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Abstract
Phenotypic plasticity can occur across generations (transgenerational plasticity) 
when environments experienced by the previous generations influenced offspring 
phenotype. The evolutionary importance of transgenerational plasticity, especially 
regarding within-generational plasticity, is a currently hot topic in the plasticity 
framework. How long an environmental effect can persist across generations and 
whether multigenerational effects are cumulative are primordial—for the evolution-
ary significance of transgenerational plasticity—but still unresolved questions. In this 
study, we investigated how the grand-parental, parental and offspring exposures to 
predation cues shape the predator-induced defences of offspring in the Physa acuta 
snail. We expected that the offspring phenotypes result from a three-way interac-
tion among grand-parental, parental and offspring environments. We exposed three 
generations of snails without and with predator cues according to a full factorial de-
sign and measured offspring inducible defences. We found that both grand-parental 
and parental exposures to predator cues impacted offspring antipredator defences, 
but their effects were not cumulative and depended on the defences considered. 
We also highlighted that the grand-parental environment did alter reaction norms of 
offspring shell thickness, demonstrating an interaction between the grand-parental 
transgenerational plasticity and the within-generational plasticity. We concluded 
that the effects of multigenerational exposure to predator cues resulted on complex 
offspring phenotypic patterns which are difficult to relate to adaptive antipredator 
advantages.
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1  | INTRODUC TION

Organisms may respond to fluctuating environments by adapting 
through genetic evolution over generations or through phenotypic 
plasticity. This last is traditionally defined as the capacity of a given 
genotype to produce alternative phenotypes under different envi-
ronmental conditions (within-generational plasticity) (Pigliucci, 2005; 
West-Eberhard, 2003). Plasticity may also occur across generations 
(transgenerational plasticity), when the phenotype of offspring is influ-
enced by carry-over effects of past environments experienced by the 
previous generation(s) (Agrawal, Laforsch, & Tollrian, 1999; Galloway 
& Etterson, 2007; Salinas, Brown, Mangel, & Munch, 2013). Ancestors 
can alter the phenotype of their offspring without involving changes 
in nucleotide sequence through a range of nongenetic processes as 
parental effects, for example, transmission of nutrients, hormones, pro-
teins (Crean & Bonduriansky, 2014; Mousseau & Fox, 1998), or by any 
form of epigenetic inheritance, for example, DNA methylation marks, 
histone protein modifications, noncoding small RNAs (Holeski, Jander, 
& Agrawal, 2012; Schlichting & Wund, 2014). Transgenerational plas-
ticity has been shown for several animal and plant taxa, various traits 
(behavior, morphology, and life-history) in response to abiotic (e.g., 
temperature, salinity, contaminants) and biotic (e.g., predation) envi-
ronments (Bonduriansky & Day, 2009; Donelson, Salinas, Munday, & 
Shama, 2018; Salinas et al., 2013). Transgenerational plasticity may 
enable organisms to cope with fast-changing environments because 
it refines offspring phenotype in anticipation of the environmental 
conditions they are likely to experience (Bonduriansky & Day, 2009; 
Donelson et al., 2018; Herman & Sultan, 2011).

However, while the main effects of parental environment and 
even grand-parental one on offspring phenotype are now widely ob-
served (e.g., Mousseau & Fox, 1998; Wolf & Wade, 2009; Herman 
& Sultan, 2011; Donelson et al., 2018), we need to investigate how 
the combined effects of multigenerational environments shaped the 
offspring phenotype to properly assess the potential for adaptive 
transgenerational effects (Prizak, Ezard, & Hoyle, 2014). Such inves-
tigations require to perform factorial experiments that often lead 
to complex patterns of phenotypic offspring responses. For exam-
ple, Hafer, Ebil, Uller, and Pike (2011) and Walsh, Whittington, and 
Funkhouser (2014) in collembolan (Folsomia candida) and cladoceran 
(Daphnia ambigua), respectively, demonstrated that age and length at 
maturity were affected by an interactive effect between grand-pa-
rental and parental environments. Moreover, such combinations of 
grand-parental and parental effects can also depend on the offspring 
environmental context. Plaistow, Lapsley, and Benton (2006), for 
instance, showed in the soil mite Sancassania berlesei that the per-
sistence of past environments (across four generations) differed be-
tween high- and low-food offspring contexts. In this study, our aim 
was to investigate how the grand-parental, parental and offspring 
exposures to predator cues combine to shape the predator-induced 
defences of offspring.

