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Channelopathies are a heterogeneous group of neurological disorders resulting from
dysfunction of ion channels located in cell membranes and organelles. The clinical
scenario is broad and symptoms such as generalized epilepsy (with or without fever),
migraine (with or without aura), episodic ataxia and periodic muscle paralysis are
some of the best known consequences of gain- or loss-of-function mutations in ion
channels. We review the main clinical effects of ion channel mutations associated with
a significant impact on migraine headache. Given the increasing and evolving use of
genetic analysis in migraine research—greater emphasis is now placed on genetic
markers of dysfunctional biological systems—we also show how novel information in rare
monogenic forms of migraine might help to clarify the disease mechanisms in the general
population of migraineurs. Next-generation sequencing (NGS) and more accurate and
precise phenotyping strategies are expected to further increase understanding of
migraine pathophysiology and genetics.
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INTRODUCTION

The channelopathies are a heterogeneous group of neurological disorders that result from genetic
dysfunction of ion channels located in cell membranes and organelles. Similarly to ion pumps and
transporters, ion channels are highly selective and coordinate ion fluxes during the generation
of action potentials, or following neurotransmitter release, in the nervous system and muscles
(Spillane et al., 2016). Their dysfunction may therefore impair neuronal excitability and synaptic
transmission, thus constituting a key pathophysiological element of a wide range of disorders.

Generally, the symptoms of channelopathies appear early in life and are typically paroxysmal
or episodic. Defects in a single channel may lead to different neurological manifestations, e.g.,
seizures, paroxysmal movement disorders/periodic paralyzes, and migraine. However, despite
the variable presentations, certain trigger factors (i.e., sleep, stress, hormonal fluctuations),
patterns of age dependence of manifestations, and treatment modalities may overlap, suggesting
the existence of common pathogenic substrates. Conversely, defects in different ion channels,
or transporters, can often underpin the single neurological picture. It is therefore difficult
to predict the clinical consequences of ion channel dysfunctions, and to establish clear

Abbreviations: MA, migraine with aura; MO, migraine without aura.
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pathophysiological explanations in episodic neurological
channelopathies. The reason why defects in single channels
can lead to seizures, episodic ataxia, movement disorders
or migraine, or to a combination of these, is only partially
understood and possibly dependent on diverse molecular
mechanisms that affect channel function (i.e., gain- or loss-
of-function effects of mutations), and on the specific neuronal
circuitry involved.

In this mini review, we focus on the complex
pathophysiological relationship underlying migraine disorders,
in which an array of genetic and environmental components
strongly contributes to variable individual susceptibility and
clinical manifestations (i.e., migraine with aura [MA] or
without aura [MO]). Indeed, largely because of the phenotypic
heterogeneity and genetic pleiotropy and variability of migraine
disorders (de Vries et al., 2009), investigation of the common
forms of migraine has, to date, provided only limited insight
into the underlying genetics and pathophysiology. Studies on
rarer monogenic forms of migraine (termed familial hemiplegic
migraine [FHM] syndromes), on the other hand, have identified
new genes pinpointing fundamental disease mechanisms that
possibly also contribute to the common forms of migraine in the
general population.

MIGRAINE: CLINICAL AND
PATHOPHYSIOLOGICAL ASPECTS

Migraine affects about 15% of the general population, and
women three times more often than men (Launer et al., 1999;
Jensen and Stovner, 2008). It is characterized by episodic
and disabling attacks of headache, often accompanied by
nausea, vomiting, photophobia and/or phonophobia, which may,
or may not, be preceded by an aura. Aura is a transient
neurological symptom, lasting 5–60 min, that usually includes
visual, sensory and/or aphasic features. Even though MA and
MO are considered distinct disorders, increasing evidence
suggests that the two conditions are, in fact, variable clinical
expressions of substantially the same genetic disease. Indeed,
the fact that the prevailing migraine form in a single patient
might vary over time suggests that the main pathophysiological
pathways are essentially the same in MO and MA, and
that external modulating factors might favor the switching
on/off of one of the two migraine types (Ferrari et al.,
2015).

