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Abstract: The MAP3K1 is responsible for transmitting signals to activate specific MAP2K-MAPK
cascades. Following the initial biochemical characterization, genetic mouse models have taken center
stage to elucidate how MAP3K1 regulates biological functions. To that end, mice were generated
with the ablation of the entire Map3k1 gene, the kinase domain coding sequences, or ubiquitin
ligase domain mutations. Analyses of the mutants identify diverse roles that MAP3K1 plays in
embryonic survival, maturation of T/B cells, and development of sensory organs, including eye and
ear. Specifically in eye development, Map3k1 loss-of-function was found to be autosomal recessive
for congenital eye abnormalities, but became autosomal dominant in combination with Jnk and RhoA
mutations. Additionally, Map3k1 mutation increased eye defects with an exposure to environmental
agents such as dioxin. Data from eye developmental models reveal the nexus role of MAP3K1 in
integrating genetic and environmental signals to control developmental activities. Here, we focus
the discussions on recent advances in understanding the signaling mechanisms of MAP3K1 in eye
development in mice and in sex differentiation from human genomics findings. The research works
featured here lead to a deeper understanding of the in vivo signaling network, the mechanisms
of gene–environment interactions, and the relevance of this multifaceted protein kinase in disease
etiology and pathogenesis.

Keywords: MAP3K1; JNK; dioxin; genetic crosstalks; gene-environment interactions; embryonic
eyelid closure; sex development and differentiation

1. Introduction

The mitogen-activated protein kinases (MAPKs) play pivotal roles in diverse cellular
activities such as gene expression, cell proliferation, migration, survival, and death. In eu-
karyotes, there are three major MAPK subgroups: the extracellular signal-regulated kinases
(ERKs), the Jun-N-terminal kinases (JNK), and the p38s [1]. Each subgroup is controlled
by specific MAP kinase kinases (MAP2Ks) that phosphorylate and activate the MAPKs.
Generally speaking, the MAP2K1/2 are upstream kinases of the ERK1/2, the MAP2K4/7
are upstream activators of the JNK1/2, and the MAP2K3/4/6 are responsible for the ac-
tivation of the p38s. In turn, the MAP2Ks are activated through phosphorylation by the
MAP kinase kinase kinases (MAP3Ks). The MAP3K is a large superfamily consisting of at
least 19 protein kinases [2]. Members of this family share relatively similar kinase domains
but rather distinct regulatory regions. The regulatory domains mediate interactions with
regulators, adaptors, and structural components to crucially determine the specificity and
compartmentalization of signal transduction. Collectively, the different MAP3Ks enable
the transduction of diverse signals to specifically activate the MAPK pathways.

MAP3K1, also known as MEK Kinase 1 (MEKK1), was identified over twenty years
ago as a member of the MAP3K family [2,3]. Biochemistry data show that MAP3K1
preferentially activates MAP2K4 and MAP2K7, which in turn activate the JNKs and/or
p38 MAPKs. While MAP3K1 is widely considered an upstream enzyme of the JNK/p38
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pathways, it is occasionally capable of regulating the ERK and nuclear factor-κB (NF-κB)
pathways [4].

