.05, covariance analysis, controlling the age, gender and BMI). However, after the procedure of

FDR, none of the significant differences remained.

DISCUSSION

In this study, we examined the associations among wake EEG
complexity, sleep latency, and the subsequent SWA quantities
during early sleep and over the entire night. Our results revealed
a positive correlation between the complexity during the 5min
wakeful EEG and sleep latency. Such complexity also showed a
statistical trend for a weak and negative correlation with EEMD-
SWA at the beginning of sleep (90min after sleep onset). Our
results suggest that the lower complexity of brain waves in the
pre-sleep state may facilitate sleep initiation and reduce sleep
latency.

As mentioned in the Introduction, high mental load and
urgency to fall asleep increase sleep onset latency (Ansfield et al.,
1996) and may lead to non-restorative and unsatisfying sleep,
especially in patients with mental disorders or with sleep-onset
insomnia, that is, difficulty in sleep initiation. Existing evidence
suggests that the manipulation of pre-sleep cognitive activity
can lead to changes in sleep onset latency (Ansfield et al., 1996;
Nelson and Harvey, 2003; Wuyts et al., 2012). Therefore, future
studies are encouraged to examine the complexity before sleep
among such populations and to investigate whether interventions
that reduce brain wave complexity can assist in promoting restful
sleep and improved sleep quality by increasing SWA. In addition,
as previously introduced, when a system is under stress or
relatively relaxed, levels of complexity can be an appropriate
indicator (Costa et al., 2002a, 2005; Goldberger et al., 2002). In
recent years, some studies used complexity measures to quantify
or evaluate the relaxation states (Aftanas and Golocheikine, 2002;
Natarajan et al., 2004). Therefore, we can assume that complexity
measures may be useful to examine relaxation interventions
such as meditation, slow-paced breathing, music therapy, and
cognitive therapy. Effective approaches might be expected to
reduce pre-sleep brain complexity and therefore improve sleep
quality.

Although in adults, a pronounced increase of theta activity
has often been found during the course of sleep deprivation
(Aeschbach et al., 1997, 1999; Finelli et al., 2000; Strijkstra et al.,
2003; Fattinger et al., 2017), we observed a counterintuitive link
between EEG complexity and theta activity during wakefulness
in the studied population with normal sleep rather than sleep
deprivation. Owing to the counteraction of the circadian process,
a linear function with a superimposed 24 h sine wave is generally
fitted to theta power and time awake (Åkerstedt and Gillberg,
1990; Finelli et al., 2000). In this way, theta activity may not
increase within a session until extreme sleepiness is encountered
(Åkerstedt and Gillberg, 1990; Finelli et al., 2000). Aeschbach
et al. investigated the influence of the circadian pacemaker
and of the duration of time awake on EEG (Aeschbach et al.,
1999). They found that the theta rhythm was exhibited a
minimum of 1 h after the onset of melatonin secretion (the
clock time of melatonin onset in Aeschbach’s study ranged
from 22:05 to 22:43), indicating evident dissociation, as the
circadian maximum of theta activity appeared to be delayed
with respect to the maximum of sleep propensity. In our study,
72 out of 103 participants reported their clock time for light-
off in the range of 22:05–23:43, however, it is still lack of
evidence tomake clear the association between sleep pressure and
EEG complexity before nocturnal sleep in normal populations.
The association between complexity/MSE and sleep-wake
regulation is therefore not straightforward and deserves further
investigations.

