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Abstract

Neuroimaging studies have linked inter-individual variability in the brain to individualized personality traits. However, only
one or several aspects of personality have been effectively predicted based on brain imaging features. The objective of this
study was to construct a reliable prediction model of personality in a large sample by using connectome-based predictive
modeling (CPM), a recently developed machine learning approach. High-quality resting-state functional magnetic resonance
imaging data of 810 healthy young participants from the Human Connectome Project dataset were used to construct
large-scale brain networks. Personality traits of the five-factor model (FFM) were assessed by the NEO Five Factor Inventory.
We found that CPM successfully and reliably predicted all the FFM personality factors (agreeableness, openness,
conscientiousness and neuroticism) other than extraversion in novel individuals. At the neural level, we found that the
personality-associated functional networks mainly included brain regions within default mode, frontoparietal executive
control, visual and cerebellar systems. Although different feature selection thresholds and parcellation strategies did not
significantly influence the prediction results, some findings lost significance after controlling for confounds including age,
gender, intelligence and head motion. Our finding of robust personality prediction from an individual’s unique functional
connectome may help advance the translation of ‘brain connectivity fingerprinting’ into real-world personality
psychological settings.
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Introduction
Personality is a distinctive, relatively stable and high-level
psychological concept that defines individual human beings.
It strongly influences long-term behavioral styles, such as
social interactions, emotional expression and academic or job
performance (Back et al., 2009; Poropat, 2009). The five-factor
model (FFM, aka ‘The Big Five’) has emerged as the leading
psychometric model in the field of personality psychology
(McCrae and John, 1992). A growing body of research has
provided evidence that five personality factors (i.e. neuroticism,
extraversion, openness, agreeableness and conscientiousness)
of the FFM can well capture key descriptors of different behav-
ioral tendencies (Heine and Buchtel, 2009). Thus, elucidating
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the biological basis of these personality factors holds value in
gaining more insight into vulnerability and resilience, aptness
for skills and areas of expertise and even facilitating a deeper
understanding of our individuality as human beings.

The unbiased assessment of brain structure and function
with advanced neuroimaging techniques and novel analysis
approaches has linked inter-individual variability in the brain
to individualized personality traits, which provides new insight
into the neural correlates of personality. For example, the associ-
ations between brain structure and personality have been exten-
sively explored by using structural magnetic resonance imaging
(MRI) to measure gray matter morphology (Omura et al., 2005;
Rauch et al., 2005; Wright et al., 2006, 2007; Blankstein et al., 2009;
DeYoung et al., 2010; Cremers et al., 2011; Hu et al., 2011; Schutter
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et al., 2012; Bjornebekk et al., 2013; Coutinho et al., 2013; Kapogian-
nis et al., 2013; Koelsch et al., 2013; Liu et al., 2013; Taki et al.,
2013; Forbes et al., 2014; Lu et al., 2014; Nostro et al., 2017; Schultz
et al., 2017; Riccelli et al., 2017b; Ferschmann et al., 2018) and
using diffusion MRI to evaluate white matter integrity (Xu and
Potenza, 2012; Picerni et al., 2013; Nenadic et al., 2015; Lewis et al.,
2016). There are also a large number of studies investigating the
associations between brain function and personality by using
functional MRI (fMRI) to measure task-induced brain activation
(Canli and Amin, 2002; Eisenberger et al., 2005; Haas et al., 2006;
Gioia et al., 2009; Cremers et al., 2010; Suslow et al., 2010; Kennis
et al., 2013; Koelsch et al., 2013; Dima et al., 2015; Riccelli et al.,
2017a), resting-state regional neural activity (Kunisato et al., 2011;
Wei et al., 2011, 2014; Gentili et al., 2017), functional connectivity
(Adelstein et al., 2011; Ryan et al., 2011; Lei et al., 2013; Aghajani
et al., 2014; Sampaio et al., 2014; Kruschwitz et al., 2015; Pang et al.,
2016; Gentili et al., 2017; Tian et al., 2018) and functional network
topology (Gao et al., 2013; Koelsch et al., 2013; Lei et al., 2015; Beaty
et al., 2016). However, these previous studies have yielded incon-
sistent findings with the exception of the prefrontal cortex and
limbic regions (especially the amygdala and cingulate cortex),
which cannot offer a compelling demonstration of the relation-
ship between brain and personality. Moreover, most of these MRI
studies have focused on establishing correlational relationships
between personality traits and individual brain regions or small-
scale neural circuits. However, unlike some aspects of cognitive
and emotional processes that have been more or less local-
ized to specific brain regions or circuits, personality is usually
thought to be the result of a connectivity-based interaction
that engages network-mediated integration across the entire
brain.

