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Many genes have been implicated in schizophrenia as have viral prenatal or adult infections and toxoplasmosis or Lyme disease.
Several autoantigens also target key pathology-related proteins. These factors are interrelated. Susceptibility genes encode for
proteins homologous to those of the pathogens while the autoantigens are homologous to pathogens’ proteins, suggesting that the
risk-promoting effects of genes and risk factors are conditional upon each other, and dependent upon protein matching between
pathogen and susceptibility gene products. Pathogens’ proteins may act as dummy ligands, decoy receptors, or via interactome
interference. Many such proteins are immunogenic suggesting that antibody mediated knockdown of multiple schizophrenia gene
products could contribute to the disease, explaining the immune activation in the brain and lymphocytes in schizophrenia, and
the preponderance of immune-related gene variants in the schizophrenia genome. Schizophrenia may thus be a “pathogenetic”
autoimmune disorder, caused by pathogens, genes, and the immune system acting together, and perhaps preventable by pathogen
elimination, or curable by the removal of culpable antibodies and antigens.

1. Introduction

Over 600 genes have been implicated in schizophrenia in
association studies, supporting the contention that multiple
genes of small effect contribute to this condition [1, 2] (see
http://www.polygenicpathways.co.uk/schizgenesandfunc.htm
for association references). These genes cluster together in
clearly defined signalling networks related to the diverse
subpathologies of schizophrenia [3–7]. Epistasis between
genes within these same signalling networks markedly affects
the degree of risk-promotion [8–10], in part, explaining the
inconsistency in genetic association studies.

Schizophrenia has also been associated with prenatal
complications including maternal rubella (German measles)
[11], influenza [12, 13], Varicella zoster (chicken pox) [14],
Herpes (HSV-2) [15], common cold infection with fever
[16], or poliovirus infection [17] while in childhood or
adulthood, coxsackie virus infection (in neonates [18]) or
Lyme disease (vectored by the Ixodes tick and Borrelia
Burgdorferri) or Toxoplasmosis have been reported as risk

factors [19, 20] (see Table 1). The human endogenous retro-
virus, HERV-W, has also been implicated in schizophrenia
[21]. A number of schizophrenia-related genes are implicated
in the life cycles of these pathogens, suggesting an interplay
between genes and risk factors [22].

Many schizophrenia genes relate to the immune network
[5, 6, 22, 23]. Immune activation is also observed in the
schizophrenic brain [24, 25] or in lymphocytes [26–29]. A
number of autoantigens/autoantibodies to key schizophre-
nia-related proteins have also been reported. These include
dopamine, serotonin, acetylcholine, and NMDA receptors;
inter alia (Table 2). Maternal immune activation in animal
models has also been shown to generate phenotypes relevant
to schizophrenia in the offspring [30].

As shown below, genes, risk factors, and immunity can be
linked together forming a unifying pathway whose elements
are interdependent. Dysfunction of this network which is
conditional upon interactions between its three branches
may be responsible for schizophrenia.

mailto:chris_car@yahoo.com
http://www.polygenicpathways.co.uk/schizgenesandfunc.htm
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Figure 1: Continued.
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Figure 1: Screenshots of the pictorial representation of the viral BLAST results against the human proteome. The streaks dotted throughout
the human genome/proteome represent the areas of homology, some with contiguous sequences of 5 or more amino acids. The number of
hits is shown for each virus or pathogen. The figure also shows the total coverage of human chromosome 10 by viral gene homologues. The
top set of figures were from unfiltered blasts while the bottom set of 6 figures represent filtered blasts using the query “schizophrenia”.
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>gi|61742823|ref|NP 061132.2| disrupted in schizophrenia 1 protein isoform L [Homo sapiens]

>gi|61742823|ref|NP 061132.2| disrupted in schizophrenia 1 protein isoform L [Homo sapiens]

The larger font illustrates highly antigenic regions of DISC1 (and of the viral homologues). The boxes represent the alignment position and the blue
letters 100% identity.

The larger font illustrates highly antigenic regions of DISC1(and of the viral homologues).

(a) Varicella virus vatches within DISC1

(b)

Figure 2: Continued.
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Figure 2: Continued.
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>gi|61742823|ref|NP 061132.2| disrupted in schizophrenia 1 protein isoform

L [Homo sapiens]

(b) Multiple virus vatches within DISC1

(c)

Figure 2: Continued.
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(c) The homology of viral risk factors to the highly antigenic regions of DISC1 (and of the viral homologues)

Figure 2: (a) Varicella protein alignments within DISC1: the boxed regions show the region of alignment, and the blue letters denote 100%
identity. This is not an alignment of the whole Varicella proteome but represents fragments of the same or different Varicella proteins
that align with DISC1 fragments (vatches). The larger font delineates highly antigenic regions of DISC1 with an antigenicity index of >0.8
(Figure 4). (b) Other viral vatches within the DISC1 protein. The vatches are colour or format coded in relation to the different viruses. (c)
Viral vatches for the risk factors implicated in schizophrenia in relation to the highly immunogenic regions of DISC1.