Predator-induced plasticity is a well-known model in within- 
generational plasticity study (e.g., Harvell, 1990; Relyea, 2001; 
Hoverman, Auld, & Relyea, 2005) and allows an individual to fine-tune 

its phenotypes facing predation risk (Benard, 2004; Lima, 1998; 
Tollrian & Harvell, 1999). Predator-induced defences are also widely 
used to investigate transgenerational plasticity over two generations 
(parental and offspring generations) (e.g., Agrawal et al., 1999; Walsh, 
Cooley, Biles, & Munch, 2015; Bell & Stein, 2017; Colicchio, 2017; 
Sentis et al., 2018). We focused on a hermaphroditic gastropod Physa 
acuta (Figure 1). Physidae are well-known to develop adaptive phe-
notypes in response to predation risk (Auld & Houser, 2015; Auld & 
Relyea, 2008, 2011; Beaty et al., 2016; DeWitt, Sih, & Hucko, 1999; 
Gustafson, Kensinger, Bolek, & Luttbeg, 2014). Predator (crayfish) 
cues induce within-generational plasticity of Physa sp. life-history 
traits (delay of age at maturity but at a larger size; Auld & Relyea, 
2008), shell thickness (thicker shell; Auld & Relyea, 2011), shell size 
(narrower shape; DeWitt, 1998), and escape behavior (crawling-out 
the water; Alexander & Covich, 1991; DeWitt et al., 1999).

According to a full factorial design, three successive generations 
of snails from hatching to sexual maturity were exposed or not to 
predator cues. The results concerning the first two generations have 
demonstrated a predator-induced transgenerational plasticity in P. 
acuta (Luquet & Tariel, 2016) that has been confirmed in a concomitant 
study (Beaty et al., 2016). Here, we focused on the F3 generation to 
investigate how the effects of grand-parental, parental and offspring 
environments combine to influence escape behavior, shell thickness, 
and shell morphology. First, we expected that both grand-parental and 
parental exposures to predator cues influence the offspring pheno-
types. In addition, as we already observed that parental environment 

F I G U R E  1   Physa acuta is a freshwater and simultaneous 
hermaphroditic snail, invasive from North America (Lydeard, 
Campbell, & Golz, 2016). This adult P. acuta is crawling underwater 
and is reflected on the bottom of the rearing vial
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can interact with the offspring environment (Luquet & Tariel, 2016), 
we expected that the offspring phenotypes result from a three-way in-
teraction among grand-parental, parental and offspring environments.

