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Background. The pathogenesis Graves’ Orbitopathy (GO) is not yet fully understood. Here, we conducted a pathway analysis based
on genome-wide DNA methylation data of Chinese GO patients to explore GO-related pathways and potential feature genes.
Methods. Six GO patients and 6 age-matched control individuals were recruited, and a genome-scale screen of DNA methylation
was measured using their peripheral blood sample. After extracting the differentially methylated regions (DMRs), we classified
DMRs into three clusters with respect to median absolute deviation (MAD) for GO and control group, respectively. Then the
extract tests were performed to identify significant pathways by comparing the counts of genes in each cluster between GO and
control group in a pathway. For each significant pathway, we calculated the Methylation-based Inference of Regulatory Activity
(MIRA) score to infer the regulatory activity of genes involved in the pathway. Furthermore, we took the significant pathways as
the subsets and applied Random forests (RF) method to extract GO-related feature genes. Results. We identified four potential
significant pathways associated with the occurrence and development of GO disease. There were Toxoplasmosis, Axon guidance,
Focal adhesion, and Proteoglycans in cancer (p<0.001 or p=0.007). The identified genes involved in the significant pathways, such
as LDLR (p=0.019), CDK5 (p=0.036), and PIK3CB (p=0.020), were found to be correlated with GO phenotype. Conclusion. Our
study suggested pathway analyses can help understand the potential relationships between the DNA methylation level of some
certain genes and their regulation in Chinese GO patients.

1. Introduction

Graves’ Orbitopathy (GO), an autoimmune disease that is
associated with a wide spectrum of ocular changes, is a
difficult challenge in endocrinology and ophthalmology. GO
often occurs in patients with abnormal thyroid function,
such as hyperthyroidism. The clinical manifestations include
extraocular muscle enlargement and orbital fat expansion [1].
Because the pathogenesis of GO involves complex molecular
and cellular processes that have not yet been fully clarified
[2], the present treatments do not target its pathogenic
mechanisms [3].

DNA methylation (DNAm) affects gene expression, cel-
lular differentiation, and molecular response to environ-
mental factors. DNAm patterns changes may explain the

increased risk of some diseases. In our previous study, we
found that DNAm differences were associated with GO
patients from a genome-wide DNA methylation analysis
in peripheral blood. Several genomic loci were identified
with significant differences in methylation patterns that were
associated with GO incidence [4]. ClusterProfiler tool [5]
was used to perform Gene Ontology and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathway enrichment
analysis for genes near or at the differentially methylated
DNA regions. However, we did not find any significant
enriched pathways in KEGG pathway with the enrichment
analysis.

The disease heterogeneity and complexity indicate that
GO is not caused by any single gene but caused by the

Hindawi
BioMed Research International
Volume 2019, Article ID 9565794, 10 pages
https://doi.org/10.1155/2019/9565794

http://orcid.org/0000-0002-6840-1922
http://orcid.org/0000-0001-6309-3572
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/9565794


2 BioMed Research International

Table 1: Characteristics of case and control subjects.

Age Sex Height Weight Duration CAS TRAb
(year) (M/F) (cm) (cm) (months) (U/L)

Case 1 57 M 175 86 6 3 2.14
Case 2 55 M 172 85 1 4 11.39
Case 3 54 M 172 70 3 4 6.92
Case 4 61 M 175 80 2 2 5.13
Case 5 47 M 172 70 6 3 3.37
Case 6 53 M 162 64 11 5 5.3
Control 1 46 M 171 77 <1.75
Control 2 48 M 176 72 <1.75
Control 3 52 M 175 72 <1.75
Control 4 54 M 168 65 <1.75
Control 5 50 M 169 80 <1.75
Control 6 49 M 165 79 <1.75
CAS: Clinical Activity Score.

complex regulation among multiple genes [6]. Currently, the
identification of the genes associated with complex GO dis-
ease has become an important task to help find the pathology
of this disease. It is known that studies on analyzing gene
function have provided valuable insights into the functional
properties of gene groups [7]. Meanwhile, by combining
a priori available biological knowledge, pathway analyses
have emerged as important tools to uncover functional
networks of genome-wide data [8]. Thus, pathway analyses
are important to study molecular metabolize mechanism of
GOdisease, and the identification of disease-related pathways
can help find disease-related feature genes which are related
to particular pathways.