2. Methods

The human herpesvirus 2 genome (NC 001798) as well as
those of the rhinovirus (NC 001490), rubella (NC 001545.1)
and Varicella zoster (NC 001348.1) and HERV-W
(NP 055405.3: env polyprotein) viruses, Borrelia Burg-
dorferri (NC 011728) and T. Gondii (NC 001799: Partial
genome) were screened against the human proteome using
the NCBI BLAST server and the Entrez query filter
“schizophrenia”. The HERV-W, influenza, HSV-2 and rubella
viruses were also screened unfiltered (Translated pathogen
genome versus human proteins: BlastX) [31]. The BLAST
algorithm detects overall homology between entire gene or
protein sequences, and it is necessary to set parameters to
low significance levels in order to detect short intraprotein
consensus homology. The parameters used were: Expect
20,000, E value = 100,000; matrix PAM30. The original
BLAST results are stocked at http://www.polygenicpath-
ways.co.uk/blasts.htm. Information for all abbreviations is
available at this site, provided by the NextBio highlighting
service.

BLAST files were scanned by an online tag cloud
generator producing tags sized according to gene
word occurrences http://www.tagcloud-generator.com/
generator.php#anker. Word occurrences were counted
using a “Highlightall add-in” for Firefox https://addons
.mozilla.org/en-US/firefox/addon/4240/.

Antigenicity (B-cell epitope prediction) was estimated
using the BepiPred server http://www.cbs.dtu.dk/services/
BepiPred/[32] (Table 4).

Kegg pathway analysis [33] of 632 schizophrenia suscep-
tibility gene candidates was performed using Kegg mapper
http://www.genome.jp/kegg/tool/color pathway.html. The
results of this analysis are available at http://www
.polygenicpathways.co.uk/keggszgenes.htm. Venn diagrams
were constructed online at http://www.bioinformatics.org/
gvenn/index.htm[34].

Genes and risk factors with at least one positive asso-
ciation are included in this study. Although certain genes
and risk factors are clearly more important than others, and
problems of replication in both gene and risk factor studies
abound, gene, gene, and gene/environment interactions
may explain some of the heterogeneity. For example many
schizophrenia-related genes are involved in the life cycle of
T. Gondii, but may be irrelevant if this pathogen is not
encountered. Similarly T. Gondii infection may have little
effect is such gene variants are not present. Pathway analyses
of genome wide association data, and previous studies, are
showing that the risk-promoting effects of many genes in
similar pathways are better predictors of risk, than when
treating each gene in isolation (see Section 1). Although
some of these factors may be false positives, many genes and
risk factors may have a role to play in certain conditions, but
the greater import of genes such as DISC1 or neuregulin is
recognised.

3. Results

Pictograms of selected BLAST results are shown in Figure 1.
The initial sweep of unfiltered BLASTs returned 125–304 hits,
but this number was markedly increased when using the
filter “schizophrenia” (14,088 Hits for HSV-2). For unfiltered
sweeps, the viral homologues are longer, while the filtered
sweeps return shorter contiguous sequences nevertheless
including multiple matches of pentapeptides or more.

Viral-human matches are characterised by short con-
tiguous amino acid matches of 5 or more amino acids,
that are identical in viral and human proteins, defined as
vatches (viral matches). These are exemplified, for DISC1
in Figure 2. Hexapeptide matches have also been described
for the influenza H5N1 virus and this study also highlighted
homologies with DISC1, reelin and neurexin, inter alia [35].
The entire length of a human protein can be composed of

http://www.polygenicpathways.co.uk/blasts.htm
http://www.polygenicpathways.co.uk/blasts.htm
http://www.tagcloud-generator.com/generator.php%23anker
http://www.tagcloud-generator.com/generator.php%23anker
https://addons.mozilla.org/en-US/firefox/addon/4240/
https://addons.mozilla.org/en-US/firefox/addon/4240/
http://www.cbs.dtu.dk/services/BepiPred/
http://www.cbs.dtu.dk/services/BepiPred/
http://www.genome.jp/kegg/tool/color_pathway.html
http://www.polygenicpathways.co.uk/keggszgenes.htm
http://www.polygenicpathways.co.uk/keggszgenes.htm
http://www.bioinformatics.org/gvenn/index.htm
http://www.bioinformatics.org/gvenn/index.htm
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Figure 3: (a) Venn diagrams of the number of Schizophrenia gene products (N = 632) with homology to the rubella, HERV-W and
influenza viruses. The singleton in SZ-genes was different on each occasion: Thus, all genes are covered. (b) The viral matching spectra of
DISC1, neuregulin, the dopamine D2 receptor and transcription factor 4. The Y -axis depicts the number of word occurrences on the original
BLAST results page. Note the logarithmic axis. (c) The number of pathogens expressing proteins with homology to the protein products of
schizophrenia susceptibility genes. Those marked by an asterisk are within the 30 top-ranked genes in SZ-gene http://www.szgene.org/.
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Figure 4: The antigenicity (B-cell epitope prediction) of DISC1: the amino acid sequences with an index of >0.35 are considered as epitopes.
A value of 0.8 was chosen to define highly antigenic regions as seen in Figure 2. The amino acid sequences of these highly antigenic regions
are shown.

many overlapping, intercalated vatches, related to multiple
viral species. However, the viral spectrum is distinct for each
protein as shown in Figure 3 for DISC1, neuregulin, the
D2 dopamine receptor and transcription factor 4. Each is
homologous to proteins from a large spectrum of viruses, but
this spectrum is distinct for each protein. Interestingly, all are
homologous to proteins from the hepatitis C virus. Several
studies have noted that Hepatitis C infection is associated
with schizophrenia, but this has generally been interpreted
in terms of a schizophrenia life style that favours infection,
rather than viewing Hepatitis C as a risk-promoting factor
[36–39]. These data may challenge this assumption.