2  | METHODS

2.1 | Animal collection and experimental design

Adult P. acuta snails (Figure 1) were collected on March 2015 in a 
lentic backwater of the Rhône river (45° 48'6"N, 4° 55'33"E) in Lyon, 
France. The wild-caught adult snails constituted our F0 generation 
(see Appendix 1 for a figure of the experimental design). We pooled 
them overnight in a 10L vial to ensure that offspring result from out-
crossing (P. acuta is a preferential outcrosser; Jarne, Pointier, David, 
& Koene, 2010). Then, we individually isolated all F0 snails in 70 ml 
plastic vials filled with reconstituted water (2.4 g NaHCO3, 3 g 
CaSO4, 1.5 g MgSO4, 0.1 g KCl to 25 L deionized water) in a 25°C 
experimental room with 12 hr light-dark photoperiod. After 24 hr, we 
removed the F0 adults from the vials and we randomly choose 15 
vials with one egg capsule each. These 15 egg capsules constituted 
our 15 maternal families (hereafter called only “families”) of the F1 
generation and developed until hatching (~7 days). Two days after 
hatching, we randomly sampled 12 siblings per family and split them 
into two environments: 6 snails remained in a no-predator environ-
ment (control environment) while 6 others were moved in a predator-
cue environment. These F1 snails were reared in 70 ml plastic vials 
with their siblings until 28 days old where they were isolated in the 
same type of plastic vials until 35 days old. In order to generate the 
F2 generation, we made 6 F1 mating-groups per treatment. A mat-
ing-group was composed of 15 F1 snails (one F1 snail from each of 
the 15 families) in a 5L vial. We let the F1 snails to mate for 24h and 
then isolated them in a no-predator water to ensure embryos were 
not exposed to predator environment. We randomly subsampled 18 
F1 snails that had laid eggs from each treatment to generate the F2 
generation. We then followed the same protocol as previously to rear 
F2 snails in control and predator-cue environments according to a full 
factorial design until 49 days old. The F3 generation was then gener-
ated and reared using the procedure described above. As growth rate 
was slowing down every generation under our laboratory conditions, 
we let F3 snails grew up to a later age (74 days old) to ensure a suf-
ficient size for measurements. This F3 generation was represented 
by eight combinations of grand-parental (E1), parental (E2), and off-
spring (E3) environments: CCC, CPC, PCC, PPC, CCP, CPP, PCP, and 
PPP with each time “C” for control environment and “P” for predator-
cue environment (Figure 2). The number of individuals and families 
per combination of environments is reported on Figure 2.

Water and food (ad libitum, chopped and boiled lettuce) were re-
newed for all experimental snails twice a week. Predator-conditioned 
water with predator cues was obtained by individually rearing cray-
fishes (Procambarus clarkii) in 4L reconstituted water and feeding 
with one crushed P. acuta adult one day before water change (Auld 
& Relyea, 2011). This crayfish-conditioned water was used for the 

predator-cue treatment while only reconstituted water was used for 
the control treatment. This crayfish species coexists with P. acuta in 
its native location in North America.

2.2 | Measuring phenotypes

We measured escape behavior, shell thickness, snail mass, and four 
shell size traits on F3 (offspring) snails. We assessed escape behavior 
three times in 70 days old F3 snails through three consecutive days 
starting one day after the water change. We recorded the position 
above/on or below the water surface in the rearing vials with preda-
tor cues present or absent according to the treatment. Crawling-out 
of the water (position above water surface) is considered as allowing 
to escape from benthic predators like crayfishes (DeWitt et al., 1999).

At 74 days old, we gently dried snails with paper towel and mea-
sured the snail total wet mass (body and shell) with an electronic 
scale at the nearest 0.001 mg. A photograph of each snail aperture 
upwards was taken with an Olympus SC50 camera installed on 
an Olympus SZX9 binocular and its Olympus DF PLAPO 1X-2 ob-
jective at a ×8 magnification. Shell and aperture length and width 
were measured on these photographs with the software ImageJ 
(Schneider, Rasband, & Eliceiri, 2012). Shell thickness was measured 
with an electronic calliper at the nearest 0.01 mm at the edge of 
the aperture. Shorter and narrower shell and aperture dimensions 
(after adjusting for mass) and thicker shell are adaptive antipredator 
responses (Auld & Relyea, 2011).

2.3 | Statistical analysis

The multigenerational effects of predator cues on escape behav-
ior (i.e., snail position above/on or below the water surface) were 
analyzed using generalized linear mixed models (GLMM) assuming a 
binomial distribution (logit link function). Grand-parental (E1), paren-
tal (E2), offspring (E3) environments, and all interactions were con-
sidered as fixed effects. Family and individual identity (to account 
for repeated measures on the same individual) were considered as 
random effects. We tested significance of fixed and random effects 
with likelihood ratio tests.