In our previous study, the general enrichment analysis
based on hypergeometric distribution test did not find any
significant pathway, which might be due to the following
two reasons: (1) the multiple tests corrections eliminate
the positive results; (2) the analysis is based on gene lists
defined by a cut-off and does not take into account the
expression distribution of genes in the pathway. Indeed,
methods for investigating how changes in gene expression
variability in the context of pathways can help find pathways
and the gene function sets. Here, we reanalyzed our previ-
ous data and adopted a novel pathway analysis to extract
significant pathways. This method can identify pathways
associated with different patterns of expression variability
whichmay highlight those pathways that contribute to group-
specific differences [9]. In the present study, the differentially
methylated regions (DMRs) were reclassified into different
clusters according to median absolute deviation (MAD)
for GO and control group, respectively. The extract tests
were performed to extract significant pathways based on
the comparison of the counts of genes in each cluster in a
pathway. The results of this study may provide new insights
for better understanding the pathophysiologic mechanism of
GO.

2. Materials and Methods

2.1. Study Subjects. DNA was obtained from 6 Chinese
patients with GO as well as 6 age-matched controls who
had normal thyroid function and no clinical manifestations
of GO. The diagnosis of GO was based on the EUGOGO
consensus [10].The seven-pointClinical Activity Score (CAS)
was recorded by using the modified EUGOGO patient form.
TRAb was measured using commercially available electro-
chemiluminescence assays based on the M22 monoclonal
antibody, with a normal range <1.75U/L (Roche Diagnostics
GmbH). None of the patients received any immunosup-
pressive therapy or radiotherapy previously (Table 1). The
study was conducted with the approval from the Ethics
Committee of Beijing Tongren Hospital, Capital Medical
University.Written informed consent was obtained fromeach
participant [4].

2.2. RRBS. In the present study, RRBS (Reduced Repre-
sentation Bisulfite Sequencing) assay was performed [11].
DNA was purified using AMPure XP beads and the
A-tailed DNA fragments were subsequently ligated with
methylated-adapters. The purified size-selected DNA frag-
ments were bisulfite converted and subsequently amplified
by PCR. PCR products were then purified using AMPure
XP beads, and PCR amplified RRBS libraries were then
quantified. Finally, 10G of 2x150 bp pair-end raw data
was generated, each sample on the Illumina Hiseq 2500
platform. The Adapter-trimmed and quality-filtered clean
reads were aligned to the bisulfite converted reference
genome hg19 and the methylation level of cytosine in
CpG, CHG and CHH context were calculated separately,
through which the methylation levels of CPGI, gene and
Transcription start sites (TSS) regions were also calculated.
The detailed description was seen from our previous study
[4].
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2.3. Extraction of Significant Pathways. Firstly, we used
methylKit [12] and eDMR [13] software to extract differen-
tially methylated regions (DMRs) in genomic regions. P<0.05
is considered as significant. According to this criterion,
841 differentially DMRs were identified [4]. It is known
that the pathway analyses are important to study molecular
metabolize mechanism of disease; we thus applied a novel
analysis method to investigate changes in gene expression
variability in the context of gene subsets to extract significant
pathways [9]. In this method, genes were classified into
one to four clusters with respect to the variability statistics
such as standard deviation (SD), median absolute devia-
tion (MAD), and coefficient of variation (CV). In theory,
it would like to choose the variability statistics that has
the smallest correlation with the mean. After performing
the correlation analysis, we found that MAD has the least
correlation with the mean, and we therefore implement
further analysis based on it. With respect to the MAD,
we classified DMRs (genes) into three clusters for GO
and control group respectively. Then the extract tests were
performed to extract significant pathways based on the
comparison of the counts of genes in each cluster in a pathway
between GO and control group.Those pathways with P<0.05
were considered as significant. We used pathVar package
of R software (http://www.r-project.org) to implement this
analysis.

2.4. Calculation of MIRA Score for Genes Involved in the
Significant Pathways. The concept of the Methylation-based
Inference of Regulatory Activity (MIRA) score [14] relies on
the observation that DNA methylation tends to be lower in
regions where transcription factors are bound. Since DNA
methylation will generally be lower in active regions, the
shape of the MIRA profile and the associated score can be
used as a metric to compare regulatory activity in different
samples and conditions. MIRA overcomes sparsely in DNA
methylation data by aggregating across many regions and
thus can help infer the regulatory activity from DNAmethy-
lation data. By aggregating DNAmethylation data from a set
of regions across the genome, the algorithm produces a single
summary profile of DNAmethylation for those regions.Then
this profile is used to produce MIRA score which infers the
level of regulatory activity on the basis of the shape of the
DNAmethylation profile. MIRA can also work with genome-
scale RRBS data.