All of the pathogens implicated in schizophrenia express
proteins with homology to multiple schizophrenia suscepti-
bility gene products (Table 3). The profile of each individual
pathogen is again specific for different types of gene product,
but all target key members of the schizophrenia network
including dopamine, serotonin and glutamate receptors as
well as neuregulin and growth-related or DISC1 related
pathways. This is the case even when no filter is used. Inter-
estingly, both the rubella and the influenza viruses target
members of the translation initiation complex, which has
been implicated in myelination and oligodendrocyte survival
[4, 40]. Oligodendrocyte cell loss and myelination defects are
prominent in the schizophrenic brain [41–44].

The degree of overlap between the rubella, HERV and
influenza viruses and schizophrenia gene products is shown

by the Venn diagrams in Figure 3. All but one schizophre-
nia gene product was covered by various permutations
and similar data were recovered for other pathogens. All
schizophrenia gene products (N = 632) were homologous
to proteins expressed by one or more of these pathogens.
However, only 16 proteins were common to all 8 pathogens
(Figure 3). These included neuregulin (NRG1) and DISC1,
dopamine (DRD5), glutamate (GRIA4, GRID1, GRM3,
GRM7) GABA (GABBR1) and serotonin (HTR7) receptors,
a presynaptic protein regulating glutamate release (synapsin
SYN3) and HOMER2, a member of the postsynaptic scaffold,
all of which are key elements relating to the pathology of
schizophrenia.

Other proteins within this class included neurocan
(CSPG5), a chondroitin sulphate proteoglycan expressed in
oligodendrocytes that inhibits neurite outgrowth and reg-
ulates axonal growth [45–47]. It is also involved thalamo-
cortical projection development [48]. ARHGEF10 is a rho
Guanine-nucleotide exchange factor that controls myelina-
tion [49]. NDUFV2 is a subunit of the mitochondrial respira-
tory chain and its protein expression levels are reduced in the
frontal cortex and striatum in schizophrenia [50]. PPP3CC
Calcineurin gamma (PPP3CC) plays a role in dopamine
receptor signalling [51, 52]. Calcineurin knockout mice show
defects in prepulse inhibition and other phenotypes related
to schizophrenia [53]. Calcineurin is highly expressed in the
immune system and regulates the expression of numerous
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Figure 5: The DISC1 interactome see http://www.polygenicpathways.co.uk/discforum.htm. Proteins in red are homologous to Rubella
proteins.

cytokines [54]. MAP6 is a microtubule protein that con-
trols synaptic organisation, in particular of glutamatergic
synapses where it controls the expression of the glutamate
transporter and presynaptic genes, synaptophysin and GAP-
43, spinophilin and MAP2. [55, 56] KCNH2 is a potassium
channel that plays a role in the development of neural crest
cells [57] and in lymphocyte proliferation [58]. PRSS16 is
a serine protease involved in autoimmunity and the presen-
tation of self-antigens within the thymus [59].

So, by a random bioinformatics process, trawling the
entire human proteome, asking simply which proteins are
homologous to those of the pathogens implicated in schiz-
ophrenia, we arrive at a small set of proteins related to
synaptic and dendritic function, myelination, neuregulin and
DISC1 pathways, glutamate, dopamine, GABA and serotonin
transmission, and immune regulation that are the corner-
stones of schizophrenia pathology [3, 60–62].

3.1. Autoantigens in Schizophrenia. Many autoantibodies
have been reported in schizophrenia. The pathogens impli-
cated in schizophrenia also express proteins that are homol-
ogous to these autoantigens. Again the profile of each
autoantigen or pathogen is distinct as shown in Table 2.

3.2. DISC1. DISC1 is a key “hub gene” in schizophrenia
linked, via its interactome, to many other schizophrenia
susceptibility gene products [3, 63–66]. Its viral homology
is illustrated in Figure 2. The Varicella virus is homologous
to DISC1 in several regions, over its entire length, many
matches in regions of high immunogenicity. These figures
illustrate the types of matches seen in other proteins and
shows that the vatches are often part of larger gapped
consensus sequences. Interestingly, Varicella infection also
results in the production of antibodies to pericentrin,
a DISC1 binding partner [67].

DISC1 is a highly immunogenic protein, as predicted by
B-cell epitope prediction (Figure 4). Autoantibodies to
DISC1 have not been reported in schizophrenia. However,
the viral risk factors implicated in schizophrenia express
proteins that are homologous to the highly antigenic regions
of the DISC1 protein, as shown in Figure 2. These viral
proteins are equally antigenic and antiviral antibodies might
also thus be expected to target multiple regions of the DISC1
protein.