To analyze the multigenerational effects of predator cues on 
snail mass, shell thickness, shell length, shell width, aperture length, 
and aperture width, we performed a principal component analysis in 
order to extract the first and second principal components (PC1 and 
PC2), both explaining 96% of the variance.

We then used PC1 and PC2 as response variables in two linear 
mixed models where grand-parental (E1), parental (E2), offspring (E3) 
environments, and all interactions were considered as fixed effects. 
Family was considered as a random intercept. We used restricted 
maximum likelihood estimation and Kenward and Roger's approxima-
tion for degrees of freedom. We tested significance of fixed effects 
with type II F-tests (Kuznetsova, Brockhoff, & Christensen, 2017) and 
significance of random effect with likelihood ratio test.
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All statistical analyses were performed with R 3.4.1 (R Core 
Team, 2017) and with the packages lme4 (Bates, Mächler, Bolker, & 
Walker, 2015) and FactomineR (Lê, Josse, & Husson, 2008).

3  | RESULTS

3.1 | Escape behavior

The offspring exposure to predator cues (E3) significantly increased 
by 105% the proportion of snails crawling-out the water (Table 1a; 
Figure 3). The parental environment (E2) did not affect the propor-
tion of crawling-out behavior (Table 1a; Figure 3). However, grand-
parental exposure to predator cues (E1) significantly increased by 
28% the proportion of crawling-out behavior (Table 1a; Figure 3).

3.2 | Snail mass, shell thickness, and shell size

Principal component analysis revealed that 96% of the variance for 
snail mass, shell thickness, and four shell size traits was explained by 
the first and second principal components (PC1 and PC2; Figure 4). 
We interpreted PC1 as a proxy of snail size: PC1 was mostly driven by 
snail mass (18%), shell length (19%), shell width (19%), aperture length 
(18%), and aperture width (17%) and was slightly driven by shell thick-
ness (9%). PC2 was driven mostly by shell thickness (91%) allowing to 
interpret this axis as a proxy of shell thickness corrected for snail size.

The offspring exposure to predator cues significantly reduced the 
snail size (PC1; Table 1b; Figure 4a) but neither the parental environ-
ment nor the grand-parental one influenced it (Table 1b; Figure 4a).

Offspring environment interacted both with grand-parental and 
parental environments to shape the shell thickness (PC2; Table 1c; 
Figure 4b). In the offspring control environment, the grand-parental 
exposure to predator cues increased the offspring shell thickness 
(PC2) whereas the parental exposure to predator cues decreased 
it (Figure 4b). In the offspring predator-cue environment, the 
grand-parental exposure to predator cues decreased the offspring 

shell thickness (PC2) whereas the parental exposure to predator 
cues increased it (Figure 4b). Regarding the direct effect of offspring 
environment, offspring from predator-cue environment had a thicker 
shell (PC2) than those from current control environment (Figure 4b).

4  | DISCUSSION

We first confirm that the exposure to predator cues induces well-known 
defences against crayfish predation in P. acuta (Auld & Relyea, 2011; 
Dalesman, Rundle, & Cotton, 2009; DeWitt, Robinson, & Wilson, 2000; 
DeWitt et al., 1999; Turner, Fetterolf, & Bernot, 1999). The offspring 
exposure to predator cues induced higher crawling-out behavior, shell-
crushing resistance (thicker shell) and entry-resistant shell (narrower 
shell and aperture). Moreover, offspring exposed to predator cues were 
lighter, suggesting a trade-off, that is, a lower energetic investment in 
growth due to a potential cost to produce these defences (as shown 
in other gastropod species: Brönmark et al., 2012). This result stresses 
the fitness advantage of within-generational plasticity which allow the 
production of costly defences only in case of predation (Harvell, 1990). 
Our key finding is that predator cues alter also offspring defences two 
generations later but depending on the offspring environment (within-
X transgenerational plasticity) and the defensive traits considered. Our 
experimental work highlights that transgenerational plasticity effects 
can be complex beyond the parental generation and that the offspring 
phenotype results from a combination of multigenerational effects.