Here, for each of significant pathways, we calculated the
MIRA score of each sample to infer the regulatory activity
of genes involved in this pathway. We used MIRA package
of R software (http://www.r-project.org) to implement the
analysis. In addition, for each significant pathway, we applied
the independent two sample t test to compare MIRA scores
between GO and control group.

2.5. Random Forest Analysis to Extract GO-Related Feature
Genes Involved in the Significant Pathways. Random forests
(RF) method is an ensemble classifier that consists of many
decision trees and each tree depends on the values of
a random vector sampled independently [15]. As a brief

description, RF method selects a random sample of obser-
vation and randomly takes initial variables to build decision
tree model. This process is repeated until getting a final
prediction which is a function of each prediction on each
observation. Here, for each significant pathway, we applied
RF method to distinguish GO from control group based on
the DNAmethylation data of genes involved in this pathway.
Notably, a prediction model of machine learning algorithms
is usually constructed based on the training dataset and is
evaluated using the testing dataset. In order to avoid the
problems like overfitting, we adopt leave-one-out (LOO) to
implement the analysis. That is, for each analysis, one sample
was considered as testing datawhereas the remaining samples
were considered as training data to construct random forest
model. Then each significant pathway was taken as the
subset and RF method was applied to extract GO-related
feature genes involved in this pathway. The RF method
to obtain feature gene G from an important pathway is
permuting the DNA methylation value of gene G of out
of bag according to random forest model. If gene G is a
good predictor, then it will appear in a large number of
split trees. Here, we used Mean Decrease Gini (MDG) to
evaluate whether gene G is a feature gene or not. MDG
was the total decrease in node impurities measured by the
Gini index from splitting on the variable, averaged over all
trees. It provided possible ways to quantify which genes
contribute most to classification accuracy. Greater MDG will
indicate that the degree of impurity arising from category
could be reduced farthest by gene G and thus suggests an
important feature gene. Because we adopt LOO method
in the current study, thus 12 random forest models were
constructed for each significant pathway. In each pathway,
we extracted those genes whose MDG ranked the top 5 in
all of 12 models as GO-related feature genes. RF method was
implemented with the randomForest package of R software
(http://www.r-project.org). The flowchart of our work was
shown in Figure 1.

3. Results

3.1. Identification of Differentially DNA Methylation Regions.
According to the criterion of p< 0.05, 1583 differentially DNA
methylation regions were identified. After removing those
regions obtained from missing samples, 841 differentially
methylated regions were extracted [4] and were used for
further analysis.

3.2. Extraction of Significant Pathways. In order to extract
significant pathways, we classified DMRs into three clusters
with respect to MAD for GO and control group, respectively.
Then the extract tests were performed to extract significant
pathways based on the comparison of the counts of genes
in each cluster in a pathway between GO and control
group. According to p<0.05, four significant pathways were
extracted (Table 2 and Figures 2(a), 2(b), 2(c), and 2(d)).
There were Toxoplasmosis, Axon guidance, Focal adhesion,
and Proteoglycans in cancer. Some overlapped genes were

http://www.r-project.org
http://www.r-project.org
http://www.r-project.org
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Figure 1: The flowchart of the study. Firstly, the pathway analyses were performed to extract the significant pathways based on the DNA
methylation profile of the differentially methylated regions (DMRs). Secondly, for each significant pathway, the Methylation-based Inference
of Regulatory Activity (MIRA) scores were calculated to infer the regulatory activity of genes involved in the pathway. Finally, the genes
involved in the significant pathways were taken as the subsets, and random forest methodwas applied to these gene subsets to classify samples
and to extract GO-related feature genes. DMRs: differentially methylated regions. MIRA:Methylation-based Inference of Regulatory Activity.

Table 2: The extracted significant pathways.

Pathway Name KEGG ID The number of genes involved in the pathway p-value
Toxoplasmosis hsa05145 10 <0.001
Axon guidance hsa04360 10 <0.001
Focal adhesion hsa04510 11 <0.001
Proteoglycans in cancer hsa05205 13 0.007

shared by these identified pathways (Figure 2(e)). For exam-
ple, there were five common genes shared by focal adhesion
pathway and Proteoglycans in cancer pathway.

3.3. Calculation of MIRA Score to Infer the Regulation Activi-
ties of Genes Involved in the Significant Pathways. To explore
the level of regulatory activity of genes involved in significant
pathways, we calculated the MIRA score of each sample. For
each significant pathway, we comparedMIRA scores between
GO patients and normal controls and found that the MIRA
score of genes involved in focal adhesion pathway displayed
the significant difference between GO and control (p=0.015),
which was shown in Figure 3. From Figure 3(c), we observed
that MIRA scores of GO patients are greater than normal
controls in focal adhesion pathway. This indicates that the
regulatory activity of genes in GO patients is more active than
controls.