3.3. Viral Proteins Are Part of the DISC1 Interactome. DISC1
and many of its binding partners, or other members of

http://www.polygenicpathways.co.uk/discforum.htm
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receptors on different chromosomes as shown in Table 1. Homology with glutamate, serotonin, GABA, acetylcholine and other receptors is
also noted.

its interactome, contain vatches that are homologous to
proteins expressed by the Rubella virus (Figure 5). (Other
viruses also display this property, although the interactome
members targeted are distinct, and specific for each virus (see
http://www) .polygenicpathways.co.uk/vatches.htm). Upon
infection, viruses might therefore be considered as extrane-
ous spurs to these types of protein/protein networks, and
are likely to markedly affect their integrity. Indeed, several
viruses, including herpes simplex, hepatitis C, Epstein-Barr,
the cytomegalovirus, adenovirus and Coxsackie virus are
known to bind to DISC1 interaction partners (Table 4).

3.4. Viral DNA within the Human Genome. The insertion of
viral DNA into the human genome had until recently
been thought to be the preserve of retroviruses. However
the incorporation of DNA into mammalian genomes has
recently been demonstrated on a large scale for both RNA
and DNA viruses. Viral integration may be mediated by
nonhomologous recombination with chromosomal DNA
or, in the case of RNA viruses, by interactions with host
chromosomal retrotransposons [68, 69]. It has also been
shown the herpes virus HHV-6 can be transmitted from
parent to child via chromosomal integration [70]. The

http://www.polygenicpathways.co.uk/vatches.htm
http://www.polygenicpathways.co.uk/vatches.htm
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BLAST analyses of the viruses detailed in this paper, and
of others at http://www.polygenicpathways.co.uk/blasts.htm
clearly show that viral DNA from many species is present
within the human genome. This viral homology may well
cover the entire human genome. For example, a Blast of
human chromosome 10 against all viral genomes (almost
3,000 viral forms) yielded 119,857 hits with entire coverage
of 135.5 million bases. Viral DNA is thus both inter and
intragenic (Figure 1). It has been proposed that retroviral
integration, into paternal and maternal gene lines, inserting
several genes at once and effectively creating a new being, is
responsible for evolutionary saccades [71]. The fact that RNA
and DNA nonretroviruses can also be so incorporated has
important implications in this area.

The HSV-2 virus is homologous to several dopamine
receptors and the BLAST pictogram shows how the same
virus provokes repeating patterns in the human pro-
teome (Figure 6). The same is true of the Herpes sim-
plex virus (HSV-1) which is homologous to multiple
lipoprotein receptors as well as to multiple kinases or
of the cytomegalovirus which expresses proteins homol-
ogous to many chemokine receptors (see http://www
.polygenicpathways.co.uk/blasts.htm). One interpretation of
this, given the ability of chromosomal integration, is that
repeated viral visits to the human genome over millions of
years are responsible for the creation of gene families.

It is also possible that viral/human homology reflects
convergent viral evolution, although this is difficult to rec-
oncile with the presence of viral DNA in intergenic regions,
for which there would be little evolutionary drive or selective
pressure. It is also plausible that a bidirectional transfer of
human and viral DNA could be at work.

For whatever reason, the result is that human proteins
resemble those expressed by a multitude of today’s viruses
and other pathogens. Upon infection, these pathogens are
thus able to interfere with the function of their human
counterparts in a number of ways (see below).

3.5. Copy Number Variations and the Effects of Parental Age
on Risk. Repeated viral insertion could well explain copy
number variations, which are associated with a number of
diseases, including schizophrenia [72, 73]. As their number
increases, so will the number of matches to the same viral
proteins, thus increasing the risk of viral interference and
autoimmunity. As viral infection can be passed from parent
to child via chromosomal integration, perhaps this is also
why both paternal and maternal older age have been reported
as risk factors in schizophrenia and other disorders [74, 75].

3.6. KEGG Pathway Analysis of Schizophrenia Susceptibility
Genes. The color-coded pathways for this analysis are posted
at http://www.polygenicpathways.co.uk/keggszgenes.htm. It
confirmed the involvement of a number of polygenic path-
ways, including long-term potentiation and oxidative stress
[3] growth factor/neuregulin pathways [121], neuroactive
ligand pathways (dopamine/serotonin/glutamate and others)
as well as dopamine metabolism pathways [9]. In the context
of this review, a large number of immune-related pathways

are traced out by these genes, together with many pathogen-
related pathways, including toxoplasmosis, which heads the
list (Table 5). The involvement of schizophrenia related genes
in the life cycles of pathogens has been the subject of
a previous review [22] and this relationship is supported by
this analysis. Other pathogen related pathways relating to
amoebiasis, Staphylococcus aureus and Helicobacter pylori
infection, might indicate the involvement of other pathogens
in schizophrenia, although such pathways could also be con-
sidered as generic pathways related to many pathogens.