4.1 | Grand-parental and parental effects on anti-
predator defences

Transgenerational plasticity is expected to evolve when the ancestral 
environment is a good proxy of offspring environment (Bonduriansky 
& Day, 2009; Dey, Proulx, & Teotónio, 2016; English, Pen, Shea, & Uller, 
2015; Harvell, 1990; Leimar & McNamara, 2015; Uller, 2008), allow-
ing a preadaptation of offspring to predation risk (Agrawal et al., 1999). 
In our predator-prey system, crayfish has a long lifespan (ca. 3 years) 

F I G U R E  2   Number of individuals (N) 
and families (Family) at each generation 
(F1, F2, and F3). "C" stands for control 
environment and "P" for predator-cue 
environment. For the F3 generation, 
two number of individuals are reported, 
one for behavioral measurements (first 
position) and one for other measurements 
(second position)
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compared to the generation time of P. acuta (ca. 50 days) and a relatively 
sedentary lifestyle (Vioque-Fernández, Alves de Almeida, & López-
Barea, 2009). This suggests that generational cues of crayfish presence 
can be a good proxy of predation risk across several snail generations 
and thus that transgenerational plasticity could have long-lasting ef-
fects on the antipredator defences. Consistently, in P. acuta, parental 
exposure to predator cues induces a more crush-resistant shell and a 
higher escape behavior in offspring (Beaty et al., 2016; Luquet & Tariel, 
2016). In this study, as expected, transgenerational plasticity went fur-
ther than the parental generation: The grand-parental environment also 
influenced the escape behavior and the shell thickness of offspring.

How long can persist transgenerational effects on anti-predator 
responses remains an open question. To our knowledge, the study of 

Sentis et al. (2018) on the pea aphid (Acyrthosiphon pisum) is the only 
one to investigate predator-induced transgenerational plasticity 
over many generations (>25). They found that the defensive pheno-
type—a high frequency of winged aphids in the population—persists 
for one generation after removing predators whatever the induction 
time is, that is, the previous number of successive generations expe-
riencing the novel environment (predator presence). However, three 
generations are needed after removing predators for the frequency 
of winged phenotypes to come back to the control level, and this 
number of generations increases with the induction time. Together, 
these results suggest that multigenerational environmental effects 
on inducible defences are broader than just a parental effect and 
could persist for many generations.

TA B L E  1   Results of: (a) the generalized mixed model on offspring crawling-out behavior; (b) the linear mixed model on offspring snail 
size (PC1); and (c) the linear mixed model on offspring shell thickness (PC2) (PC1 and PC2 are the principal components of the principal 
component analysis on offspring snail mass, shell thickness, and four shell size traits)

Fixed effects Estimate (SE) df Χ2 p

a. Crawling-out Grand-parental env. (E1) 0.848 (0.6812) 1 8.29 .0040

Parental env. (E2) −0.090 (0.3864) 1 0.4 .5274

Offspring env. (E3) 1.738 (0.3544) 1 114.46 <.0001

E1 × E2 −0.389 (0.7696) 1 0.01 .9315

E1 × E3 −0.168 (0.7882) 1 1.89 .1687

E2 × E3 −0.146 (0.4242) 1 0.01 .9072

E1 × E2 × E3 0.855 (0.8915) 1 0.91 .3395

Random effects Variance df Χ2 p

Family 0.489 1 14.98 .0001

Individual 0.391 1 8.26 .0040

Fixed effects Estimate (SE) Numdf, Dendf F p

b. Snail size (PC1) Grand-parental env. (E1) 0.037 (0.8837) 1, 41.93 0.47 .4986

Parental env. (E2) −0.212 (0.4689) 1, 48.96 0.45 .4528

Offspring env. (E3) −0.915 (0.4717) 1, 355.06 17.40 <.0001

E1 × E2 −0.183 (0.9912) 1, 56.62 0.10 .7589

E1 × E3 −0.150 (1.0779) 1, 349.40 0.18 .6695

E2 × E3 0.052 (0.5811) 1, 363.02 0.005 .9463

E1 × E2 × E3 −0.075 (0.2114) 1, 358.88 0.003 .9505

Random effect Variance df Χ2 p

Family 0.3572 1 4.60 .0320

Fixed effects Estimate (SE) Numdf, Dendf F p

c. Shell thickness 
(PC2)