The brain functional connectivity profiles have been shown
to act as unique ‘neural fingerprints’ with highly individualized
patterns, which allow identification of individuals at the single-
subject level (Finn et al., 2015; Xu et al., 2016). Recently, functional
connectivity patterns of the whole-brain, large-scale functional
connectome have been utilized to predict individual personality
traits by means of machine learning methods (Dubois et al., 2018;
Feng et al., 2018; Hsu et al., 2018). However, only one or several
aspects of personality have been predicted in these studies.

In this study, we aimed to predict personality factors of the
FFM at the individual level by applying a connectome-based pre-
dictive modeling (CPM) approach to high-quality resting-state
fMRI data from a large sample of healthy young adults. CPM is
a recently developed machine learning method for generating
brain–behavior models from whole-brain functional connectiv-
ity patterns (Shen et al., 2017), which has been demonstrated
to reliably predict fluid intelligence (Finn et al., 2015), attention
(Rosenberg et al., 2016; Yoo et al., 2018) and creativity (Beaty
et al., 2018). CPM is not only a predictive tool but also a data-
driven method for identifying functional networks that underlie
specific behaviors. Therefore, we expected that our prediction
models would effectively and reliably predict most personality
factors of the FFM.

Materials and methods
Participants and resting-state fMRI data

Participants were selected from the Human Connectome
Project (HCP) ‘PTN’ (Parcellation+Timeseries+Netmats) dataset
(http://www.humanconnectome.org). These participants are
healthy young adults within an age range of 22–37 years,
which corresponds to a period after the completion of major

neurodevelopment and before the onset of neurodegenerative
changes. All 1003 subjects had complete resting-state fMRI
data. Specifically, data from the earliest 184 subjects were
reconstructed using an initial version of the data reconstruction
software (referred to as ‘recon1’). Data from the latest 812
subjects were reconstructed using a later, slightly improved
version of the data reconstruction software (referred to as
‘recon2’). Data from seven subjects were processed using a
mixture of the two methods. To ensure data accuracy and
consistency, we only used data from the latest 812 subjects that
were reconstructed using the improved ‘recon2’ version. Each
subject underwent four resting-state fMRI scans where subjects
were instructed to keep their eyes open and move as little as
possible (14.4 min/scan). The four fMRI scans were concatenated
into continuous time series consisting of 4800 time points at a
repetition time of 0.72 s. The full details regarding the sample
and data acquisition have been reported in prior publications
(Van Essen et al., 2012, 2013). The HCP scanning protocol was
approved by the Institutional Review Board of Washington
University in St. Louis, MO, USA. Written informed consent was
obtained from each participant.

fMRI data preprocessing and construction of functional
connectome

All resting-state fMRI data were minimally preprocessed with
echo planar imaging gradient distortion correction, motion cor-
rection, field bias correction, spatial transformation and normal-
ization into a common Montreal Neurological Institute space
(Glasser et al., 2013) and artifact removal using independent
component analysis (ICA) + FIX (Salimi-Khorshidi et al., 2014).
For functional network connectivity analysis, network nodes can
be defined by using existing atlases based on cytoarchitecture
or anatomy. However, a potential pitfall in using such atlases
is that the mean time series of a node may not represent any
of the constituent time series if different functional areas are
included within a single node (Shen et al., 2013). Therefore,
group-level ICA was used here to define the whole-brain network
nodes in a data-driven fashion, which are considered more func-
tional homogeneous and may be better at capturing individual
differences of real functional boundaries than those defined
by existing atlases (Calhoun et al., 2001). The group-level ICA
parcellation was performed using FSL’s MELODIC tool (Beck-
mann and Smith, 2004) and spatial-ICA was applied at several
different dimensionalities (15, 25, 50, 100, 200 and 300). The
dimensionality determines the number of ICA components; a
higher number typically means that the significant areas within
the spatial component maps will be smaller. Given that larger
spatial components lack regional specificity, we used 100, 200
and 300 group-ICA components to define brain network nodes.
That is, 200 components were used for the main analyses, and
100 and 300 components were used for the validation analyses.
The locations of ICA-derived nodes were determined based on
the peak coordinates in the ICA weight maps. For each node,
one representative time series was derived by mapping the
corresponding ICA spatial map onto each participant’s fMRI data
using the standard ‘dual-regression stage-1’ approach, in which
the ICA map was used as a spatial regressor against the full
time series data. This resulted in 200 nodes’ time series that can
be used to construct functional connectome at the individual
level. Specifically, the partial temporal correlation coefficients
between the time series of all possible pairs of nodes were
computed, which estimate direct connection strengths better
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than achieved by Pearson’s correlation. The resultant correla-
tion values were converted into z statistics with Fisher’s r-to-z
transformation, resulting in a symmetric 200 × 200 connectiv-
ity matrix in which each element represents the strength of
connection between two nodes (hereafter referred to as an edge).