There is no specific viral life cycle pathway within the
KEGG dataset. However, viruses use adhesion molecules as
receptors, endocytosis for cellular entry and the intracellular
actin and tubulin networks for migration to and from the
nucleus, mediated via dynein and kinesin motors. They also
subjugate intracellular vesicular trafficking pathways, and are
able to subvert both lysosomal and phagosomal pathways.
Their exit may depend upon exocytosis, or by apoptotic or
other means of killing their host cell [122]. These pathways
are heavily represented within the schizophrenia gene analy-
sis.

3.7. Mechanisms of Action. Individual proteins are homol-
ogous to multiple viral proteins, which nevertheless are
specific for a spectrum of viruses, while individual viruses are
homologous to a large but specific subset of human proteins.

Our proteomes therefore contain proteins with sequen-
ces exactly matching those in the current virome, and in
the proteomes of bacteria and other pathogens, which are
also subject to phage or viral infection. Pathogens’ proteins
are therefore homologous to receptors, transporters, peptide
messengers, growth factors, and other protein products of
diverse gene families. Upon infection, surrogate dopamine,
NMDA serotonin and other receptors, as well as transporters
and enzymes are made available, which in effect may steal
the ligands of their human counterparts. It is already known
that the dopaminergic ligand, amantadine, binds to the
influenza virus [123], which expresses proteins homologous
to dopamine receptors (Table 3). When homologous to pep-
tide ligands, viral proteins may occupy and block or perhaps
stimulate their cognate receptors, or use them for entry, as
is the case with the AIDS virus and the CCR5 and CXCR4
chemokine receptors [124].

This is illustrated by the Norovirus (Norwalk) which
causes vomiting sickness. The virus expresses proteins
homologous to monoamine and other amine oxidases as well
as to a number of dopamine and monoamine transporters
(Table 6). Dopamine subversion by the viral homologues
would be expected to increase dopamine levels resulting in
emesis, thus explaining the recurrent vomiting produced by
infection.

The potential interference by viruses within protein/ pro-
tein networks is well illustrated by the homology of rubella
proteins to DISC1 and other members of its interactome, and
by the fact that many viruses have indeed been found to bind
to these components (Table 4).

The homologous human proteins of the viral risk factors
implicated in schizophrenia correspond to the genomic

http://www.polygenicpathways.co.uk/blasts.htm
http://www.polygenicpathways.co.uk/blasts.htm
http://www.polygenicpathways.co.uk/blasts.htm
http://www.polygenicpathways.co.uk/keggszgenes.htm
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Table 1: Some of the pathogens implicated in Schizophrenia, either in relation to maternal infection, or to infection in later life.

Pre- and perinatal maternal infection Juvenile (in offspring) Adult

Rubella (first trimester) [76]:
Influenza (first trimester) [13]
Influenza or common cold with fever
(second trimester) [16]

Mumps or cytomegalovirus infection
(0–12 years old) [77]

HSV-1 seropositivity related to grey matter
volume [78]

Poliovirus (second trimester) [17] Coxsackie B5 infection perinatally [18]
HSV-1 (in Afro-Americans) or HHV-6
seropositivity: Inverse correlation with HSV-2
and cytomegalovirus [79]

Measles, Varicella zoster or polio
(seropositivity at birth) [14]

Childhood meningitis (0–4 years old) [80] Borna disease virus seropositivty [81]

HSV-2 (antibodies assayed at the end of
pregnancy) [82]

Coronavirus seropositivity [83]

Influenza B (seropositivity at birth) [84] Elevated retrovirus HERV-W transcripts [85]

Toxoplasmosis (antibodies during
pregnancy) [86]

Measles virus seropositivity [87]

Hepatitis C [38]

Toxoplasmosis [88]

Correlation with the incidence of Lyme disease
(Borrelia) [20]

Table 2: Pathogens expressing proteins with homology to the autoantigens reported in schizophrenia. The size of the tags is proportional
the number of pathogen’s proteins that are homologous to the autoantigen. Note that the profile is different for each pathogen. The original
BLAST files can be found at http://www.polygenicpathways.co.uk/blasts.htm.

Autoantigen reference Pathogens

CHRNA7 Nicotinic cholinergic receptor [89]

CHRM1 Muscarinic cholinergic receptor [90]

DRD2 Dopamine receptor [82]

GRIN1 NMDA receptor subunit [91]

ELANE Leukocyte elastase [92]

OPRM1 Opioid receptor [93]

NGF Nerve growth factor [92]

HTR1A Serotonin receptor [93]

HSP60 Heat shock protein 60 [94]

HSPA12A Heat shock protein 70 [95]

HSP90 Heat shock protein 90 [95]

PAM/MYC [94]

S100B [96]

STRN Striatin [96]

locations of 632 schizophrenia susceptibility genes (see Venn
diagrams). Both negative and positive genetic association
results have been reported for these many genes and it now
seems plausible that, in some cases, this may be due to
the presence or absence of active infection with these and
other pathogens, and that DNA assays have been detecting
pathogen as well as human DNA in the blood samples used
for assay. There is evidently no way of discriminating viral or
bacterial double-stranded DNA from human DNA.

This is not specific to schizophrenia, as the viruses impli-
cated in Alzheimer’s disease (HSV-1, HIV-1, HHV-6 and
the cytomegalovirus) [125–127] are also homologous to
proteins encoded by Alzheimer’s disease susceptibility genes
see http://www.polygenicpathways.co.uk/blasts.htm [128].

