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Members of the microRNA-34/miR-34 family are induced by the p53 tumor suppressor and themselves
possess tumor suppressive properties, as they inhibit the translation of mRNAs that encode proteins
involved in processes, such as proliferation, migration, invasion, and metastasis. Here we performed a
comprehensive integrative meta-analysis of multiple computational and experimental miR-34 related
datasets and developed tools to identify and characterize novel miR-34 targets. A miR-34 target proba-
bility score was generated for every mRNA to estimate the likelihood of representing a miR-34 target.
Experimentally validated miR-34 targets were strongly enriched among mRNAs with the highest scores
providing a proof of principle for our analysis. We integrated the results from the meta-analysis in a user-
friendly METAmiR34TARGET website (www.metamir34target.com/) that allows to graphically represent
the meta-analysis results for every mRNA. Moreover, the website harbors a screen function, which allows
to select multiple miR-34-related criteria/analyses and cut-off values to facilitate the stringent and com-
prehensive prediction of relevant miR-34 targets in expression data obtained from cell lines and tumors/
tissues. Furthermore, information on more than 200 miR-34 target mRNAs, that have been experimen-
tally validated so far, has been integrated in the web-tool. The website and datasets provided here should
facilitate further investigation into the mechanisms of tumor suppression by the p53/miR-34 connection
and identification of potential cancer drug targets.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

MicroRNAs (miRNAs) are short non-coding RNAs that bind to
partially complementary sequences in 30-untranslated regions
(30-UTR) of their target mRNAs via a 7 nucleotide seed sequence
located at their 50-ends [1]. Via this interaction, miRNAs suppress
the translation of target mRNAs by recruiting the RISC complex.
As a secondary consequence, target mRNAs are degraded. Both
effects lead to down-regulation of target expression by miRNAs.
Since miRNAs exert their function by the regulation of their target
mRNAs, the identification of miRNA targets is important to under-
stand the biological function of miRNAs. Certain miRNAs play
important roles in cancer, because they regulate the expression
of cancer-related genes [2,58]. For example, the miR-34a targets
c-Met and Axl represent important oncogenes and inhibitors of
these proteins have been translated into clinical trials or are
approved for the treatment of certain types of tumors [5,6,58,59].
So far, putative microRNA target RNAs were identified by using
miRNA prediction algorithms that identify potential miRNA targets
based on a match between a miRNA and its target mRNA in the
seed sequence [reviewed in [7]. Since such an approach is entirely
computational it may generate false positive assignments. In the
last years comprehensive genome-wide miRNA and mRNA expres-
sion profiling studies of tumors have been performed within The
Cancer Genome Atlas (TCGA) program, which allow correlation
analyzes between miRNA and mRNA expression [8]. These datasets
have been integrated with computational algorithms in miRNA
portals, such as miRGator to improve miRNA target prediction
[9]. However, correlational analyses are very indirect and provide
only the information as to whether the expression of miRNA and
mRNA correlate positively or negatively. Besides mRNA expression
profiling studies in tumors, many studies applying genome-wide
mRNA profiling in cell lines and mouse models after ectopic miRNA
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expression or miRNA knockout have been performed in last years.
These datasets allow a more direct and straightforward identifica-
tion of putative miRNA targets. However, to our knowledge such
datasets have not yet been integrated into webtools for miRNA tar-
get identification. Here we integrated experimental datasets based
on ectopic miRNA expression in cell lines or miRNA knockout in
mouse models, miRNA/mRNA correlation datasets and computa-
tional prediction algorithms to develop a user friendly web-based
tool that allows a comprehensive identification of miRNA targets
(Fig. 1). Exemplarily, we focused on miR-34a, miR-34b, and miR-
34c, which are members of the miR-34 family and represent some
of the most prevalent p53-induced miRNAs (Fig. 2A) [4,10–13,59].
miR-34a is ubiquitously expressed in most organs, whereas miR-
34b and miR-34c are expressed mainly in the brain, lungs, and
uterus [14]. miR-34 host genes are often inactivated/silenced in
cancer [15]. miR-34 family members possess tumor suppressor
properties, which are mediated by the repression of their target
mRNAs [16]. Published miR-34 targets include mRNAs encoded
by prominent oncogenes that promote proliferation, migration,
invasion, metastasis, such as AXL [3,17,60], MET [4], KIT [18], CSF1R
[19], and NTN1 [20], as well as central regulators of cancer-related
processes, such as SNAIL [21,22], IL6R [23], SERPINE1 [24], PPP1R11
[25], WASF1 [26] and LDHA [3]. However, many mediators of miR-
34 functions still have to be identified and experimentally vali-
dated. Since the p53/miR-34 axis is often inactivated in tumors,
the targets of miR-34 are up-regulated during tumor initiation
and progression and mediate oncogenic effects [20]. Therefore, cer-
tain miR-34 targets may represent attractive targets for therapeu-
Fig. 1. Flowchart of METAmiR34TARGET development. Indicated input datasets
were analyzed and integrated into the METAmiR34TARGET website, which allows a
comprehensive identification of miR-34 targets.
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tic inhibition, as shown for PAI1 and IL6R in a mouse model of CRC
[24]. However, miR-34 and their targets also play important roles
in normal tissue development and homeostasis. For example, while
miR-34 is protective in cancer, it is detrimental in cardiovascular
environment (e.g. hypertrophy) [27]. The miR-34a target PNUTS
reduces telomere shortening, DNA damage responses and car-
diomyocyte apoptosis, and improves functional recovery after
acute myocardial infarction [27]. Therefore, the suppression of cer-
tain miR-34 targets may also have toxic side effects.
2. Materials and methods