Personality assessment

Within the HCP behavioral measurements, the 60 item version of
the Costa and McCrae Neuroticism/Extraversion/Openness Five
Factor Inventory (NEO-FFI), which is a self-report questionnaire
with excellent reliability and validity (McCrae and Costa, 2004),
was administered to each participant to capture the major facets
of human personality: neuroticism, extraversion, agreeableness,
openness and conscientiousness. For each item, participants
reported their agreement level on a five-point Likert scale, where
the scores are derived by coding each item’s answer (strongly
disagree = 0; disagree = 1; neither agree nor disagree = 2; agree = 3;
strongly agree = 4) and then reverse coding appropriate items.
We used the total score on each personality factor to search the
edges containing information relevant for the subsequent pre-
diction analyses. Only 810 subjects (408 female) were used in this
study because 2 participants were excluded due to incomplete
item-level personality data.

Connectome-based predictive modeling

CPM is a recently developed approach for identifying brain net-
works associated with a behavioral variable of interest from
whole-brain functional connectivity, which can be then used to
predict novel participants’ behavior at the single-subject level
(Shen et al., 2017). Here, CPM was performed using previously
validated custom MATLAB scripts, which are freely available
online (https://www.nitrc.org/projects/bioimagesuite/). Overall,
CPM took edge weights (i.e. whole-brain functional connectiv-
ity matrix) and behavioral data (i.e. the total score on each
personality factor) as input to generate a predictive model of
the behavior from edge. In the training set, behavior data were
correlated with each edge using Pearson’s correlation analyses
with a statistical significance threshold of P < 0.01 to identify
positive and negative predictive networks. For positive networks,
edge weights are significantly positively associated with the
behavior; for negative networks, edge weights are significantly
negatively associated with the behavior. Both networks are inde-
pendent in predicting the same behavioral variable, because a
single edge is either a positive or a negative predictor. Next,
a single-subject summary value was created by summing the
significant edge weights in each network and was then used
to build a predictive model that assumes a linear relationship
between the single-subject summary value of connectivity data
(independent variable) and the behavioral variable (dependent
variable). Finally, the resultant models were applied to the testing
set to predict behavioral variables. Here, to take into account the
family structure of the HCP cohort, we employed a leave-one-
family-out cross-validation analysis (i.e. internal validation) to
test whether the functional connectivity model could reliably
predict personality factor scores in novel participants. Briefly,
predicted scores of the participants within a left-out family were
generated by the predictive model that was trained on the data
from all other participants in an iterative manner until all partic-
ipants had a predicted score. Model performance was assessed
by the magnitude and statistical significance of the Pearson’s
correlation between actual and predicted behavioral values. To

account for the non-independence of analyses in the leave-
one-family-out folds, we conducted nonparametric permutation
testing instead of parametric testing to assess the statistical
significance. To generate an empirical null distribution of the
test statistic (i.e. prediction correlation values), we randomly
shuffled the correspondence between connectivity matrices and
behavioral variables 5000 times and reran the CPM pipeline using
the shuffled data. Based on the null distribution, the P value for
the leave-one-family-out prediction was calculated as the pro-
portion of sampled permutations that were greater than or equal
to the true prediction correlation, i.e. P value = the number of
permutations that generated correlation values greater than or
equal to the true correlation values/5000. Statistical significance
was set at P < 0.05.