We also analyzed SWA over the entire night for each subject.
However, those whole-night results showed significantly weaker
correlations with wake complexity compared with SWA90. As
it is well-recognized that SWA exhibits a global declining trend
over the course of the night and its level in the first non-REM
episode increases as a function of prior waking (Achermann
et al., 1993), which may indicate the reason why the observed
association only present between pre-sleep EEG complexity and

Frontiers in Neuroscience | www.frontiersin.org 8 November 2018 | Volume 12 | Article 809

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Hou et al. Presleep Complexity and Slow-Wave Sleep

SWA in early sleep rather than the whole night. Nonetheless, it
would be worth investigating the dynamic changes in pre-sleep
complexity and SWA through the entire night, and examining
the potential causal relationship in future work. As mentioned
above, most of the previous studies of EEG complexity focused
on analyses of entropy for each sleep stage, showing a trend
of decreasing complexity as sleep becomes deeper (Ma et al.,
2018). Non-linear features, including complexity indices, may
provide assistance in automatic sleep classification, but, more
importantly, studies are encouraged to break the boundaries of
limitation to expand the application of non-linear approaches,
so that we can better understand the sleep dynamics (Ma
et al., 2018). A further step would be to study the complexity
differences between normal and pathological conditions, and
investigate whether abnormal sleep can be predicted by the first
few minutes of pre-sleep EEG recording while a subject is still
awake. It would also be of value to determine the potential
mechanisms of pre-sleep EEG complexity and sleep-wake
transitions and overall sleep quality. Again, we encourage broad
applications of such complexity-based approaches in future
studies.

Regarding the methodology, the groups defined by FFT-
SWA90 showed significant differences regarding manually scored
sleep parameters (e.g., WASO, N1, N2, N3), while the differences
were not significant when groups were defined by EEMD-SWA90.
One possible reason is that both manual scoring and FFT spectral
analysis are based on the wave morphology and feature waves.
However, for revealing the underlying association between wake
complexity and quantified sleep SWA, the proposed EEMD-
basedmethod had better performance than traditional FFT-based
spectral analysis. GLM revealed a weak correlation between pre-
sleep EEG complexity and EEMD-SWA during the first 90min
of sleep. Furthermore, when we split the participants into two
groups according to the values of EEMD-SWA90, the sample
entropies at almost all time scales exhibited significant differences
between the two groups, suggesting that waking EEG complexity
can distinguish between lower and higher groups of SWA
after sleep onset quantified by the EEMD approach. However,
when SWA was measured using a traditional way such as FFT,
any association between waking complexity and sleep SWA
was insignificant. Owing to the non-linear and non-stationary
characteristics of EEG signals during sleep, there would be a
drifting of the frequency ranges of the EEG components for
each individual. In this situation, as demonstrated in the current
study, compared with the frequency band fixed method, a data
adaptive approach such as EEMD to measure SWA would be
more sensitive to the underlying dynamics of sleep and better able
to uncover its mechanisms.

One strength of this study was that we used an existing
database and included a reasonably large number of subjects
provided by the freely available database (SHHS) to test
our hypothesis. Meanwhile, limitations of this study include
that associations measured at the population level may not
reflect associations at the individual level, and that the study
is prone to confounding by other factors. In our study,
82% of the participants were female, which may limit the
generalizability of our finding, given that hormonal changes

during the menstrual cycle or in peri-menopausal transition
may affect sleep (Mallampalli and Carter, 2014; Jehan et al.,
2015). However, no such information was provided for the
participants in the database. Future studies with prospective
designs are strongly encouraged. In addition, the PSG data
provided in SHHS-1 were collected from two scalp-placed
electrodes: C3 and C4. Since each brain region is associated with
different EEG feature waves, future studies are encouraged to
perform such complexity and SWA analyses using multiple EEG
montages.

In conclusion, lower complexity before sleep onset is
associated with a decline of sleep latency and higher SWA
after sleep onset, suggesting that reduced complexity of brain
waves may improve sleep quality. The application of complexity
measures is important to extend our knowledge of sleep. Future
studies are encouraged to explore the complexity before sleep
among subjects with sleep disorders, to determine its relationship
with the efficacy of interventional approaches or for developing
screening tools for use with short-term pre-sleep EEG. Although
the current study elucidated the association between wakeful
brain complexity and nocturnal sleep quality in the healthy
population, future investigations should focus on patients with
sleep disorders. We would like to encourage interdisciplinary
efforts to address this research question.
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