2.1. Datasets and data processing

18 datasets containing genome-wide mRNA expression profil-
ing data obtained from cell lines after transfection with miR-34a/
b/c mimics or expression vectors (Table S1) and 6 mRNA expres-
sion profiling datasets derived from miR-34a/b/c knockout mice
(Table S2) were downloaded from NCBI GEO (https://www.ncbi.
nlm.nih.gov/geo/). For datasets obtained by RNA-seq (GSE99401,
GSE123628, GSE133775, GSE69484, GSE84138, and GSE99452),
RPKM values were used and for datasets obtained by microarrays
(all other datasets), normalized signal intensity values were used.
The fold change was calculated by dividing mRNA expression
levels after ectopic miR-34 or miR-34 knockout by the control
expression levels for every mRNA. Two protein profiling datasets
generated from cell lines after ectopic miR-34a and miR-34c were
obtained from literature [3,28]. Normalized SILAC H/M ratio values
represent fold changes in protein expression for ectopic miR-34a/c
versus control. Furthermore, two miR-34a pulldown datasets that
identified mRNAs that are bound by miR-34a were obtained from
the literature [29,30]. Average fold enrichment ratio values of
miR-34a vs miR-scrambled pulldown were used. TCGA datasets
containing mRNA and miRNA expression profiling of tumors from
32 cancer entities were down-loaded from the NIH GDC data portal
(https://portal.gdc.cancer.gov/). The correlation between the
expression of mature miR-34a/b/c and every mRNA was calculated
by Pearson correlation coefficient (RSEM expression values were
used). Data from 12 miRNA target prediction tools/algorithms
was downloaded and analyzed from webpages listed in Table S3.
Validated/published miR-34 targets were identified by manual
analysis of the literature available in Pubmed until August 2022
with keywords: miR-34a, miR-34b, miR-34c.
2.2. Calculation of miR-34a/b/c target probability scores

The datasets described above were integrated to calculate a
score for every mRNA in order to estimate the likelihood of repre-
senting a potential miR-34a/b/c target. First, partial scores were
calculated for each dataset type. For datasets generated after ecto-
pic miR-34a/b/c expression the score was calculated as the number
of datasets in which the mRNA or protein expression was repressed
by more than 1.5-fold divided by the total number of datasets. For
miR-34a/b/c knockout mice datasets the score was calculated as the
number of datasets in which the mRNA expression was induced
more than 1.5-fold in knockout mice, divided by the total number
of datasets. The TCGA mRNA/miR34a/b/c correlation score was cal-
culated as the number of datasets/cancer types in which the
mRNA/miR-34a/b/c/ Pearson correlation coefficient is lower than
�0.1 divided by the total number of datasets/cancer types. For
miR-34 pulldown datasets the score was calculated as the number
of datasets in which the mRNA enrichment in the pull-down with
miR-34 probes was more than 1.5-fold than with control probes,
divided by the total number of datasets. For miRNA target predic-
tion tools/algorithms dataset types, the score was calculated by
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Fig. 2. Sequence alignment of miR-34 family members andmiR-34 target identification rates obtained by public prediction tools. (A) Sequence alignment of the mature
miR-34a, miR-34b, and miR-34c. The seed-sequences are high-lighted in bold. A target mRNA with ideal seed-match binding site is shown in the bottom. (B) Overview of
frequencies of predicted miR-34a, miR-34b, and miR-34c target mRNAs identified by the respective miRNA target prediction tools/algorithms.
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dividing the number of prediction tools predicting a mRNA as a
miR-34a/b/c target by the total number of prediction tools. All par-
tial scores were added together with all dataset types weigh
equally to obtain the miR34a/b/c probability score.