Validation analyses

The following procedures were conducted to further evaluate the
reproducibility of our findings. First, a significance threshold of
P < 0.01 was used to select edges that were positively and nega-
tively correlated with personality factors. To determine whether
our main results depended on the choice of different thresholds,
we reran the CPM analyses using two other thresholds (i.e.
P < 0.05 and 0.001) to identify edges significantly related to per-
sonality factors. Second, considering that different parcellation
strategies may influence the results, we constructed functional
connectome using two other parcellation schemes (i.e. 100 and
300 group-ICA components) and repeated the entire analyses.
Third, as several demographic (age and gender) and behavioral
(intelligence) data and head motion could affect the functional
connectivity–personality relationship, we performed the pre-
diction analyses again with controlling for these confounding
factors, i.e. personality factors were correlated with each edge
using partial correlation analyses adjusting for age, gender, intel-
ligence (PMAT24_A_CR) and overall head motion parameters.
Fourth, despite evidence for the advantage of partial correlation
over Pearson’s correlation in measuring functional connectivity,
we also repeated the CPM analyses based on Pearson’s correla-
tion functional connectivity to compare their prediction perfor-
mances. Finally, we also performed personality prediction using
a multivariate approach based on elastic-net algorithm (default
hyperparameters: alpha = 1.0, l1_ratio = 0.5; leave-one-family-out
cross-validation).

Results
Prediction performances of personality factors

The CPM models, using functional connectivity within both
the positive and negative networks, successfully predicted
agreeableness (positive network: r = 0.217, P = 0.0096; negative
network: r = 0.230, P = 0.0056) (Figure 1A and B) and openness
(positive network: r = 0.184, P = 0.0296; negative network: r = 0.225,
P = 0.0080) (Figure 2A and B). The CPM models based on the
negative networks effectively predicted conscientiousness
(negative network: r = 0.237, P = 0.0036) (Figure 3B) and neuroti-
cism (negative network: r = 0.200, P = 0.0164) (Figure 4B), while
the models based on the positive networks were marginally
significant in predicting conscientiousness (positive network:
r = 0.147, P = 0.0652) (Figure 3A) and neuroticism (positive
network: r = 0.143, P = 0.0656) (Figure 4A). However, the CPM
predictability of extraversion was low and did not reach
statistical significance (positive network: r = 0.051, P = 0.3180;
negative network: r = 0.105, P = 0.1580) (Figure 5A and B).
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Fig. 1. CPM of agreeableness. (A, B) Scatter plots showing the correspondence between actual (x-axis) and predicted (y-axis) agreeableness values generated using

CPM based on the positive and negative networks. (C, D) High-degree nodes (degree ≥6, larger spheres indicate nodes with higher degree) and their connections in the

positive and negative networks. (E, F) Polar plots illustrating the 20 highest degree nodes summarized by overlap with canonical neural networks in the positive and

negative networks.

Fig. 2. CPM of openness. (A, B) Scatter plots showing the correspondence between actual (x-axis) and predicted (y-axis) openness values generated using CPM based

on the positive and negative networks. (C, D) High-degree nodes (degree ≥4, larger spheres indicate nodes with higher degree) and their connections in the positive

and negative networks. (E, F) Polar plots illustrating the 20 highest degree nodes summarized by overlap with canonical neural networks in the positive and negative

networks.
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Fig. 3. CPM of conscientiousness. (A, B) Scatter plots showing the correspondence between actual (x-axis) and predicted (y-axis) conscientiousness values generated

using CPM based on the positive and negative networks. (C, D) High-degree nodes (degree ≥4, larger spheres indicate nodes with higher degree) and their connections

in the positive and negative networks. (E, F) Polar plots illustrating the 20 highest degree nodes summarized by overlap with canonical neural networks in the positive

and negative networks.

Fig. 4. CPM of neuroticism. (A, B) Scatter plots showing the correspondence between actual (x-axis) and predicted (y-axis) neuroticism values generated using CPM

based on the positive and negative networks. (C, D) High-degree nodes (degree ≥4, larger spheres indicate nodes with higher degree) and their connections in the

positive and negative networks. (E, F) Polar plots illustrating the 20 highest degree nodes summarized by overlap with canonical neural networks in the positive and

negative networks.