Auras are likely caused by the phenomenon of cortical
spreading depression (CSD), namely a wave of neuronal
and glial depolarization that starts in visual cortical areas
and moves slowly (2–6 mm/min) over the cortex (Lauritzen,
1994). CSD is thought to be the consequence of noxious
stimuli that alter the neuronal environment, leading to
glutamate-induced toxicity (Kramer et al., 2016). Glutamate
activates cation currents, particularly through the N-methyl-
D-aspartate receptors, leading to near breakdown of neuronal
transmembrane ion gradients (Ca2+, Na+, Cl−, and K+).
This loss of potential, which is normally reinstated by
Na+/K+ pumps, is not recovered immediately, resulting in
long-lasting inhibition of spontaneous and evoked neuronal

activity (Dreier and Reiffurth, 2015). Although the mechanism
of CSD has been extensively investigated in animal models
(Charles and Baca, 2013), experimental evidence in humans
is still scarce. In MA, functional magnetic resonance imaging
findings have revealed a local increase in blood oxygen
level-dependent signals, which were found to spread through
the visual cortex at a rate similar to what is seen in
experimentally induced CSD in animals (Hadjikhani et al.,
2001). Magnetoencephalography studies have also shown that
large cortical areas are activated in spontaneous and visually
induced migraine auras, producing a spreading depression-like
neuroelectric event that may be likened to CSD (Bowyer et al.,
2001).

The pain in migraine headache results from activation of the
trigeminovascular system (Noseda and Burstein, 2013). Indeed,
signals from activated nociceptors located on large cranial vessels
and the dura mater are transmitted to the trigeminal bipolar
neurons, and further relayed, through extensive connections
with brainstem regions (i.e., the periaqueductal gray and locus
coeruleus), to thalamic and cortical areas, ultimately producing
the sensation of pain (Ferrari et al., 2015).

Multiple evidences suggest that CSD might not only cause
migraine auras, but also, by itself, trigger the mechanisms
underlying the headache and associated symptoms. These
mechanisms consist mainly of the release, by neurons, glia
and vascular cells, of pro-inflammatory peptides, such as
substance P and calcitonin gene-related peptide, but also
adenosine triphosphate (ATP), glutamate and potassium, and
the resulting local increase in neuroactive inflammatory
mediators and sensitization of pain-relevant brainstem
regions (Zhang et al., 2007; Levy, 2012). The opening of
neuronal Panx1 channels in response to the CSD stimulus
also helps to trigger an inflammatory cascade by releasing
HMGB1 proteins, which activate neighboring astrocytes
leading to sustained release of inflammatory mediators
(Karatas et al., 2013). Although definitive proof is lacking,
drugs preventing CSD may be effective in treating migraine
attacks (Costa et al., 2013). Pain is only the tip of iceberg
of a complex chronic disease in which several molecular
mechanisms lead to increased susceptibility to CSD (Antal
et al., 2008) and the release of soluble mediators, and
thus to long lasting neuronal sensitization, amplified
nociceptive signaling by trigeminal sensory neurons, and
stable neuroinflammatory tissue responses (Franceschini et al.,
2013). Indeed, clinical and neurophysiological studies have
confirmed that individuals suffering from migraine display
chronic hypersensitivity to sensory stimuli or abnormal
processing of sensory information (Aurora et al., 2007; Vecchia
and Pietrobon, 2012), which may be reflected in more frequent
premonitory symptoms (e.g., speech/reading difficulties,
sensory hypersensitivity) preceding the attacks (Pietrobon and
Moskowitz, 2013).

FAMILIAL HEMIPLEGIC MIGRAINE

Molecular insights into the rare monogenic FHM syndromes
have highlighted the central role of calcium (Ca2+) and sodium
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FIGURE 1 | Protein pathway driving the migraine process at the tripartite synapse. The illustration depicts different proteins at the tripartite synapse possibly
involved in glutamatergic dysfunction in migraine (see text for details). Cav2.1 (CACNA1A; red) dysfunction at presynaptic terminals of glutamatergic neurons leads to
altered Ca2+ influx and enhanced glutamate release by vesicles into the synaptic cleft, favoring the activation and propagation of cortical spreading depression (CSD)
in familial hemiplegic migraine 1 (FHM1). Na+/K+-ATPase (ATP1A2; green) at the astrocyte plasma membrane utilizes ATP hydrolysis to exchange Na+ for K+ ions,
generating a Na+ gradient that helps to modulate the glutamate re-uptake by glial excitatory amino acid transporter 1 (EAAT1; SLC1A3; yellow) and EAAT2 (SLC1A2;
cyan). Loss-of-function of Na+/K+-ATPase (FHM2), as well as of EAAT1, slows the clearance of glutamate leading to increased cortical excitability that favors the
initiation and propagation of CSD. The activity of EAAT2 also contributes to glutamate clearance, and is downregulated by mutations in astrocyte elevated gene-1
(AEG-1) (MTDH; dashed line), one of the candidate genes emerging from genome-wide association (GWA) studies. NaV1.1 channels (SCN1A, FHM3; purple) are