Specially, in focal adhesion pathway, we observed 63.6%
genes showed lower methylation level in GO patients than in
normal controls, which is in accordance with the assumption

that the DNA methylation will generally be lower in active
regions (Figure 4).

3.4. Random Forest Analysis to Extract GO-Related Feature
Genes Involved in the Significant Pathways. For each sig-
nificant pathway, we took the genes involved in pathway
as the subset and applied RF method to classify samples
and to extract GO-related feature genes. We adopt leave-
one-out (LOO) to implement this analysis and to evaluate
the classification performance. The classification accuracy
rates were 91.7% for toxoplasmosis pathway, 75.0% for Axon
guidance pathway, 91.7% for focal adhesion pathway, and
66.7% for Proteoglycans in cancer pathway, respectively. For
each significant pathway, we extracted those genes whose
MDG ranked the top 5 in all of 12 models as GO-related
feature genes. In toxoplasmosis pathway, LAMA5, HSPA2,
PIK3CB, and LDLR were extracted. In Axon guidance path-
way, NFACT2, PAK1, CDK5, and PLXNB2 were extracted. In
focal adhesion pathway, LAMA, ACTB, PAK1, and PIK3CB
were extracted. In Proteoglycans in cancer pathway, FZD9,



BioMed Research International 5

0

2

4

6

8

Toxoplasmosis pathway

Cluster

N
um

be
r o

f g
en

es

GO
Normal

1 2 1 2 3

p<0.001

(a)

N
um

be
r o

f g
en

es

0

2

4

6

8

Axon guidance pathway

Cluster

GO
Normal

1 2 1 2 3

p<0.001

(b)

N
um

be
r o

f g
en

es

0

2

4

6

8

10

Focal adhesion pathway

Cluster

GO
Normal

1 2 1 2 3

p<0.001

(c)

N
um

be
r o

f g
en

es

0

2

4

6

8

10

Proteoglycans in cancer pathway

Cluster

GO
Normal

p=0.007

1 2 1 2 33

(d)

Proteoglycans in cancer pathway

Axon guidance pathway Focal adhesion pathway

Toxoplasmosis pathway

1

1

0

0

0

0

0

7

6

2

1

4

1

8

1

(e)

Figure 2: Four significant pathways with GO. (a)The distribution of the counts of genes in three clusters in toxoplasmosis pathway between
GO patients and normal controls. (b)The distribution of the counts of genes in three clusters in Axon guidance pathway between GO patients
and normal controls. (c)The distribution of the counts of genes in three clusters in focal adhesion pathway between GO patients and normal
controls. (d) The distribution of the counts of genes in three clusters in Proteoglycans in cancer pathway between GO patients and normal
controls. (e) A Venn diagram to show the number of overlapped genes shared by four significant pathways.
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Figure 3: MIRA scores of genes involved in significant pathways between GO patients and normal controls. (a) Toxoplasmosis pathway. (b)
Axon guidance pathway. (c) Focal adhesion pathway. (d) Proteoglycans in cancer pathway.MIRA:Methylation-based Inference of Regulatory
Activity.

GPC1, PAK1, FZD1, and ACTB were extracted. In addition,
PIK3CB (p=0.020) and FZD9 (p=0.031) were found to be
associated with CAS; LDLR (p=0.019) and CDK5 (p=0.036)
were found to be associated with TRAb (Figure 5).

4. Discussions

GO is an orbit autoimmune disease that often occurs in
patients with abnormal thyroid function, usually hyperthy-
roidism. Due to the fact that the pathogenesis mechanism
of this disease is not fully understood, the identification
of the genes associated with this disease has become an
urgent task for clinical treatment. In this study, we performed
a genome-scale screen of DNA methylation in peripheral
blood samples of Chinese patients and applied pathway
analyses to extract potential GO-related feature genes. In
previous study, the general enrichment analysis did not find
any significant pathway [4]. In present study, the pathway
analyses were performed to extract the significant pathways
based on the DMRs. Then, for each significant pathway, the
MIRA scores were calculated to infer the regulatory activity
of genes involved in the pathway. Furthermore, we took

the significant pathways as the subsets and applied random
forest (RF) method to extract GO-related feature genes. As a
result, we identified four significant pathways whichmight be
associated with the occurrence and development of GO. The
identified genes involved in the significant pathways, such as
LDLR, CDK5, and PIK3CB, were found to be correlated with
GO phenotype.

