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Alzheimer’s disease (AD) is an irreversible and progressive neurodegenerative disorder
that slowly destroys memory. The precise mechanism of AD is still not entirely understood
and remains under discussion; it is believed to be a multifactorial disease in which a
number of mechanisms are involved in its pathogenesis. Worldwide, near 37 million
people suffer from the effects of AD. As a cause of death for elderly, it is predicted that AD
will rank third in the coming years, just behind cancer and heart disease. Unfortunately,
AD remains an incurable condition. Despite the devastating problems associated with
AD, there are only four FDA approved drugs for palliative treatment of this pathology.
Hence, renewed scientific efforts are required not only to uncover more insights into the
AD process but also to develop more efficient pharmacological tools against this disease.
Due to the complexity and multiple mechanisms at play in the progression of AD, the
development of drugs by rational design is extremely difficult. The existing drugs to fight
against Alzheimer’s have had limited success, mainly due to their ability to modulate only
one of the mechanisms involved in AD. As opposed to single-targeted strategies, the
identification of small molecules able to affect multiple pathways involved in Alzheimer’s is
a promising strategy to develop more efficient medicines against this disease. Central to
existing efforts to develop pharmaceuticals controlling AD is the discovery of new
chemicals displaying strong neuroactivity. Benzofurans are privileged oxygen containing
heterocycles that have a strong neuroprotective behavior, inhibiting several of the
important events involved in the AD process. In this review, an approach is presented
that relies on expanding the neuroprotective chemical space of benzofuran scaffolds by
accessing them from Andean–Patagonian fungi and synthetic sources (chemical libraries).
The exploration of the neuroprotective chemical space of these scaffolds has the potential
to allow the discovery of substitution patterns that display multi-target neuroactivity
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against multiple events involved in AD. This benzofuran chemical framework will establish
a multi-target chemical space that could set the basis for the development of super drugs
against AD.
Keywords: Alzheimer’s disease, benzofuran, natural products, chemical libraries, Andean-Patagonian fungi
INTRODUCTION

Alzheimer’s disease (AD), the most common cause of dementia,
is a neurodegenerative disorder that affects areas of the cerebral
cortex and hippocampus (Hane et al., 2017). Abnormalities,
usually first detected in the frontal and temporal lobes, then
slowly and unremittingly progress to other areas of the neocortex
(Masters et al., 2015). The precise mechanism of AD is still not
entirely understood and it is believed to be a multifactorial
disease in which a number of mechanisms are involved in its
pathogenesis (Robinson et al., 2017). Since the initial report
identifying an amyloid protein in postmortem patients and the
amyloid cascade hypothesis in the early 1990’s, efforts to
investigate AD have grown exponentially. Currently, studies
regarding AD reach over 20,000 articles (Hane et al., 2017).
While all these studies have certainly contributed to
understanding AD, there is still a long path ahead and much
to uncover in order to fully comprehend this multifactorial and
devastating disease.

Improvements in medical care and life style have led to a
substantial growth in the elderly population (Wimo et al., 2003).
Due to increasing lifespans and the close association of AD with
aging, this disease may become an intractable problem on a
global scale in the near future. Worldwide, nearly 37 million
people are currently affected by dementia and the majority is AD
related (Wimo et al., 2003; Qiu et al., 2009). This figure is already
increasing at a disturbing pace; around 6 million new cases of AD
are diagnosed per year in the geriatric population. In 2013, nearly
85,000 deaths from AD were recorded, positioning AD as the
sixth leading cause of death in the United States (Wimo et al.,
2003; Qiu et al., 2009). Globally, costs related to AD treatment
reached approximately US$315 billion back in 2005 (Qiu et al.,
2009). These costs are expected to double by 2040 (Hurd
et al., 2013).