364 Social Cognitive and Affective Neuroscience, 2020, Vol. 15, No. 3

Fig. 5. CPM of extraversion. (A, B) Scatter plots showing the correspondence between actual (x-axis) and predicted (y-axis) extraversion values generated using CPM

based on the positive and negative networks. (C, D) High-degree nodes (degree ≥4, larger spheres indicate nodes with higher degree) and their connections in the

positive and negative networks. (E, F) Polar plots illustrating the 20 highest degree nodes summarized by overlap with canonical neural networks in the positive and

negative networks.

Network anatomy

Because of the nature of cross-validation, it is likely that a
slightly different set of edges will be selected as features in each
iteration of the cross-validation. For illustrational purposes, we
defined final personality factor-relevant networks using data
from the entire sample, that is, personality factors were corre-
lated with whole-brain functional connectivity in all 810 subjects
to identify significant edges comprising positive and negative
predictive networks. Overall, network anatomies for the net-
works associated with five personality factors were complex and
included edges between nodes across the brain.

For agreeableness, the positive and negative networks
consisted of 354 and 346 edges, respectively (Figure 1C and D).
Highest degree nodes (i.e. nodes with the most edges) for
the positive network included nodes belonging to default
mode network (DMN), visual network (VN), frontoparietal
network (FPN) and cerebellum; highest degree nodes for the
negative network included nodes belonging to VN, FPN and
cerebellum (Figure 1E and F). For openness, the positive and
negative networks consisted of 175 and 178 edges, respectively
(Figure 2C and D). Highest degree nodes for the positive network
included nodes belonging to DMN, VN, somatomotor network
(SMN) and cerebellum; highest degree nodes for the negative
network included nodes belonging to DMN, FPN, salience
network and cerebellum (Figure 2E and F). For conscientious-
ness, the positive and negative networks consisted of 172
and 187 edges, respectively (Figure 3C and D). Highest degree
nodes for the positive network included nodes belonging
to DMN, FPN, SMN and cerebellum; highest degree nodes
for the negative network included nodes belonging to DMN,
SMN and cerebellum (Figure 3E and F). For neuroticism, the
positive and negative networks consisted of 135 and 176 edges,
respectively (Figure 4C and D). Highest degree nodes for the

positive network included nodes belonging to DMN, VN, dorsal
attention network and cerebellum; highest degree nodes for the
negative network included nodes belonging to DMN, FPN and
cerebellum (Figure 4E and F). For extraversion, the positive and
negative networks consisted of 141 and 148 edges, respectively
(Figure 5C and D). Highest degree nodes for the positive network
included nodes belonging to DMN, VN, subcortical network,
and cerebellum; highest degree nodes for the negative network
included nodes belonging to DMN, VN, SCN, SMN and cerebellum
(Figure 5E and F).

Validation analysis

First, using edges selected by thresholds of P < 0.05 and 0.001, we
found that the prediction performances of personality factors
were similar to those at the threshold of P < 0.01 but with a
reduced degree (Supplementary Figures S1A–S5A and S1B–S5B).
Second, we found that our main results were reproducible after
considering the effects of different parcellation strategies, that
is, agreeableness, openness, conscientiousness and neuroticism
yielded higher predictability than extraversion across results
derived from 100 and 300 group-ICA components (Supple-
mentary Figures S1C–S5C and S1D–S5D). Third, the patterns of
prediction results held although some findings lost significance
after controlling for age, gender, intelligence and head motion
(Supplementary Figures S1E–S5E). Fourth, based on Pearson’s
correlation functional connectivity, the correlation coefficients
between actual and predicted personality factors were lower
than those based on partial correlation functional connec-
tivity in the main analyses (Supplementary Figures S1F–S5F),
suggesting the advantage of partial correlation over Pearson’s
correlation in predicting personality. Finally, using a multivariate
approach based on elastic-net algorithm yielded poorer predic-
tion of agreeableness but better prediction of extraversion than
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using CPM, with prediction results of other personality factors
(i.e. openness, conscientiousness and neuroticism) comparable
to CPM (Fig. S6).