It seems that a viable interpretation, given the same
phenomenon in these diseases, is that these genes are sus-
ceptibility genes precisely because they encode for proteins
with homology to the viral risk factors. Infection and genetics

http://www.polygenicpathways.co.uk/blasts.htm
http://www.polygenicpathways.co.uk/blasts.htm
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Table 3: Human proteins with homology to proteins expressed by pathogens. The size of the tags reflects the number of pathogen’s proteins
that are homologous to the human protein: the filters used are described. The number of schizophrenia susceptibility genes within each of
these datasets is shown in the left-hand column. Certain genes are classified according to family and are highlighted in red. Gene definitions
and the original BLAST files can be found at http://www.polygenicpathways.co.uk/blasts.htm. Note that the homologues are often clustered
in families (e.g., HTR1A, HTR2A, HTR3A, HTR3B, HTR3E, HTR5A, and HTR7).

http://www.polygenicpathways.co.uk/blasts.htm
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therefore appear to be interdependent. The pathogens may
promote disease if the human genes encode for homologous
products, and the genes promote disease if the homolo-
gous pathogen is encountered. Such interdependence likely
explains the heterogeneous data in both gene and risk factor
association studies.

Other pathogens, including Borrelia Burgdorferri and T.
Gondii have also been implicated in schizophrenia. These
too express many homologous proteins to both viral and
human proteomes. These parasites tend to be associated
with schizophrenia in adulthood, while viral infections are
predominantly prenatal risk factors. These may have primed
the antibody network to respond to homologous antigens
expressed by Borrelia or T. Gondii, suggesting that detection
and elimination of these pathogens may be of therapeutic
benefit in adult life.

Schizophrenia is a neurodevelopmental disorder [129,
130] and, as the risk-promoting effects of viruses are related

to maternal infection, it is possible that knockdown or
interference of foetal proteins by viral-induced antibodies
targeting their human counterparts may contribute to the
neurodevelopmental disturbances observed in schizophre-
nia. Indeed DISC1, neuregulin, ERBB4, FEZ1 or COMT
knockout mice display many of the pathological and
behavioural symptoms associated with schizophrenia [131–
135]. Viral interference with these same proteins might be
expected to promote the same effects, but on a massive
scale, targeting many relevant proteins at once. It is also
possible that such autoantibodies play a role in the comor-
bid conditions associated with schizophrenia, for example
autoimmune disease such as Thyrotoxicosis, celiac disease,
acquired haemolytic anaemia, interstitial cystitis, or Sjogren’s
syndrome [136].

Autoantibodies to several proteins have been reported
in schizophrenia (muscarinic, nicotinic, dopaminergic and
NMDA receptors, inter alia, (Table 2) and all are homologous
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Table 4: Viruses reported to bind to DISC1 interactome partners.

DISC1 partner
gene symbol

Protein name Viral binder

ACTG1 Actin, cytoplasmic 2 HIV-1 [97] HSV1 [98]

ACTN2 Actinin, alpha 2 Hepatitis C [99]

AKAP9 A-kinase anchor protein 9 Epstein-Barr [97]

ATF4 Cyclic AMP-dependent transcription factor ATF-4 HSV1 [98]

ATF5 Cyclic AMP-dependent transcription factor ATF-5 HTLV1 [100]

BICD1 Protein bicaudal D homolog 1 Cytomegalovirus [101]

C14orf135 Uncharacterized protein C14orf135 precursor Hepatitis C [102]

DCTN1 Dynactin-1 HSV1 [98]

DCTN2 Dynactin subunit 2
Dynactins are involved in the transport of the
adenoviruses, HSV-1, the hantaan virus, HTLV-1
and the poliovirus [103–108]

DNAJC7 DnaJ homolog subfamily C member 7
Part of a complex forming the coxsackie virus
receptor [109]

DYNC1H1 Dynein heavy chain, cytosolic
Adenovirus (in a complex with dynactin and
NDEL1) [110]

EEF2 Elongation factor 2 Epstein Barr [111]

EIF3S3 Eukaryotic translation initiation factor 3 subunit 3 Hepatitis C [112]

FEZ1 Fasciculation and elongation protein zeta 1 (zygin I) JC Polyomavirus [113]

HERC2 HECT domain and RCC1-like domain-containing protein 2 Papillomavirus 16 [114]

KIF3C Kinesin-like protein KIF3C HIV-1 [115]

MATR3 Matrin-3 HSV1 [98]

NDEL1 Nuclear distribution protein nudE-like 1
Part of a complex involved in Adenovirus transport
(with dynactin and cytoplasmic dynein) [110]

PAFAH1B1 Platelet-activating factor acetylhydrolase IB subunit alpha
Binds to Poliovirus P3 protein and HIV-1 Tat
[116, 117]

PCNT Pericentrin
Involved in the microtubular transport of the
adenovirus [118]

PGK1 Phosphoglycerate kinase 1 Epstein-Barr [119]

SMARCE1
SWI/SNF-related matrix-associated actin-dependent
regulator of chromatin subfamily E member 1

HSV-1 [97]

STX18 Syntaxin-18 Papillomavirus [119]

TNKS Tankyrase-1 Epstein-Barr [120]

TUBB Tubulin beta chain Epstein-Barr [119]

YWHAE 14-3-3 protein epsilon Hepatitis C [97] : L : Epstein-Barr [119]

YWHAQ 14-3-3 protein theta HIV [97] HSV1 [98]

YWHAZ 14-3-3 protein zeta/delta HSV1 [98] : Epstein-Barr [119]
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Table 5: The number of schizophrenia gene products in KEGG pathways related to immunity, and viral or pathogen life cycles.