Unfortunately, AD remains an incurable condition. Existing
drugs approved by the U.S. Food and Drug Administration
(FDA) against AD only ameliorate its symptoms. Despite the
devastating problems associated with AD, there are only four
FDA approved drugs for the treatment of this disorder
(donepezil, galantamine, rivastigmine, and memantine).
Shockingly, the pace of production of new drugs to control
Alzheimer’s is stagnating, without any new entity incorporated
into the pharmacological arsenal during the last 15 years (Casey
et al., 2010; Mullard, 2012; Becker et al., 2014; Cummings et al.,
2017). Hence, scientific efforts are required not only to uncover
more insights into the AD process but also to develop more
efficient pharmaceuticals against this disease. Central to existing
efforts to develop medicines controlling AD is the identification
of chemical cores displaying strong neuroactivity (Aziz et al.,
in.org 2
2014). Due to the complexity of the AD process, involving a
number of different mechanisms, the development of drugs
by rational design has proved cumbersome (Crews and
Masliah, 2010). As opposed to single-targeted strategies, the
identification of small molecules able to modulate multiple
pathways involved in Alzheimer ’s can result in the
development of more efficient medicines against this disease
(Bajda et al., 2011; Leon et al., 2013; Dias et al., 2014; Prati et al.,
2016; Unzeta et al., 2016). Thus, taking into consideration the
chemical space that is relevant in biological systems, herein we
present an approach for the identification and investigation of a
region of this space with neuroprotective bioactivity, potentially
leading to the discovery of molecules displaying a multi-target
behavior. We envision that this could be achieved by taking
advantage of the rich chemistry provided by natural and
synthetic sources.
NEUROPROTECTIVE CHEMICAL SPACE

Organic molecules are defined by a number of variables
including connectivity, type, number, and stereochemistry of
the atoms described in the structural formula. Taking into
account these descriptors, plus the molecular weight and
fundamental laws of physical organic chemistry, there is a
definable number of small organic molecules that can be
synthesized. This is the chemical space, which is an important
concept in cheminformatics, and refers to the set of all small
organic molecules from natural or synthetic origins (Reymond,
2015). Some have estimated chemical space to reach beyond
1060; a number that despite being finite, is preposterously high
and inaccessible to explore by existing synthetic methods. The
development of small molecules that control protein function
is at the center of chemical biology research and the
pharmaceutical industry. Crucial to the discovery of these
important compounds is the identification of the biologically
relevant chemical space, which is defined as the set of chemical
cores that are required for biological systems to operate
(Dobson, 2004; Koch et al., 2005; Reymond et al., 2010; Deng
et al., 2013). For instance, the total number of small organic
molecules present in the human body reaches a few thousand. As
a consequence, the biologically relevant chemical space
represents only a fraction of the total chemical space and is
of great importance for the identification of molecules with
interesting biological activity.

While the biologically relevant chemical space refers to the
ensemble of small molecules crucial for biological systems to
function, it is important to identify a subset of this space that
January 2020 | Volume 10 | Article 1679
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displays a given biological activity. In living organisms, the
continuing evolution of biosynthetic routes has equipped
natural products with scaffolds that act as modulators of
biochemical pathways by effectively binding to proteins.
Alternatively, in the laboratory, synthetic methodology has
grown tremendously during the last century, allowing
practitioners of medicinal chemistry to assemble biomimetic
cores able to modulate biological systems. Taking into
consideration these sources of bioactive molecules, the
ensemble of compounds originating from both natural and
synthetic origins displaying a particular biological effect is
defined as the bioactive chemical space (Klenner et al., 2012;
Von Salm et al., 2015; Zhang et al., 2015; Bajorath, 2016; Prati
et al., 2016; Mei et al., 2017). As part of the drug development
process, it is paramount to identify and explore this biologically
active space since it narrows the universe of potentially active
molecules, accelerating the pace of the discovery of new
medicines. Thus, identifying and exploring parts of the
biologically active chemical space with neurological effects
could lead to the discovery of compounds displaying
neuroprotective and multi-target bioactivities.
BENZOFURAN SCAFFOLDS ARE
PROMISING TARGETS TO EXPLORE THE
NEUROPROTECTIVE CHEMICAL SPACE