(Continued)
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FIGURE 1 | Continued
essential for the generation and propagation of action potentials.
FHM3-associated mutations can reduce firing of inhibitory interneurons, or
accelerate the recovery of the channel after fast inactivation, causing
high-frequency firing of presynaptic glutamatergic neurons. PRRT2 (pink) also
affects the glutamate signaling pathway, through defective interaction with
SNAP25 (forest green) and the ionotropic glutamate receptor AMPA1 (termed
GRIA1; gray with pale pink border), resulting in increased glutamate release.
Defective membrane expression of the Na(+)-HCO(3)(-) cotransporter NBCe1
(SLC4A4; orange) may affect the uptake of HCO3- into astrocytes leading to
altered activity of pH-sensitive NMDA receptors (gray). Both AMPA and NMDA
receptors are also directly modulated by LRP1 (dark pink), which is cleaved by
a metalloproteinase that is encoded by another migraine-susceptibility gene,
MMP16 (fluorescent green). Synaptic activity is also influenced by other
proteins thought to contribute to migraine pathophysiology, such as the
nuclear transcription factors MEF2D and FHL5, the serine-threonine kinase
TGFBR2 (aquamarine), and ASTN2 (fuchsia), a protein related to ASTN1 (pale
lilac) and thought to influence neuronal migration. All these mechanisms, when
defective, may affect the glutamate signaling pathway, possibly leading to
neuronal hyperexcitability predisposing to migraine. The illustration also shows
the pathway that starts from the CSD-driven opening of PANX1 channels (lilac)
and triggers the inflammatory cascade and subsequent trigeminovascular
sensitization. Signaling to PANX1 leads to caspase 1 activation that, in turn,
stimulates the release of high-mobility group box 1 (HMGB1) proteins and the
activation of the transcription factor nuclear factor κB (NF-κB) in astrocytes.
This may lead to local increase in vasoactive inflammatory mediators and
sensitization of pain-relevant brainstem regions.

(Na+) channels, and of sodium-potassium (Na+/K+) ATPase, in
the etiology and pathophysiology of migraine. In FHM, migraine
attacks are associated with transient hemiparesis, lasting minutes
to hours or days, or alternatively may present as episodes of
‘‘regular’’ MO or MA without major motor weakness. Patients
may also suffer from a variety of symptoms that include
cerebellar ataxia, seizures and even mild head trauma-induced
brain edema that can be fatal (Kaja et al., 2010). Three FHM genes
have been identified: CACNA1A (FHM1; Ophoff et al., 1996),
ATP1A2 (FHM2; De Fusco et al., 2003), and SCN1A (FHM3;
Dichgans et al., 2005).

CACNA1A codes for the alpha subunit of the neuronal
voltage-gated Ca2+ channel Cav2.1 (Diriong et al., 1995).
Cav2.1 channels are predominantly expressed at the presynaptic
terminals of glutamatergic and GABAergic neurons in the
cerebral cortex, trigeminal ganglia, brainstem nuclei and
cerebellum (Catterall, 1998), where they play a crucial role
in neurotransmitter release. The clinical features of Cav2.1
channelopathies range from pure FHM1 to forms that include
episodic or progressive ataxia (Jouvenceau et al., 2001; Imbrici
et al., 2004) and seizures. In FHM1, CACNA1A mutations
typically lead to a gain of Cav2.1 channel function, although in
model organisms this seems have the effect of enhancing only
glutamatergic neurotransmission, whereas inhibitory synapses
remain unaffected (Tottene et al., 2009). This differential
effect at excitatory and inhibitory synapses suggests that
altered regulation of cortical excitatory-inhibitory balance
may be a likely pathomechanism in FHM1. The gain of
Cav2.1 channel function may indeed favor glutamate release,
and consequently the induction and propagation of CSD
(Vecchia and Pietrobon, 2012; Pietrobon and Moskowitz,
2013).