miR-34 target probability score =
no: of ectopicmi R34 studies mRNA data sets; FC<0:66ð Þ

no: of all ecotpicmi R34 studies ðmRNA data setsÞ +
no: of ectopicmi R34 studies protein data sets; FC<0:66ð Þ

no: of all ecotpicmi R34 studies protein data setsð Þ +
no: of miR34 knock out studies FC>1:5ð Þ

no: of all miR34 knock out studies +
no: of mRNA=miR34 TCGA correlation data sets r<�0:1ð Þ

no: of all mRNA=miR34 TCGA correlation data sets +
no: of miR34 pull down studies FC>1:5ð Þ

no: of all miR34 pull down studies

+.no: of miR34 prediction algorithms ðpredicted targetÞ
no: of all miR34 prediction algorithms

Finally, the score was rescaled between 0 and 100 with the
highest score set to 100 to obtain the final miR34a/b/c probability
score.
2.3. Gene set enrichment analysis

The association between the probability score and experimen-
tally validated miR-34 targets was calculated using ranked GSEA
analyses with genes ranked according to the miR-34a/b/c target
probability score. The enrichment of top predicted miR-34a/b/c
targets in hallmark MSigDB gene sets was analyzed using GSEA
[31].
2.4. METAmiR34TARGET webpage

The METAmiR34TARGET webpage was designed using the R

package shiny (https://shiny.rstudio.com/).
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3. Results and discussion

3.1. Meta-analysis of publicly available miR-34 related datasets

Here we developed a bioinformatics approach to comprehen-
sively identify potential targets of the miR-34 family (flow-chart
provided in Fig. 1). To identify mRNAs that are regulated by miR-
34, we first performed a query of the NCBI GEO database for data-
sets that were obtained by genome-wide mRNA expression profil-
ing of cell lines after transfection with miR-34a/b/c mimics or
expression vectors. Thereby, we obtained 18 GEO-datasets
(Table S1) that were subsequently analyzed as described in Mate-
rials and methods. In addition, two studies that comprehensively
characterized changes in protein expression after ectopic miR-
34a and miR-34c expression [3,28], were included. For each mRNA
or protein, the fold change caused by ectopic miR-34a/b/c was cal-
culated. Since miRNAs generally repress their targets, mRNAs/pro-
teins that are consistently suppressed by ectopic miR-34 in
multiple datasets represent potential miR-34a/b/c targets. Next,
we analyzed 6 mRNA expression profiling datasets derived from
multiple tissues and tumors from miR-34a/b/c knockout mice
(Table S2) to determine differential expression of miR-34 target
mRNAs between miR-34a/b/c knockout vs wild-type samples.
mRNAs consistently induced in samples from knockout mice were
regarded as potential miR-34a/b/c targets. Although these studies
provide information as to whether the mRNA abundance is regu-
lated by miR-34a/b/c, it remained unknown whether the regula-
tion is mediated directly via binding of the miRNA to the 30-UTR
or by an indirect mechanism, e.g. an effect on factors regulating
the activity of the host gene of the target mRNA. To investigate
whether an mRNA is potentially a direct miR-34a/b/c target, 12 dif-

https://shiny.rstudio.com/
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Fig. 3. Gene set enrichment analysis of predicted miR-34a, miR-34b, and miR-34c targets. (A) Enrichment of published miR-34a targets (210) in genes with highest miR-
34a target probability scores. (B) Enrichment of published miR-34b targets (28) in genes with highest miR-34b target probability scores. (C) Enrichment of published miR-34c
targets (53) in genes with highest miR-34c target probability scores. (D-F) GSEA analyses of 300 top ranked potential miR-34a (D), miR-34b (E), and miR-34c (F) targets in
Hallmark MSigDB gene sets. Common gene sets enriched in potential targets of multiple miR-34 miRNAs are displayed in same colors.