Grand-parental env. (E1) 0.055 (0.2821) 1, 41.14 0.11 .7409

Parental env. (E2) −0.227 (0.1484) 1, 49.44 0.06 .8066

Offspring env. (E3) 0.313 (0.1543) 1, 356.26 45.04 <.0001

E1 × E2 0.103 (0.3155) 1, 58.24 0.48 .4923

E1 × E3 −0.406 (0.3535) 1, 350.40 4.11 .0433

E2 × E3 0.410 (0.1904) 1, 363.97 6.67 .0102

E1 × E2 × E3 0.099 (0.3975) 1, 359.66 0.06 .8036

Random effect Variance df Χ2 p

Family 0.026 1 1.72 .1892

Note: Bold values indicate significant p-values (p < .05).
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4.2 | Combination of multigenerational effects on 
antipredator defences

We showed that the offspring phenotype results from a combination 
of multigenerational effects (grand-parents, parents and offspring), 
similar to theoretical and other experimental studies (Burggren, 
2015; Hafer et al., 2011; Kou et al., 2011; Lock, 2012; Prizak et al., 
2014; Shama & Wegner, 2014; Walsh et al., 2014). However, in our 
study, grand-parental and parental effects acted independently (no 
significant interaction between grand-parental and parental envi-
ronmental effects): Either only one affected the offspring environ-
ment (behavior), or in interaction with the offspring environment 
(within-X transgenerational plasticity) and in opposite directions 
(shell thickness). This results in complex offspring phenotypic pat-
terns that do not fit with a self-explanatory antipredator scenario 
with clear adaptive advantages. It would be thus interesting to as-
sess the adaptive relevance by comparing the survival of snails from 
different past environmental histories exposed to lethal predation 
challenges. The offspring crawling-out behavior increased with 

offspring and grand-parental exposures to predator cues while the 
parental environment did not alter this behavior. Abnormal mortality 
in one lineage (lineage with grand-parental exposure but no parental 
exposure) might explain why parental effects were not detected on 
behavior. Shell thickness was influenced by both grand-parental and 
parental environments, but in opposing directions and depending 
on the offspring environment (grand-parental and parental within-X 
transgenerational plasticity interactions). In offspring control envi-
ronment, grand-parental exposure to predator cues increased the 
offspring shell thickness whereas parental exposure reduced it. The 
effects were opposite in the offspring predator-cue environment.

Firstly, these results confirm that offspring reaction norms can 
be altered by parental environment (shell thickness; Donelson et 
al., 2018; Luquet & Tariel, 2016; Salinas et al., 2013) but expand for 
the first time the within-X transgenerational plasticity interaction to 
grand-parental environmental cues (shell thickness). Secondly, the ap-
parent discrepancy between grand-parental and parental effects for 
the crawling-out behavior or the opposing directions found on shell 
thickness is not rare in empirical studies (Magiafoglou & Hoffmann, 
2003; Shama & Wegner, 2014) and illustrates the complexity in de-
termining the adaptive significance of multigenerational effects. 
Such discrepancies may reflect different mechanisms underlying the 
transfer of environmental information (Shea, Pen, & Uller, 2011). This 
complex opposing relationship between grand-parental and parental 
environmental effects could be also theoretically beneficial by reduc-
ing the phenotypic variance which allow the population to stay closer 
to the target phenotype (Prizak et al., 2014). Moreover, focusing on 
few generations in short-term experiments artificially focuses the in-
terpretations of such effects while they could only be transient over 
longer timescales in a population dynamic framework. For example, 
Sentis et al. (2018), after removing predators, observed that the fre-
quency of winged aphids remained high for one generation before 
dropping abruptly below the control levels (grand-parental effect), 
and then converging with the winged aphid frequencies of the control 
lines (great-grand-parental effect). Consequently, in focusing on only 
three consecutive generations as in our study, these results could be 
interpreted as a negative grand-parental effect (decrease of winged 
aphid frequency) opposing to a positive parental effect (increase of 
winged individual frequency) on the offspring phenotype. These 
findings highlight the need to develop empirical studies on longer 
timescales and controlling for the combination of multigenerational 
effects.