The second FHM gene (FHM2), ATP1A2, encodes the
alpha-2 subunit of a Na+/K+ pump (De Fusco et al., 2003).
This catalytic subunit utilizes ATP hydrolysis to exchange
Na+ ions (leaving the cell) for K+ ions (entering the cell)
and is present in the membrane of astrocytes at tripartite
synapses, where it contributes to K+ and glutamate re-uptake.
More than 30 FHM2 mutations have been identified (de
Vries et al., 2009) and associated with pure disease (De Fusco
et al., 2003; Riant et al., 2005; Vanmolkot et al., 2006), or
with a combination of FHM and cerebellar ataxia (Spadaro
et al., 2004), recurrent encephalopathy (Ducros et al., 2001;
Spacey et al., 2005), impaired hearing and vertigo (Jurkat-
Rott et al., 2004), or epilepsy (Roth et al., 2014). Some
ATP1A2 mutations have also been associated with non-
FHM phenotypes, such as basilar migraine (Ambrosini et al.,
2005) or common migraine (de Vries et al., 2009). Defective
function of glial Na+/K+-ATPase at tripartite synapses may
interfere with glutamate clearance by astrocytes, leading
to increased cortical excitatory neurotransmission which
facilitates CSD.

The third FHM gene (FHM3), SCN1A, encodes the alpha-1
pore-forming subunit of the neuronal voltage-gated Na+ channel
Nav1.1 (Dichgans et al., 2005). Voltage-gated sodium channels
have a crucial role in cellular excitability and are essential
for the initiation of action potentials in the brain. Mutations
in SCN1A are associated with a wide spectrum of epilepsy
phenotypes (e.g., severe myoclonic epilepsy; Marini et al.,
2007; Dravet and Oguni, 2013). More rarely, SCN1A mutations
lead to pure FHM (Dichgans et al., 2005; Vanmolkot et al.,
2007), or to FHM associated either with generalized seizures
(Castro et al., 2009), or with a stereotyped phenotype (elicited
repetitive transient daily blindness) that suggests a retinal
form of spreading depression (Vahedi et al., 2009; Fan et al.,
2016). Epileptogenic Nav1.1 mutations cause loss of channel
function of variable degrees, leading to reduced Na+ currents
in GABAergic inhibitory interneurons (Yu et al., 2006), thus
defining an interneuron-specific generalized defect in action
potential initiation which results in multisystem disinhibition
and network hyperexcitability (Hedrich et al., 2014). Mutated
Nav1.1 channels in FHM3 instead exhibit a broad range of
abnormalities, including gain of function and partial or complete
loss of function, confirming the complex relationship between
clinical and biophysical phenotypes in SCN1A-related pathology
(Kahlig et al., 2008). Regardless of the molecular mechanism,
however, the high-frequency firing of mutant Nav1.1 channels,
by producing a rise in extracellular K+ concentration and
consequent further depolarization, may enhance the release of
glutamate and sustain CSD mechanisms.

Taken together, the three different forms of FHM indicate
the existence of a main pathophysiological pathway that, starting
from excessive neuronal release of glutamate (CACNA1A),
impaired glutamate reuptake by glial cells (ATP1A2), or
enhanced glutamatergic activity due to impaired GABAergic
inhibition (SCN1A), ultimately leads to altered glutamatergic
neurotransmission, with consequent neuronal hyperexcitability
and increased susceptibility to CSD (Ferrari et al., 2015). The
three major genes, however, do not account for all affected
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cases, and at least three additional genes (SLC1A3, PRRT2
and SLC4A4) have been suggested, albeit on the basis of
limited evidence, to be associated with FHM in a minority of
cases. Notably, defects in all of these genes lead to enhanced
excitatory neurotransmission and cortical excitability. Mutations
in SLC1A3, encoding the excitatory amino acid transporter 1
(EAAT1; Jen et al., 2005), cause decreased glutamate reuptake,
whereas PRRT2, through defective interaction with SNAP25
and GRIA1 proteins (Li et al., 2015), affects the glutamate
signaling pathway and results in increased glutamate release.
Finally, the sodium bicarbonate cotransporter NBCe1 (SLC4A4)
may derange synaptic pH regulation in astrocytes, leading to
neuronal hyperexcitability predisposing to migraine (Suzuki
et al., 2010).