Benzofurans are privileged oxygen containing heterocycles that
are present in a number of biologically important molecules. This
class of chemical motifs have been shown to display antibacterial,
antifungal, antioxidant, antitumoral, antiinflammatory,
anticonvulsant, and anti-HIV bioactivities (Hiremathad et al.,
2015; Khanam, 2015; Nevagi et al., 2015). Interestingly,
benzofurans have also been found to have neuroprotective
activity, inhibiting the important events involved in the AD
process (Howlett et al., 1999; Allsop et al., 2001; Ono et al., 2002;
Ono et al., 2006; Rizzo et al., 2008; Rizzo et al., 2012; Sashidhara
et al., 2014; Ha et al., 2017; González-Ramírez et al., 2018;
Kumar et al., 2018). Our research group has also investigated
the role of natural fungal benzofurans in synaptic failure, decay
of intracellular Ca2+ transients and synaptic disorganization
Frontiers in Pharmacology | www.frontiersin.org 3
(González-Ramírez et al., 2018). Although several factors are
involved in the development of AD, it has been established that
the production of toxic Ab is crucial for the genesis of AD.
Indeed, benzofuran scaffolds have been reported to play an
important role as inhibitors of Ab fibril formation (Figure
1A). Despite the promising neuroactivity displayed by
benzofuran derivatives, their bioactivity still remains single-
targeted in nature and a systematic study exploring the
neuroprotective chemical space of these interesting
heterocycles has not been carried out (González-Ramírez et al.,
2018). This investigation is essential to find the chemical
fundamentals that would provide the knowledge necessary to
develop multi-target AD drugs based on benzofuran scaffolds.
Existing reports show that the neuroprotective bioactivity of
benzofuran derivatives falls into the µM range (Howlett et al.,
1999; Allsop et al., 2001; Ono et al., 2002; Ono et al., 2006; Rizzo
et al., 2008; Rizzo et al., 2012; Sashidhara et al., 2014; Ha et al.,
2017; González-Ramírez et al., 2018). Thus, chemical probes
containing benzofuran cores have yet to become approved drugs
to control AD, mainly due to their modest potency. The lack of
drug development could be attributed to the limited knowledge
of protein-ligand interactions between benzofurans and
important protein targets involved in AD progression (Howlett
et al., 1999; Allsop et al., 2001; Kumar et al., 2018). In order to
increase their efficacy, chemical transformation can be employed
to tune their biological properties. Such chemical modifications
could be achieved either by hemi-synthesis or total synthesis of
natural benzofuran cores. In addition to blocking the Ab fibril
formation process, benzofuran compounds have proven to be
efficient inhibitors of butyrylcholinesterase (Kumar et al., 2018),
which is another important target for drug development to
control AD. Given the importance of developing multitarget
probes to control AD (Bajda et al., 2011; Leon et al., 2013;
Prati et al., 2016; Unzeta et al., 2016), the dual activity displayed
by benzofuran scaffolds against different mechanisms of AD
make them worthwhile ligand targets for drug development.
Thus, synthetic efforts in conjunction with the development
of benzofuran based chemical libraries would provide the
necessary collection of molecules to efficiently explore
the multi-target neuroprotective chemical space of this
scaffold, facilitating the discovery of effective pharmaceuticals
against AD.
FIGURE 1 | Some benzofuran scaffolds with neuroprotective AD bioactivities. (A) Examples of synthetic benzofurans with inhibitory properties against beta-amyloid.
(B) A natural benzofuran isolated from Aleurodiscus vitellinus.
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Chemical libraries, which can be inspired by natural products
or synthetic scaffolds, are collections of chemicals often used in
high-throughput screening (Shelat and Guy, 2007; Grabowski
et al., 2008; Quinn et al., 2008; Galloway et al., 2010; Gu et al.,
2013; Saleeb et al., 2018). The development of chemical libraries
relies on well-known and robust chemical transformations in
which practitioners of organic chemistry can generate a number
of variations on a defined molecular scaffold or backbone. In the
drug discovery process, a range of small molecules are synthesized
and tested against biological assays. Efficient screening requires
the synthesis of chemical libraries covering a desired biologically
relevant chemical space. More specifically, the development of a
collection of molecules focused on a bioactive chemical space
delivers a number of variations on pharmaceutically privileged
scaffolds, accelerating the drug discovery process.
FUNGAL BENZOFURAN NATURAL
PRODUCTS ARE A PROLIFIC SOURCE OF
CHEMICAL PROBES TO EXPLORE THE
NEUROPROTECTIVE CHEMICAL SPACE