Discussion
By applying a recently developed CPM approach to a large sam-
ple of high-quality resting-state fMRI data from the HCP, our
study demonstrated that all the FFM personality factors (agree-
ableness, openness, conscientiousness and neuroticism) other
than extraversion can be successfully and reliably predicted
from an individual’s unique whole-brain functional connectiv-
ity profile. At the neural level, we found that the personality-
associated functional networks mainly included brain regions
within default mode, frontoparietal executive control, visual
and cerebellar systems. These findings suggest that advances
in neuroimaging techniques and analysis methods have made
it increasingly feasible to translate brain imaging findings into
real-world personality psychological settings.

Despite using the same CPM approach, prediction results of
the FFM personality factors differ between the current report and
the previous studies (Dubois et al., 2018; Hsu et al., 2018). The
discrepancies between our study and Hsu et al.’s study might
arise from sample selection (e.g. 810 healthy young subjects
with an age range of 22–37 years vs 114 subjects with an age
range of 18–85 years), differences in fMRI data acquisition [e.g.
repetition time (TR) = 720 ms vs TR = 1400 and 645 ms] and pre-
processing (e.g. artifact removal using ICA + FIX vs global signal
regression), different whole-brain parcellation schemes [i.e. 100,
200 and 300 nodes based on group-level ICA vs 268 nodes based
on the predefined Shen et al.’s (2013) brain atlas] and differ-
ence in functional connectivity calculation (partial correlation
vs Pearson’s correlation). The disparities between our study and
Dubois et al.’s study may be explained by difference in fMRI data
preprocessing (i.e. the HCP minimal preprocessing pipeline vs
the own preprocessing procedure), different whole-brain parcel-
lation strategies [i.e. data-driven parcellation using group-level
ICA vs hard parcellation using the existing Shen et al.’s (2013)
brain atlas] and difference in functional connectivity calcula-
tion (partial correlation vs Pearson’s correlation). Notably, we
attribute these inconsistent findings mainly to the differences
in brain parcellation and functional connectivity calculation.
Although there is no consensus on the best parcellation for
whole-brain functional connectivity analysis, the ICA-derived
more homogeneous and functionally coherent regions may con-
tribute to a significant prediction of personality factors observed
in the present study. However, we did not conduct a validation
analysis with hard parcellation because of the difficulties in
downloading and processing the huge resting-state fMRI data
from HCP. With respect to functional connectivity calculation, we
found that partial correlation used in the main analyses resulted
in a better personality prediction than Pearson’s correlation in
the validation analyses.

DMN primarily consists of medial prefrontal cortex (MPFC),
posterior cingulate cortex/precuneus (PCC/PCu), inferior parietal
lobule (IPL) and lateral temporal cortex (LTC). DMN is preferen-
tially active when individuals are engaged in spontaneous and
self-generated cognition (Buckner et al., 2008; Raichle, 2015). Pre-
vious neuroimaging studies have provided evidence that struc-
ture and function of DMN are closely linked to personality. For
example, a large sample study based on surface-based mor-
phometry (SBM) revealed that higher openness was associated
with greater surface area in IPL and greater cortical folding in