In the practice, some evidences supporting these path-
ways might be related to GO directly or indirectly. For
example, the focal adhesion pathway was found to be sig-
nificant. The focal adhesion function is both mechanical
and responsive. Focal adhesion complex (FAC) is one of
the candidate biomarkers of cellular signal transduction
pathways. FAC can be involved in regulating inflammatory
gene expression via signal transduction pathways such as
interleukin 1 (IL-1) signaling [16, 17] or regulating calcium
fluxes via phosphatidyl inositol signaling [16, 18], which
impacts on inflammatory cascades. FAC has been impli-
cated in the pathogenesis of multiple inflammatory diseases,
including inflammatory bowel disease (IBD) and rheumatoid
arthritis. It could be used in GO activity assessment and to
determine optimal therapeutic strategies in the future. The
Proteoglycans in cancer pathway was also significant. As an
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Figure 4: The Focal adhesion pathway in KEGG graph. Genes showing lower methylation level in GO patients were highlighted in pink
colors whereas genes showing higher methylation in GO patients were highlighted in orange colors.

autoantigen, Proteoglycans can stimulate sequential immune
reactions via activation of CD4+ T cells, which is observed in
autoimmune disease of rheumatoid arthritis [19]. In addition,
a recent study reported the latent toxoplasmosis was asso-
ciated with a mild increase in thyroid hormone production
in pregnancy. The observed toxoplasma-associated changes
could provide new clues to the complex pathogenesis of
autoimmune thyroid diseases [20]. It is also reported that the
damage to ocular tissues led to the proposal of phenomena
that may be related to pathogenic mechanisms of ocular
toxoplasmosis including autoimmune mechanisms [21].

There are some identified genes correlated with GO phe-
notype involved in the significant pathway. Graves’ disease
(GD) and GO are typical autoimmune diseases. Meanwhile,
oxidative stress (OS) is found to be associated with GD and
GO [22]. Once the autoimmune reaction against antigens
is initiated, a number of effector mechanisms intervene to
cause the pathological alterations of the orbital soft tissue.
One of these mechanisms is the release of reactive oxygen
species, resulting in OS [23]. It is reported that the level
of OS is increased in subjects with GO compared to the
other subjects with GD [22]. In this study, we identified a
feature gene CDK5 associated with TRAb in Axon guidance
pathway. The previous study reported the deregulated CDK5
can promote OS by compromising the cellular antioxidant
defense system [24]. The evidence also showed that CDK5
plays an important role in mediating inflammatory [25].
Furthermore, PIK3CB was found to be associated with CAS.
It is reported that the activation of PI3-kinase signaling in
macrophages, which in turn inhibits NF-𝜅B activation and

suppresses proinflammatory gene expression [26]. We also
found LDLR was associated with TRAb. Interestingly, a new
study found that total and LDL cholesterol correlate with GO
activity in patients with a short duration of hyperthyroidism,
suggesting a role of cholesterol in the clinical expression of
GO. One hypothesis is that the altered inflammatory state
of hypercholesterolemia may explain the correlation between
GO activity with LDL cholesterol [27].

Although our findings might provide new insights into
understand GO disease, it should point out the limitations of
the small sample size in the present study. To minimize the
impact of sample size on the analysis results, we used strict
criterion to select GO patients and their matched controls. By
this strict definition, we hope to ensure this explore analysis
can have a certain quality. In addition, we chose the statistical
methods which are suitable for analyzing high dimensional
data with a small sample size. Our future study will enlarge
sample size to validate these findings and integrate different
data type, including DNAmethylation data, gene microarray
data, imaging data, and the network information into the
prognostic biomarker discovery of GO.

5. Conclusion

We performed a Genome-wide DNAm screen in peripheral
blood and applied pathway analyses to extract potential GO-
related feature genes in Chinese patients with GO. As a result,
we identified significant pathways which might be associated
with GO and genes involved in the significant pathways, such
as LDLR,CDK5, and PIK3CB correlated with GO phenotype.
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Figure 5: GO-related feature genes extracted by random forest method. In each significant pathway, we extracted those genes whose MDG
ranked the top 5 in all of 12 models as GO-related feature genes. (a) Feature genes involved in toxoplasmosis pathway. (b) Feature genes
involved in Axon guidance pathway. (c) Feature genes involved in focal adhesion pathway. (d) Feature genes involved in Proteoglycans in
cancer pathway.

Our study suggested pathway analyses can help understand
the potential relationships between the DNA methylation
level of some certain genes and their regulation in Chinese
GO patients.
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