Pathogen pathways Viral pathways Immune

Toxoplasmosis 16 Focal adhesion 20
Cytokine-cytokine receptor
interaction

26

Chagas disease 15
Cell adhesion molecules
(CAMs)

19 Jak-STAT signaling pathway 16

Amoebiasis 13
Regulation of actin
cytoskeleton

17 Systemic lupus erythematosus 13

Leishmaniasis 12
Protein processing in
endoplasmic reticulum

13
T cell receptor signaling
pathway

13

Viral myocarditis 8 Endocytosis 12 Phagosome 12

Staphylococcus aureus
infection

7 Phagosome 12 Allograft rejection 11

Epithelial cell signaling in
Helicobacter pylori infection

6 Gap junction 11 Hematopoietic cell lineage 11

Malaria 6 Tight junction 11
Antigen processing and
presentation

10

Tryptophan metabolism 6 Adherens junction 6
Fc epsilon RI signaling
pathway

10

NOD-like receptor signaling
pathway

4 ECM-receptor interaction 6 Apoptosis 10

Vibrio cholerae infection 4 Oocyte meiosis 5 Graft-versus-host disease 9

Bacterial invasion of epithelial
cells

3
SNARE interactions in
vesicular transport

4 Autoimmune thyroid disease 8

E.coli infection 3 Chemokine signaling pathway 8

RIG-I-like receptor signaling
pathway

3 Basal transcription factors 3
Leukocyte transendothelial
migration

8

Cytosolic DNA-sensing
pathway

2 Spliceosome 2
Natural killer cell mediated
cytotoxicity

8

Shigellosis 2 Aminoacyl-tRNA biosynthesis 1
Adipocytokine signaling
pathway

7

Base excision repair 1 Asthma 7

RNA degradation 1 Intestinal IgA production 5

Toll-like receptor signaling
pathway

5

Complement and coagulation
cascades

4

B cell receptor signaling
pathway

3

TGF-beta signaling pathway 3

Lysosome 2

Regulation of autophagy 2

Fc gamma R-mediated
phagocytosis

1

Primary immunodeficiency 1

to proteins expressed by the risk factors in schizophrenia. The
effects of antibody knockdown have not been analysed for
any schizophrenia related proteins, but have been reported
for the microtubule-related protein tau, in relation to Alz-
heimer’s disease. In mice, tau immunisation produces tau
hyperphosphorylation, neurofibrillary tangles and axonal
damage as seen in the human condition [137]. Tau (MAPT)
is homologous to Herpes simplex (HSV-1) and a number of
other pathogens. Such effects are relevant to the autoantigens
observed in schizophrenia.

Schizophrenia is also a degenerative disease in adoles-
cence or adulthood, characterised by oligodendrocyte cell
loss, impaired synaptic connectivity and pyramidal cell den-
drite shrinkage [41, 138–140], In the light of the above
homologies it seems likely that such degenerative changes
may relate to autoimmune-related attack of these diverse
compartments. Indeed there is evidence for microglial acti-
vation in the schizophrenic brain [141] and several studies
have reported changes in the cytokine profile in the brain,
CSF or peripheral immune compartments [24, 142–146].
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Table 6: Human homologues of Norwalk virus proteins.

Dopamine metabolisers Amine transporters Others

AOC2 amine oxidases
AOC3“”
KDM1A amine oxidase demethylase
KDM1B“”
MAOA monoamine oxidase
MAOB“”
RNLS renalase amine oxidase
SMOX spermine oxidase
SPR sepiapterin reductase
Monoamine synthesis cofactor
SULT1A1 sulphotransferases
SULT1A3 monoamine metabolite
sulphation
SULT1A4

SLC6A2 (Noradrenaline)
SLC6A3 (Dopamine)
SLC18A1vesicular monoamine
SLC18A2“”
SLC22A2 organic cation
SLC22A3 extraneuronal monoamine
SLC29A4 (Na+/H+)

CADPS2 amine release activator
CDCA7 cell division cycle associated 7
CDCA7L
IL4I1 cytokine
PICK1 postsynaptic scaffold

3.8. Clinical Implications in Schizophrenia and Other Condi-
tions. These data suggest that susceptibility gene products
are the vehicles enabling the risk-promoting effects of
pathogenic risk factors, via the interactions described above,
and that the two are indispensable for the genesis of schizo-
phrenia. Pathogen detection and elimination or vaccination,
particularly prior to pregnancy might be expected to reduce
the incidence of schizophrenia and also to be of clinical
benefit in adulthood. Interestingly, vitamin D is able to stunt
the growth of T. Gondii [147] and low levels of this vitamin,
both prenatally and in adulthood, have been associated with
schizophrenia risk, although abnormally high levels are also a
risk factor [148]. Pharmaceutical effort in this direction may
also vastly improve the armoury and safety of drugs against
parasites such as T. Gondii and Borrelia.