Natural products display unique biological activities and are still
the main source of medicines that propels the drug discovery
field (Cragg and Newman, 2013; Newman and Cragg, 2016).
Fungi represent one of the largest groups of organisms. They are
widely distributed across mild and extreme ecosystems on our
planet (Choi and Kim, 2017). In addition, these organisms are
entirely heterotrophic as they are unable to perform
photosynthesis. Consequently, they have developed a unique
metabolic plasticity allowing them to rapidly adapt and survive
through the biosynthesis of an array of fascinating natural
products (Calvo et al., 2002). Recent analysis of fungal
genomes has revealed a vast number of secondary metabolite
pathways that can be tuned or modified, allowing the production
of novel and useful chemical scaffolds (Nielsen et al., 2017).
Fungi-derived natural products are pharmaceutically prolific,
having been developed into a number of important biological
applications ranging from highly potent toxins to approved
Frontiers in Pharmacology | www.frontiersin.org 4
drugs (Schueffler and Anke, 2014). Over the last decades,
several natural products showing encouraging biological
activities have been isolated from fungi. For example, in the
course of the long–standing research program of natural product
chemistry at the University of Concepcion (Chile), we have
recently investigated the secondary metabolites of Aleurodiscus
vitellinus, isolated from Chilean Patagonia (González-Ramírez
et al., 2018). We discovered that fomannoxin, a natural
benzofuran compound, showed outstanding neuroprotective
properties according to an amyloid-b peptide model
(Figure 1B). The importance of this finding lies in the fact that
anti-amyloid therapies are considered to be a promising
alternative to existing AD medicines. Considering that amyloid
species, especially the oligomers, have been associated with
early synaptic toxicity, controlling the aggregation process
could represent an interesting approach to develop new
pharmacological tools (Lal et al., 2007).

The multifactorial nature of AD requires treatment with
molecules able to target multiple pathogenic events. The
discovery of multi-target probes would enable the development
of effective AD drugs that, to date, are not available. Given the
promising potential of Andean-Patagonian fungi from our
previous studies on A. vitellinus, the neuroprotective chemical
space of benzofurans may be able to be effectively expanded by
isolating more of these scaffolds from other fungi. This scientific
exercise would potentially enable the discovery of fungal
benzofurans displaying similar bioactivity as in our previous
work: positive effects on neuronal functionality (González-
Ramírez et al., 2018).

While the Andean-Patagonian ecosystem displays a high
chemical and biological diversity, mycological studies in this
environment have been limited mainly due to challenges in
accessibility and extreme weather conditions (Gamundí, 2003).
This ecosystem displays unique microclimate and terrain
conditions promoting high levels of endemism (Cowling et al.,
1994). Thus, investigating the chemical diversity of fungi from
Andean-Patagonian environments could lead to the discovery of
highly diverse benzofuran scaffolds, expanding the
neuroprotective chemical space of this heterocycle from
natural sources (Youdim et al., 2014, Figure 2A).
FIGURE 2 | Strategies to expand the neuroprotective chemical space of benzofurans. (A) Schematic for the isolation of benzofuran scaffolds from natural fungal
sources. (B) Schematic of synthetic strategies to access benzofurans.
January 2020 | Volume 10 | Article 1679
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CHEMICAL LIBRARIES BASED ON
BENZOFURAN SCAFFOLDS OFFER AN
EFFICIENT PLATFORM TO INVESTIGATE
THE NEUROPROTECTIVE
CHEMICAL SPACE

Studies investigating the neuroprotective activity of synthetic
benzofurans have shown that chemical substitution at positions
2, 3, and 5 on this heterocycle results in compounds displaying
neuroactivity (Howlett et al., 1999; Allsop et al., 2001; Ono et al.,
2002; Ono et al., 2006; Rizzo et al., 2008; Rizzo et al., 2012;
Sashidhara et al., 2014; Ha et al., 2017; González-Ramírez et al.,
2018). Despite the ability of benzofuran cores to control
important events in AD development, structure-activity
relation studies on neuroprotection are limited (Wakabayashi
et al., 2016), making the drug development process to control AD
lengthy and cumbersome. To our knowledge, a systematic
chemical study exploring the neuroprotective chemical space of
benzofurans has not been carried out. In the development of
other chemicals as treatments for neurological diseases, several
chemical functionalities have been described that display strong
neuroprotective behavior (Figure 2B). For instance, carbamates
are the main player responsible for the bioactivity of
rivastigmine, which is an acetylcholinesterase inhibitor used for
the treatment of Alzheimer’s and Parkinson’s disease (Youdim
et al., 2014). Piperazines have also displayed a range of biological
activities including neuroprotective effects (Varadaraju et al.,
2013; Modi et al., 2014; Wang et al., 2016). The quinolinol
moiety is a strong radical scavenger present in Tacrine, the first
drug approved for the treatment of AD (FernáNdez-Bachiller
et al., 2010). Propargylamines are also neuroprotective functional
groups by inhibiting MAO (Gal et al., 2005; Zheng et al., 2005).
Thus, an interesting strategy would be the preparation of
benzofuran hybrids containing the neuroactive functional
groups identified in these studies, hoping to obtain
benzofurans displaying positive synergistic effects on
neuroprotective multi-target biological assays. This represents a
rational strategy to achieve compounds displaying multi-target
neuroprotective activity because it combines a neuroactive core
linked to neuroactive functional groups, increasing the chances
to access single molecules modulating multiple factors
responsible for AD.
MAIN MECHANISMS INVOLVED IN
ALZHEIMER’S DISEASE: TARGET TO
DEVELOP MULTITARGET
CHEMICAL PROBES