Table 1
Top 40 predicted miR-34a, miR-34b, and miR-34c target mRNAs.

miR-34a targets miR-34b targets miR-34c targets

Gene Score Validation Gene Score Validation Gene Score Validation

ACSL4 100.00 [3,35] ZZZ3 100.00 – VCL 100.00 [36]
RDH11 81.89 – HMGN4 98.24 – ACSL4 98.51 –
AXL 89.71 [3,17,37] C6orf89 97.06 – ZDHHC16 98.51 –
ARHGAP1 81.48 [38] TUFT1 96.47 – PRR11 97.01 –
RRAS 81.89 [3] API5 95.29 – E2F5 97.01 –
TPD52 81.48 [3] DDX21 93.53 – FLOT2 94.03 –
ERLIN1 77.78 – REEP5 91.76 – MTA2 88.81 –
LRRC40 77.78 – ZC3H15 90.00 – FUT8 88.81 –
VCL 81.48 [36] RHOU 84.71 – TUFT1 88.81 –
GINS3 80.66 – SH3BGRL2 84.71 – UHRF2 88.06 –
TAF5 68.31 – ARNT2 84.12 – PREB 87.31 –
MET 76.13 [4,39] AP3M1 82.35 – AXL 86.57 [3,17,37]
CDC23 72.02 – ETS1 80.59 – PACS1 86.57 –
CDK6 74.90 [40,41] GLCE 80.59 – CDK6 86.57 –
LMAN2L 64.61 [42] DHTKD1 79.41 – PPARGC1B 86.57 –
EFNB1 69.55 – E2F5 79.41 – LGR4 85.82 [43]
SURF4 65.84 – KIF1A 79.41 – ARHGAP1 85.82 –
TBC1D13 71.19 – PDK1 79.41 – ERGIC1 85.07 –
NUP210 71.60 – SLC39A9 79.41 – SH3GL1 84.33 –
MAP2K1 68.31 [44] SNX1 79.41 – MAP2K1 84.33 –
POU2F1 63.37 – TMED4 79.41 – CDC25A 83.58 –
TSEN15 69.55 – ZNRF3 79.41 – GNPDA1 82.84 –
SMAD4 64.61 [45] PURB 78.82 – LMAN2L 82.09 –
MPV17L2 69.55 – UHRF2 78.82 – TGIF2 82.09 [46]
PACS1 66.26 [47] YWHAZ 78.82 – LDHA 81.34 –
QDPR 69.55 – ANKS1A 78.24 – FAM167A 80.60 –
GORASP2 68.31 – DEPDC1 78.24 – METAP1 80.60 –
E2F5 61.32 [48] SLC16A14 77.65 – SGPP1 80.60 –
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Table 1 (continued)

miR-34a targets miR-34b targets miR-34c targets

Gene Score Validation Gene Score Validation Gene Score Validation

MAGT1 61.32 – PLEKHA1 77.65 – ERLIN1 79.85 –
IQGAP3 67.90 – SYT4 77.65 – TSPAN14 79.85 –
SLC29A1 68.72 – CHRAC1 76.47 – MKI67 79.10 –
SH3GL1 63.79 – INCENP 76.47 – PIP5K1A 78.36 –
TMEM109 60.91 – PPM1K 76.47 – E2F3 77.61 –
FOXJ2 58.02 [49] BRIP1 76.47 – XBP1 77.61 [50,51]
HMMR 61.32 – RAD54L2 76.47 – MCM2 76.87 –
RRP1B 62.96 – RCC2 76.47 – ARSB 76.87 –
SIRT1 57.20 [52,53] TTC33 76.47 – SMPD1 76.87 –
SGPP1 63.37 [54] WNK3 76.47 – BAZ2A 76.12 –
TGIF2 58.85 – AP1S2 75.88 – SPEN 76.12 –
CCNE2 63.37 [4,41] AMMECR1 75.88 – SYT1 76.12 [55,56]
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ferent miRNA target prediction tools/algorithms were included
(Table S3). The number of predicted miR-34a/b/c targets varied
from 254 to 9482, depending on the miRNA target prediction tool
used (Fig. 2B). We also included the results from two studies,
which used miR-34a pulldown assays to identify mRNAs directly
bound to miR-34a. Finally, correlations between the expression
of mRNAs and miR-34a/b/c in TCGA datasets of 32 different tumor
entities were analyzed. Since miRNAs repress their targets, mRNAs
that display a negative correlation with miR-34a/b/c represent
potential targets. In addition, we performed a literature search to
identify miR-34a, miR-34b, and miR-34c target mRNAs that had
already been validated experimentally. For this we examined all
miR-34-related publications available in PubMed until August
2022 and identified 210 miR-34a, 28 miR-34b, and 53 miR-34c tar-
gets that had previously been validated by 30-UTR luciferase repor-
ter assays (Table S4).
3.2. Calculation of miR-34a/b/c target probability scores