PCC; higher conscientiousness with greater cortical thickness
in PCu, smaller surface area in LTC and smaller cortical fold-
ing in LTC and MPFC; higher neuroticism with smaller sur-
face area in LTC and smaller cortical folding in MPFC and LTC;
higher extraversion with greater cortical thickness in PCu and
smaller surface area in LTC (Riccelli et al., 2017b). Other moderate
and small sample SBM studies have identified an association
between higher neuroticism and smaller surface area in MPFC
and LTC (Bjornebekk et al., 2013), as well as a link between higher
openness and lower cortical thickness in IPL (Wright et al., 2007).
Previous voxel-based morphometry (VBM) studies have found
that smaller volume in MPFC is associated with lower extraver-
sion (DeYoung et al., 2010; Kapogiannis et al., 2013) and higher
neuroticism and openness (Kapogiannis et al., 2013), smaller vol-
ume in LTC with lower extraversion (Kapogiannis et al., 2013) and
higher agreeableness (DeYoung et al., 2010; Kapogiannis et al.,
2013), smaller volume in PCC with lower (DeYoung et al., 2010)
and higher (Coutinho et al., 2013) agreeableness and smaller
volume in IPL with higher agreeableness (Coutinho et al., 2013). In
a study of teenagers, higher neuroticism was found to correlate
with greater MPFC volume and cortical thickness in females,
while the correlations exhibited an opposite effect in males
(Blankstein et al., 2009). Another VBM study on the role of gender
demonstrated that greater volume in PCu was associated with
higher extraversion and conscientiousness in males rather than
in females (Nostro et al., 2017). A longitudinal study showed
that subjects with a personality trait of less openness had an
accelerated loss of gray matter volume in IPL (Taki et al., 2013).
Ferschmann et al. found that higher conscientiousness was
associated with slower annual percentage change of cortical
thickness in MPFC and PCu across adolescence (Ferschmann
et al., 2018). With regard to DMN function, a prior task fMRI study
reported a correlation between higher conscientiousness and
increased MPFC activation in response to an oddball task (Eisen-
berger et al., 2005). A resting-state fMRI study of the relationship
between DMN and personality demonstrated that different per-
sonality factors were associated with activity in different DMN
components, i.e. extraversion and agreeableness related to the
midline core of DMN, while neuroticism, openness and consci-
entiousness related to the parietal cortex system (Sampaio et al.,
2014). Gentili et al. (2017) observed that neuroticism was corre-
lated with several resting-state functional measures in multiple
regions of DMN. Regional neural activity analyses have revealed
that lower extraversion is associated with lower activity in MPFC
(Wei et al., 2014) and PCu (Kunisato et al., 2011; Wei et al., 2014)
and lower neuroticism with higher activity in PCu (Kunisato
et al., 2011). Previous seed-based functional connectivity studies
have identified links between personality traits and functional
connectivity of DMN seeds (e.g. PCC and PCu) (Adelstein et al.,
2011; Ryan et al., 2011). In addition, Aghajani et al. reported that
higher neuroticism was correlated with increased functional
connectivity between amygdalar seed and DMN hubs (Aghajani
et al., 2014). Moreover, a graph theoretical study of functional
brain network indicated that higher openness was associated
with higher global efficiency of DMN (Beaty et al., 2016).

FPN, which is involved in a variety of cognitive-control
processes (Cole and Schneider, 2007; Xin and Lei, 2015), primarily
consists of dorsolateral and dorsomedial prefrontal cortex
(DLPFC and DMPFC), posterior parietal cortex (PPC) and frontal
eye fields (FEF). There is a large body of evidence in support
of the association between FPN and personality. In the large-
scale cohort study by Riccelli et al., higher agreeableness was
found to be associated with smaller cortical thickness in DLPFC;
higher openness with smaller cortical thickness in DLPFC;

https://academic.oup.com/scan/article-lookup/doi/10.1093/scan/nsaa044#supplementary-data
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higher conscientiousness with greater cortical thickness in
DLPFC; higher neuroticism with greater cortical thickness in
DLPFC and PPC, smaller surface area in DLPFC and smaller
cortical folding in DLPFC and PPC (Riccelli et al., 2017b). Although
many structural MRI studies of small-to-moderate samples
have yielded mixed findings, DLPFC morphology measured by
volume (DeYoung et al., 2010; Coutinho et al., 2013; Kapogiannis
et al., 2013; Lu et al., 2014), cortical thickness (Wright et al.,
2007), surface area (Bjornebekk et al., 2013) and cortical folding
(Schultz et al., 2017) has been consistently shown to relate
to multiple personality dimensions. A longitudinal study of
brain development reported that higher conscientiousness was
associated with slower annual percentage change of cortical
thickness in DLPFC and PPC across adolescence (Ferschmann
et al., 2018). Using task fMRI, investigators have demonstrated
that personality traits are correlated with neural activation
or functional/effective connectivity in FPN during a broad
range of tasks involving negative emotional facial expressions
(Cremers et al., 2010), oddball (Eisenberger et al., 2005) and
working memory (Dima et al., 2015). In addition, a resting-
state fMRI study reported that higher regional activity of DLPFC
was associated with lower neuroticism and openness and
higher extraversion and conscientiousness (Kunisato et al., 2011).
Moreover, individuals with focal damage to DLPFC were found
to exhibit personality changes including higher neuroticism and
lower conscientiousness (Forbes et al., 2014).