Autoimmunity, involving several key schizophrenia-
related proteins may well be a consequence of pathogen
infection, and related to viral/human protein homology.
Antigen and antibody removal by immunoadsorption tech-
niques might therefore also be if clinical benefit.

This scenario suggests a novel and probably common
class of “pathogenetic” autoimmune disease caused by path-
ogens but dependent on our genes. Indeed, the same phe-
nomenon has been observed in Alzheimer’s disease where
the risk factor herpes simplex expresses proteins contain-
ing peptide matches to the products of multiple sus-
ceptibility genes [128]. Work from Kanduc’s laboratory
has also shown that 30 viral proteomes, including many
nonretroviruses, contain multiple pentapeptide matches to
many human proteins [149]. This is corroborated by data
posted at http://www.polygenicpathways.co.uk/blasts.htm
which shows, inter alia, that Bornavirus proteins, a virus
implicated in Bipolar disorder [150], display this type of
homology in relation to Bipolar disorder susceptibility gene
products, that the coronavirus implicated in Parkinson’s
disease [151] expresses proteins homologous to the PARK7
gene product and to dopaminergic and oxidative stress-
related proteins, and that multiple sclerosis autoantigens are
homologous to the products of the Epstein-Barr virus which
has been implicated in this disorder [152]. Our genomes and
polymorphisms determine which vatches we possess, which

pathogens match these sequences and which pathogen-
related disorder we might develop. Environmental variables,
and vaccination, determine which pathogens we encounter
and our immune system (HLA-antigens and immune back-
ground determined soon after birth) may determine how we
deal with these pathogens. With the power of current day
bioinformatics, it should be possible to rapidly identify all
vatches in the human proteome and to pair them with
the various pathogenic species and human diseases. This
would greatly aid our understanding of the implication of
pathogens in disease and may lead to radically new therapies
and prevention strategies in many disorders.
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[143] J. Söderlund, J. Schröder, C. Nordin et al., “Activation of brain
interleukin-1β in schizophrenia,” Molecular Psychiatry, vol.
14, no. 12, pp. 1069–1071, 2009.

[144] Ł. Drzyzga, E. Obuchowicz, A. Marcinowska, and Z. S.
Herman, “Cytokines in schizophrenia and the effects of
antipsychotic drugs,” Brain, Behavior, and Immunity, vol. 20,
no. 6, pp. 532–545, 2006.

[145] R. S. Smith and M. Maes, “The macrophage-T-lymphocyte
theory of schizophrenia: additional evidence,” Medical
Hypotheses, vol. 45, no. 2, pp. 135–141, 1995.

[146] M. P. Vawter, O. Dillon-Carter, F. Issa, R. J. Wyatt, and W.
J. Freed, “Transforming growth factors β1 and β2 in the
cerebrospinal fluid of chronic schizophrenic patients,” Neu-
ropsychopharmacology, vol. 16, no. 1, pp. 83–87, 1997.

[147] R. Rajapakse, B. Uring-Lambert, K. L. Andarawewa et al.,
“1,25(OH)2D3 inhibits in vitro and in vivo intracellular
growth of apicomplexan parasite Toxoplasma gondii,” Journal
of Steroid Biochemistry and Molecular Biology, vol. 103, no.
3-5, pp. 811–814, 2007.

[148] J. J. McGrath, D. W. Eyles, C. B. Pedersen et al., “Neonatal
vitamin D status and risk of schizophrenia: a population-
based case-control study,” Archives of General Psychiatry, vol.
67, no. 9, pp. 889–894, 2010.

[149] D. Kanduc, A. Stufano, G. Lucchese, and A. Kusalik, “Massive
peptide sharing between viral and human proteomes,”
Peptides, vol. 29, no. 10, pp. 1755–1766, 2008.

[150] D. E. Dietrich and L. Bode, “Human Borna disease virus-
infection and its therapy in affective disorders,” APMIS, vol.
116, no. 124, pp. 61–65, 2008.

[151] E. Fazzini, J. Fleming, and S. Fahn, “Cerebrospinal fluid anti-
bodies to coronavirus in patients with Parkinson’s disease,”
Movement Disorders, vol. 7, no. 2, pp. 153–158, 1992.

[152] B. A. Bagert, “Epstein-Barr virus in multiple sclerosis,”
Current Neurology and Neuroscience Reports, vol. 9, no. 5, pp.
405–410, 2009.


	Introduction
	Methods
	Results
	Autoantigens in Schizophrenia
	DISC1
	Viral Proteins Are Part of the DISC1 Interactome
	Viral DNA within the Human Genome
	Copy Number Variations and the Effects of Parental Age on Risk
	KEGG Pathway Analysis of Schizophrenia Susceptibility Genes
	Mechanisms of Action
	Clinical Implications in Schizophrenia and Other Conditions

	References