Next, we integrated all mRNA expression, binding, and correla-
tion analyses described above and calculated a score for every
mRNA (described in Materials and methods) to estimate the likeli-
hood that an mRNA represents a potential miR-34a/b/c target
(Table S5). Target mRNAs were ranked according to their scores.
Ranked GSEA analysis showed that previously published and
therefore validated miR-34a targets listed in Table S4 are strongly
enriched among mRNAs with highest miR-34a target probability
scores (Fig. 3A). Similar results were obtained for miR-34b and
miR-34c (Fig. 3B and 3C). These results indicated that the algo-
rithm developed here is suitable for the identification of mRNAs
targeted by miR-34a, miR-34b, and miR-34c. The forty most highly
ranked potential miR-34a, miR-34b, and miR-34c target mRNAs
are depicted in Table 1. GSEA analyses of the 300 top-ranked
potential miR-34a target mRNAs revealed that they were enriched
in Hallmark MSigDB gene sets associated with E2F targets and cell
cycle related signatures, such as those representing mitotic spindle
and G2/M checkpoint components (Fig. 3D). The 300 top-ranked,
potential miR-34b targets showed the strongest enrichment for
components of MTORC1 signaling (Fig. 3E), whereas the 300 top-
ranked potential miR-34c targets displayed enrichment in E2F tar-
gets and cell cycle related gene sets (Fig. 3F). Indeed, members of
the miR-34 family were shown to inhibit cell cycle progression
by repressing their targets E2F3, Cyclin D1, CDC25A, CDK4 and
CDK6, which regulate the transition from G1- to S-phase or G2-
to M�phase, in a variety of cancer cell lines [16]. Furthermore,
PDK1, which is an activator of PI3K/MTOR signaling has been iden-
tified as a miR-34 target that regulates glucose metabolism and
glycolysis [32].
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3.3. Exemplary applications of the METAmiR34TARGET website

Individual gene queries. Next we generated an intuitive user
interface, which allows to query individual genes (Fig. 4). The anal-
ysis of specific mRNAs of interest in all datasets described above
can be graphically presented in the ‘‘query genes” tab (Fig. 4).
The user can query mRNAs by entering a gene symbol in the search
box (Fig. 4, panel I). If the entered candidate encodes a published/-
validated miR-34a/b/c target mRNA, a green box is displayed in the
upper right corner with the reference of the publication (Fig. 4,
panel II). As an example, ACSL4 was entered. Acyl-CoA Synthetase
Long Chain Family Member 4 plays an important role in long chain
fatty acids metabolism, immune signaling transduction, and fer-
roptosis [33]. The expression of ACSL4 is significantly upregulated
in multiple types of cancer and increased expression of ACSL4 typ-
ically indicates an unfavorable prognosis [34]. The results for this
known miR-34 target are shown in Fig. 4. Multiple charts are dis-
played for every entered mRNA (Fig. 4): The fold change in mRNA
expression caused by ectopic miR-34a (blue), miR-34b (green), or
miR-34c (red) expression is displayed in chart III. Since miRNAs
repress their target mRNAs, mRNAs consistently suppressed by
ectopic miR-34 in multiple datasets represent potential miR-34a/
b/c targets. Pearson correlation coefficients between the candi-
date’s mRNA expression and the expression of miR-34a, miR-34b,
and miR-34c in TCGA datasets of 32 cancer types are shown in
chart IV. Since miRNAs repress their targets, mRNAs with a nega-
tive correlation to miR-34 expression represent potential miR-
34a/b/c targets. Information as to whether the candidate is a pre-
dicted miR-34a (blue), miR-34b (green), miR-34c (red) target based
on 12 miRNA target prediction tools/algorithms is displayed in
chart V. The fold change of the candidate’s protein expression by
ectopic miR-34a is shown in chart VI. The enrichment of the quer-
ied mRNA in miR-34a pulldown studies is displayed in chart VII.
Chart VIII shows the fold change in mRNA expression in tumors
or normal tissues from miR-34 knockout mice when compared to
wild-type mice. Finally, the miR-34 target probability scores and
ranks are displayed in chart IX. By clicking on bars representing
individual studies displayed in charts III and VIII additional infor-
mation about the study (panel X) and the expression data of the
queried gene (chart XI) can be obtained. Many of published miR-
34 targets represent oncogenes or pro-tumorigenic factors. To ana-
lyze whether the candidates possess oncogenic properties and may
represent potential drug targets, a link to the DepMap portal is pro-
vided (panel XII), which allows the user to analyze whether the
queried gene represents a cancer vulnerability and therefore may
serve as therapeutic targets. As an example, the expression of
ACSL4 mRNA was consistently suppressed by ectopic miR-34a,
miR-34b, and miR-34c in 23 from 25 studies. miR-34a and ACSL4