VN, known to be implicated in visual perception and process-
ing (Grill-Spector and Malach, 2004; Golarai et al., 2007), is cen-
tered on medial occipital cortex (lingual gyrus, cuneus and cal-
carine sulcus), lateral occipital cortex (LOC) and fusiform gyrus
(FFG). Researchers have found that VN plays a pivotal role in
some personality domains. By using SBM, Riccelli et al. observed
that higher agreeableness was associated with smaller surface
area in FFG; higher openness with greater surface area in LOC
and greater cortical folding in cuneus; higher conscientiousness
with smaller surface area in LOC and smaller cortical folding in
LOC and FFG; higher neuroticism with smaller surface area in
cuneus and smaller cortical folding in LOC; higher extraversion
with greater cortical folding in FFG (Riccelli et al., 2017b). VBM
studies have revealed that smaller volume in FG was linked
to higher conscientiousness and lower agreeableness (DeYoung
et al., 2010) and lower volume in LOC to higher agreeableness
(Coutinho et al., 2013). A prior study investigating the effect of
gender on personality–brain structure relationship showed that
lower volume in cuneus and FG was associated with higher neu-
roticism and lower extraversion in males rather than in females
(Nostro et al., 2017). In the longitudinal study by Ferschmann
et al. (2018), higher conscientiousness was found to correlate
with slower annual percentage change of surface area in lingual
gyrus across adolescence. As to brain function, Gentili et al. (2017)
reported that neuroticism was associated with several resting-
state functional metrics in multiple VN regions. Furthermore,
seed-based resting-state functional connectivity studies have
consistently identified links between amygdala-VN connectivity
and personality traits, such as extraversion (Aghajani et al., 2014)
and neuroticism (Kruschwitz et al., 2015).

It has now become apparent that cerebellum is engaged
in multiple high-order functions (Schmahmann and Sherman,
1998; Stoodley and Schmahmann, 2010) and its role in under-
standing human personality has also been evident. For instance,
previous structural MRI studies have yielded a consistent finding
that higher neuroticism is linked to greater volume in cerebel-
lum (DeYoung et al., 2010; Lu et al., 2014). Using VBM, Nostro et al.
(2017) found that lower volume in cerebellum was associated

with higher neuroticism and lower extraversion in males, while
the correlations were absent in females, which underlines the
important role of gender in personality–brain structure asso-
ciations. Additionally, resting-state fMRI research has shown
that higher regional activity of cerebellum correlates with lower
conscientiousness (Kunisato et al., 2011). Moreover, individuals
with cerebellar lesions have also been found to show personal-
ity alterations (Marien et al., 2009; Stoodley and Schmahmann,
2010).

Our study has several limiting factors that should be
mentioned. First, our data do not allow inference on causality
between personality factors and brain functional connectivity,
which likely involves complex interactions of different neu-
ropsychological mechanisms that remain to be fully elucidated.
Second, the lack of data from an independent sample precludes
us from conducting an external validation analysis. Third, we did
not identify reliable prediction of extraversion, and the reason
for the null findings still needs to be further explored. By one
view, extraversion is a complex personality trait that might be
predicted from higher order functional network measures (e.g.
topological properties from graph theory), rather than simple
functional connectivity. An alternate possibility is that there
is a complex relationship between extraversion and functional
connectivity beyond a simple linear correlation. Thus, nonlinear
models may be more appropriate than CPM linear models.
However, the difficulty in using nonlinear models is that a
much larger number of training samples than the number of
features are required. Collectively, this issue should be more fully
addressed in future studies. Finally, the prediction of some per-
sonality factors (agreeableness and neuroticism) attenuated to
nominal significance after correction for multiple comparisons.
However, because our prediction analyses are exploratory and
the preliminary results may contribute to a better understanding
of the nature and extent of the associations between personality
and functional connectivity, the prediction results without
correction for multiple comparisons were reported in this study.

In conclusion, our large sample study demonstrates that
resting-state functional connectivity patterns of whole-brain
large-scale networks can effectively and reliably predict complex
human personality traits, including agreeableness, openness,
conscientiousness and neuroticism, at the individual level. Our
data also demonstrate that individual differences in connectivity
of default mode, executive control, visual and cerebellar systems
contribute most to variability in personality. These findings may
help advance the translation of ‘brain connectivity fingerprint-
ing’ into real-world settings of personality or other complex
social, cognitive or affective constructs.
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