4.3 | Trait-dependence of transgenerational plasticity

Our results show that the pattern of transgenerational plasticity 
depends on the traits (escape behavior, shell thickness and shell 
size). Behavioral traits, which are often labile and exhibiting revers-
ible within-generational plasticity within developmental or adult 
stages, are predicted to be influenced by current environment 
rather than by past environmental experience (Dingemanse & Wolf, 
2013; Piersma & Drent, 2003). Behavioral within-generational 

F I G U R E  3   The effect of multigenerational exposure to 
predator cues on offspring crawling-out behavior (proportion of 
snails out the water in %). The legend panel at the bottom shows 
which shapes to compare to identify grand-parental or parental 
environmental effect. CCC, PCC, CPC, PCC, CCP, PCP, CPP, and 
PPP represent the eight combinations of grand-parental (E1), 
parental (E2), and offspring (E3) environments with "C" for control 
environment and "P" for predator-cue environment for every 
generation. The vertical dashed line separates the two offspring 
treatment groups. Blue shapes are for grand-parental control 
environment and red shapes for grand-parental predator-cue 
environment. Circles are for parental control environment and 
squares for parental predator-cue environment. Open shapes are 
for offspring control environment and closed shapes for offspring 
predator-cue environment. Data are means ± SE

30

40

50

60

70

80

C
ra

w
lin

g−
ou

t b
eh

av
io

ur
 (%

)

CCC PCC CPC PPC CCP PCP CPP PPP
Offspring env. control Offspring env. predator-cue

Grand-parental env.
pr

ed
at

or
-

cu
e

co
nt

ro
l

Parental env.
predator-
cue

control



     |  2373TARIEL ET AL.

plasticity in response to current environmental cues should rap-
idly by-pass the behavioral transgenerational plasticity (Beaman, 
White, & Seebacher, 2016). By contrast, the traits that are more 
constrained during the development and exhibiting irreversible 
variations, as morphological traits, are predicted to be relatively 
more influenced by past environments (Kuijper & Hoyle, 2015). 
Transgenerational plasticity on morphological traits could irrevers-
ibly engage the offspring on developmental trajectories and could 
not be compensated by within-generational plasticity. In P. acuta, 
crawling-out behavior is indeed very flexible and reversible at a time 
scale of hours while a thicker shell and a narrower shell shape are 
irreversible changes in the developmental trajectory (DeWitt et al., 
1999; Relyea, 2003). Surprisingly in our study, the escape behavior 
of offspring is influenced by the grand-parental environment while 
shell size was not influenced by parental or grand-parental environ-
ments. This highlights that transgenerational effects on morpho-
logical traits may have a short persistence over generations while 
behavioral transgenerational plasticity may be much more preva-
lent than currently realized. Parental transgenerational plasticity 
on behavioral traits has been sometimes observed (e.g., Bestion, 
Teyssier, Aubret, Clobert, & Cote, 2014; Donelan & Trussell, 2015; 
Giesing, Suski, Warner, & Bell, 2011; Storm & Lima, 2010) and few 
times with long-lasting effects over generations (Dias & Ressler, 
2014; Remy, 2010).
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APPENDIX 1

Experimental design.

x150 adult F0
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Snail development

26 days
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Again for F2 and F3generations