Fig. 4. Layout of the METAmiR34TARGET website. The ‘‘query genes” tab showing the graphical representation of analysis of the queried gene in indicated datasets. Panel I: Search box for entering a gene symbol. Panel II:
Message box indicating whether the queried gene encodes a published/validated miR-34a/b/c target mRNA. Panel III: Fold-change of the queried gene’s mRNA expression by ectopic miR-34a (blue), miR-34b (green), or miR-34c
(red). Panel IV: Heat-map showing correlation coefficients between the mRNA expression of the queried gene and the expression of miR-34a, miR-34b, and miR-34c in TCGA datasets. Panel V: Chart displaying whether the queried
gene is a predicted miR-34a (blue), miR-34b (green), miR-34c (red) target based on 12 miRNA target prediction tools/algorithms. Panel VI: Fold-change of the queried gene’s protein expression by ectopic miR-34a. Panel VII:
Enrichment of queried gene’s mRNA in miR-34a pulldown studies. Panel VIII: Fold-change of the queried gene’s mRNA expression in miR-34 knockout mice versus wt mice. Panel IX: miR-34 target probability scores and ranks of
the queried gene. Panel X and XI: Additional information about the selected study (panel X) and the expression data of the queried gene (chart XI). A link to the DepMap portal results for the queried gene is provided in panel XII.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. Screening for multiple miR-34 targets. The ‘‘screen for miR-34 targets” tab showing the selection of multiple criteria/datasets for the identification of potential miR-
34 targets. Panel I: Checkboxes to select the type of datasets that should be included in the screen. Panel II: Slide-bars to select the cutoff for fold change in expression. Panel
III: Slide-bars to select the number of studies/datasets that have to fulfill that cutoff. Panel IV: List of identified genes that fulfill the selected criteria.
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mRNA show a negative correlation in most cancer types. ACSL4was
consistently predicted as a miR-34a and miR-34c target. ACSL4
protein expression was suppressed more that 1.5-times by ectopic
miR-34a and miR-34c, and ACSL4 mRNA was enriched more than
30-times in miR-34a pulldown assays. According to our miR-34
target probability score, ACSL4 ranked number 1 and 2 as a poten-
tial miR-34a and miR-34c target, respectively. Therefore, based on
our meta-analysis, ACSL4 is a very good miR-34 target candidate,
which was previously experimentally confirmed [3,35].

Screening for miR-34a, miR-34b, or miR-34c targets. Comprehen-
sive screens for multiple novel miR-34a/b/c targets can be per-
formed using the tools in the ‘‘screen for miR-34 targets” tab
(Fig. 5). The user can select multiple screening criteria to obtain a
list of mRNAs that fulfill them. The type of datasets that should
be employed in the screen is selected within the field that
describes the dataset (Fig. 5, panel I). For the datasets describing
the effect of ectopic miR-34, the user can set a cut-off value for
the minimum fold of mRNA repression (Fig. 5, panel II) and the
number of studies/datasets that have to fulfill that cut-off (Fig. 5,
panel III). For example, by selecting the minimum fold repression
of 1.5 and the number of studies/datasets of 10, the tool will pro-
vide a list of mRNAs that are repressed by ectopic miR-34a/b/c
by more than 1.5 fold in at least 10 studies. Similarly, for other
types of datasets the user may select a minimal value of fold-
change in expression and the number of studies/datasets that have
to fulfill that criterion. The resulting list of identified candidate
273
miR-34 targets is displayed in Fig. 5, panel IV. Individual genes in
the list can be clicked to obtain detailed information in the ‘‘query
genes” tab.

The advantage of the meta-analysis described here is that it
combines a large amount of computational datasets generated by
prediction tools, such as TARGETSCAN, with experimental datasets
derived from cell lines and tissues. The result from our integrative
meta-analysis can be useful for experimental design of future miR-
34 related cell culture and animal studies. Moreover, the meta-
analysis includes correlation analyses of miR-34 with mRNA
expression in primary tumors, which together with the cancer
dependency map may facilitate the identification of potential drug
targets for cancer treatment.
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