MAIN GENETIC ISSUES IN THE STUDY OF
MIGRAINE

Migraine is a multifactorial disorder resulting from complex
interactions between multiple predisposing genes and
environmental factors (Russell et al., 1995; Mulder et al.,
2003). The latter include hormone fluctuations, and this may
explain the increased prevalence of migraine in females, and
its variability across the individual life span (MacGregor,
2004). The clinical presentation is also variable, making the
pathogenesis of migraine particularly difficult to unravel.
Furthermore, it is not clear whether, from the perspective
of genetic study designs, the two forms (MO and MA)
should be considered the same disease, given that findings
from epidemiological and clinical studies are still conflicting
(Russell et al., 2002; Ligthart et al., 2006). Many clinical aspects
contribute to the extreme variability of migraine phenotypes:
for example, the severity and frequency of the attacks, the
attack triggers, and the neuropsychiatric comorbidities possibly
involved (depression, epilepsy, etc.) are all highly variable. This
strong heterogeneity, together with the lack of any genetic
biomarker, makes it difficult to stratify patients for genetic
studies and consequently to identify strong genotype-phenotype
correlations. Previous linkage analyses on large pedigrees, and
screening of candidate genes, including more than 150 ion
transporter genes (Nyholt et al., 2008), in several thousand
migraineurs were largely unsuccessful (de Vries et al., 2009).
Similarly, testing of the three major FHM genes in patients
with common migraine has shown no evidence to support
their involvement in the disorder. It is indeed possible that
disease risk in common migraine may be conferred by multiple
genes and their variants (each with a small effect size) that
control neurotransmitter and ion pathways through complex
interactions and regulatory mechanisms (Eising et al., 2013b).
Moreover, none of the three major FHM genes has been
identified in unbiased genome-wide association (GWA) studies,
which until now have constituted the most robust approach
for identifying genetic factors underlying complex disorders
(Spain and Barrett, 2015). Overall, GWA studies have uncovered
13 susceptibility loci that involve a set of genes clustering into
clear pathways likely related to migraine (Freilinger et al.,
2012). Notably, several of these genes (i.e., MTDH, LRP1,

PRDM16, MEF2D, ASTN2, PHACTR1, FHL5, MMP16) are
involved in glutamatergic neurotransmission and synaptic
function/development, whose impairment may therefore
be considered a main dysfunctional mechanism underlying
susceptibility to common forms of migraine. Pain-sensing
mechanisms, metalloproteinases and vessel metabolism seem
likely to be additional migraine-related pathways (Tolner
et al., 2015). The strong association between candidate genes
emerging from GWA studies and glutamate metabolism is in
line with evidence from FHM, which suggests that impaired
glutamatergic neurotransmission is a key disease mechanism
underlying the abnormal cortical excitability that favors the
initiation and propagation of CSD and the recurrence of
migraine attacks. However, none of these candidate genes can
conclusively be regarded as a genetic biomarker of the disease;
each has limited predictive value given their small effect size (Di
Lorenzo et al., 2015). It is possible that multiple gene variants
affecting protein-to-protein interactions play an important
role in disease mechanisms in specific clinical conditions. For
example, analysis of GWA study data, looking for specific
disease-relevant functional gene sets, i.e., lists of genes related
to glial metabolism or synaptic function (Eising et al., 2015), has
disclosed a role for astrocyte- and oligodendrocyte-related genes
in MO and MA.

It is to be hoped that thanks to the advent of novel and
cost-effective genetic technologies, known collectively as next-
generation sequencing (NGS), it will be possible to overcome
some limitations of the more traditional approaches used to
investigate the genetic basis of migraine. NGS will serve not only
as a tool for identifying new genes responsible for monogenic
forms of the disorder (i.e., FHM), but also, quite probably, for
identifying low-frequency variants that have moderate effects
in more common forms of migraine. The combination of data
from monogenic migraine and GWA studies, will make it
possible to pinpoint the biological systems crucially involved
(e.g., glutamatergic neurotransmission and metabolism at the
tripartite synapse, Figure 1), and to use this information
to design specific customized gene panels allowing thorough
investigation of the contribution made by each single molecular
player to the dysfunctional protein networks underlying this
complex polygenic disease.