Approved FDA drugs to control AD are often ineffective since
they target only one of the many possible routes that cause
Alzheimer’s. Classic single-target chemical probes include:
Acetylcholinesterase (AChase) (i.e. galantamine from galantus
sp), NMDA receptors (memantine), oxidative stress
(polyphenols: reseveratrol, catequins, antocianidins, etc),
Frontiers in Pharmacology | www.frontiersin.org 5
modulators of neuronal Acetylcholine receptors (nAChR,
quinolizidinc alkaloids), or molecules that can interfere with
the main event involved in the pathogenesis of disease, the
amyloid b-peptide (bA) (Sala Frigerio and De Strooper, 2016;
Cummings et al., 2017; Sharma et al., 2018). Moreover, during
the last 15 years, no new drugs have been approved by the FDA
for AD (Casey et al., 2010; Mullard, 2012; Becker et al., 2014;
Cummings et al., 2017). Taking into consideration the stagnating
production of therapeutics to control AD, the development of
new targets against this disease is a valuable scientific niche that
ought to be explored. It is important to note that chemicals
developed to control targets for AD should reach promising
levels of neuroprotective bioactivities so that they stand a chance
to reach clinical use. Thus, new approaches to drug design are
imperative, and the development of chemical probes capable of
simultaneously targeting multiple mechanisms leading to AD is a
highly promising route to effectively control this devastating
disease. Several molecular mechanisms can be responsible for
AD (Leon et al., 2013): deposition and aggregation of b-amyloid
(oligomers and plaques); oxidative stress; cholinergic
impairment; deregulation of calcium metabolism and metal
dys-homeostasis; neuroinflammation; mitochondrial damage
and hyperphosphorylated and b-folded tau proteins. Therefore,
the development of chemical probes able to target multiple
mechanisms involved in Alzheimer´s disease represents a
distinct strategy to control this devastating disease.
CONCLUSION

AD is a condition that still demands extensive efforts to
understand its pathogenesis. Despite its devastating nature, AD
is not curable and its symptoms can only be partially treated.
Hence, the development of efficient pharmaceuticals against AD
is in urgent need. The mode of action of existing FDA drugs
relies on controlling single mechanisms of this pathology.
While single-targeted approaches have been effective in certain
pathologies, overall the use of this strategy to tackle
multifactorial disease such as AD renders poor outcomes. For
this reason, the development of drugs to control AD has stalled
over the last decade. Current efforts to produce AD medicines
have shifted towards the development of agents with multi-target
activity in order to produce more effective pharmaceuticals.
However, the generation of therapeutics that combine the
biological effects of different AD drugs in a super molecule,
modulating multiple events responsible for Alzheimer’s is
extremely difficult. Nevertheless, benzofurans are heterocycles
with promising neuroactive properties. We suggest that one
promising approach is to expand the neuroprotective chemical
space of benzofuran scaffolds by accessing these molecules from
Andean–Patagonian fungi and synthetic sources. Exploring the
neuroprotective chemical space of benzofuran scaffolds
represents a distinct venue that could lead to the discovery of
new substitution patterns displaying multi-target neuroactivity
against multiple events involved in AD. This benzofuran
chemical framework can establish a multi-target chemical
January 2020 | Volume 10 | Article 1679
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space, setting the basis for the development of super drugs
against AD.
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