CONCLUSIONS AND FUTURE
DIRECTIONS

The emerging NGS techniques are seen as the most promising
resource for overcoming gene-finding problems in future
migraine genetic research. The various approaches tried to date,
using linkage, candidate gene and GWA studies (Figure 2), have
not been sufficient to unravel the complex genetic background
of MA and MO. In addition, other mechanisms, such as
gene-gene or gene-environment interactions and epigenetics,
further complicate the already complex picture of the heritability
of migraine syndromes (Rudkjobing et al., 2012), suggesting
that genotyping data need to be integrated with the results
of deep clinical stratification, gene expression data, and
proteomics/metabolomics studies in order to fully understand
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FIGURE 2 | The landscape of past and near future genetic research in migraine headache disorders. The diagram illustrates the relative costs of the
molecular methodologies employed in the study of migraine genetics and the timing of the discovery of the major genes involved in FHM and in related disorders.
WES, whole-exome sequencing; WGS, whole-genome sequencing; GWAS, genome-wide association studies; NGS, next-generation sequencing.

the effects of genetic variability (Bras et al., 2012). The process
of deep phenotyping is expected to be a crucial tool for future
research in migraine genetics. Focusing genetic analyses on
groups with more homogeneous presentations will help in
investigating the function and pathogenic relevance of gene
variants emerging from NGS studies, strongly increasing the
power of genetic information and the strength of genotype-
phenotype correlations (Hennekam and Biesecker, 2012) and
paving the way for more personalized/‘‘precision’’ medicine
(Zhang et al., 2016). Evaluation of migraine comorbidities,
in particular, should be regarded as a pivotal part of the
stratification process. It is well established, for example,
that adults and children with migraine may have increased
susceptibility to seizures (Rajapakse and Buchhalter, 2016).
Identifying this potential comorbidity may allow efforts to dissect
the genetic basis of the condition to be targeted toward specific
sets of genes that may have a role in both migraine and
epilepsy pathophysiology, such as the ion channels enhancing
excitatory neurotransmitter release (i.e., Cav2.1) or dendrite
neuronal excitability and firing (Nav1.1), and their molecular
interactors. The use of metabolic parameters will also help the

stratification process, possibly favoring the discovery of new
genetic biomarkers based on NGS analyses. Gene expression
alterations could be used as markers of epigenetic mechanisms
(DNA methylation, histone tail modifications, noncoding RNA
metabolism) thought to play a role in the development of
migraine (Eising et al., 2013a). Finally, data from studies of
proteomics and metabolomics might make it possible to define
the full metabolic profile of individuals suffering from migraine,
fostering efforts to arrive at a phenotypic dissection at molecular
level. Although we still do not know whether metabolic changes
can be detected in peripheral fluids of migraine patients, data
on animal models are promising. Indeed, Cav2.1 transgenic
mice have shown measurable metabolic changes in plasma after
experimentally induced CSD (Shyti et al., 2015). Defining clinical
phenotypes and detectable biomarkers in humans might enable
a better understanding of the molecular pathways involved in
migraine, and thus allow more accurate understanding of the
bulk of data emerging from NGS.

To date, very little research using NGS methods in migraine
has been published, and that which can be found is limited to
the sequencing of very few familial cases (Nagata et al., 2014;
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Jiang et al., 2015). There are, indeed, some technical problems
that limit the use of NGS in complex polygenic disorders
(Topper et al., 2011), and translation of data into diagnostic
information often requires further validation through functional
assays, even using unanticipated new tools (Dŏganli et al., 2013).
As already established in relation to other neurodevelopmental
disorders (e.g., autism, intellectual disability, etc.; Hoischen
et al., 2014), targeted resequencing approaches may be a valid
strategy for reducing the costs and improving the specificity
of analyses. The application of pathway-focused large gene
panels or biomarker-driven genomic investigations, combined
with a stringent endophenotype-oriented approach, may allow
a deeper assessment of the role of specific proteins presumably
involved in migraine pathomechanisms (for example, those
belonging to the dysfunctional pathway at the astrocyte-neuron
synaptic cleft, Figure 1). This could also lead to the discovery of
new biologically relevant checkpoints in the pathways crucially
involved in aura and pain mechanisms underlying migraine
disorders. As the costs associated with genome-scale sequencing
progressively fall, and new tools for high-throughput functional
assays are developed, NGS techniques will gradually become
a more feasible clinical option for the decoding of complex

polygenic conditions such as migraine, revealing previously
unexpected opportunities for personalized medicine.
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