As a large protein of around 1500 amino acids, MAP3K1 possesses distinct structural
domains that bring about various regulatory and functional activities (Figure 1). The kinase
domain (KD), located at the C-terminus, is responsible for the interaction with and the phos-
phorylation of the downstream MAP2Ks [5]. The DEVD sequences, upstream of the kinase
domain, are targets of caspase-3 cleavage. Caspase-3 activation by genotoxic agents [6],
ischemia-injury [7], and TNFα [8] causes MAP3K1 proteolytic cleavage, resulting in a circa
90 kDa C-terminal fragment that promotes cell apoptosis. The long region N-terminal of the
KD has a number of well-defined functional domains, including SWI2/SNF2 and MuDR
(SWIM), RING finger (RING), Armadillo Repeats (ARM), and Tumor Overexpressed Gene
(TOG). Of these, the SWIM domain mediates protein–protein interactions and binds to c-Jun
to facilitate the subsequent c-Jun ubiquitination and degradation [9]. The RING domain
has a typical Plant Homeodomain (PHD) motif, closely related to a RING finger with the
specific spacing of cysteine and histidine residues. This domain has an E3 ubiquitin ligase
activity that promotes the ubiquitination/degradation of a number proteins, including
ERK, c-Jun, TTP, TAB1, and CARMA1 [10–14]. MAP3K1-mediated protein ubiquitination
regulates cell survival and death in response to cytokine and stress signals [10,15,16]. At the
N-terminus, MAP3K1 has a putative Guanine Exchange Factor (GEF) domain that mediates
interactions with the small GTPases RAC and RHOA; it also binds with α-actinin through
residuals 221–559. These interactions are believed to enable MAP3K1 to modulate the
cytoskeleton [17–19]. Recently, a TOG domain has been identified in the region overlapping
with the ARM that mediates interactions with AXIN1 [20,21]. The TOG domain preferen-
tially binds with curved tubulin heterodimers, notwithstanding the biological functions of
the MAP3K1–tubulin interactions are unclear [17,22].
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Figure 1. Schematic structure of MAP3K1. Illustration of the functional domains and the relative
domain locations of human MAP3K1.

In vitro studies have also revealed diverse putative signals and potential mechanisms
for the activation of MAP3K1. For instance, the expression of the dominant negative
MAP3K1 blocks the activation of JNK and/or ERK by inflammatory cytokines such as
TNFα and INFγ [14,23]. The cytokine signals are likely mediated through the activation
of the MAP4Ks, including the Germinal Center Kinase (GCK) [24], the Hematopoietic
Progenitor Kinase 1 (HPK1) [25], and the Nck Interacting Kinase (NIK) [26], which bind
directly to and phosphorylate MAP3K1. Additionally, MAP3K1 oligomerization induces
autophosphorylation at T1381 and T1393, leading tothe kinase activation [24,27], whereas
oxidative stress causes the glutathionylation of MAP3K1 at C1238 to inhibit the kinase
activity [28]. In another instance, cells with genetic MAP3K1 ablation are defective in
the induction of MAPK activities and cell migration by the growth factors TGFβ and
EGF [29,30]. The EGF induces adaptor protein GRB2–MAP3K1 interactions to activate the
JNK pathway [31], but hypoxia activates MAP3K1 to induce ERK signaling [32].

Taken together, MAP3K1 is a protein with multiple functional domains and activated
by a wide range of stimuli and mechanisms. The diverse ways of MAP3K1 regulation
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underscore its functional complexity. In this review, we will summarize the current under-
standing of the physiological roles of MAP3K1, with emphases on two emerging topics:
(1) eyelid development based on genetic studies in mice and (2) sex development and
differentiation based on human genomics research.

2. Diverse Roles of MAP3K1 Revealed in Genetic Mouse Models

MAP3K1 is highly conserved in mammals. The human and mouse orthologs share
88% sequence identity, suggesting a functional similarity between mice and men. In mouse
development, MAP3K1 is detected as early as the 2-cell stage and becomes highly expressed
in the brain, the glands, the metanephros, the sensory organs, and the skin by embryonic
day (E) 15 [33,34]. MAP3K1 expression is also detectable, albeit at lower levels, in the
embryonic heart, liver, ovary, and testis. The expression profile is consistent with the
diverse roles MAP3K1 displays in organogenesis and tissue formation. Mice lacking the
entire Map3k1 gene [35], the coding sequences for the kinase domain [29], or carrying point
mutations in the RING domain [12], display abnormalities in their vision/eye, the nervous
system, hearing/vestibular/ear, immunity, and the cardiovascular system (Available online:
http://www.informatics.jax.org/marker/MGI:1346872 (accessed on 1 December 2021)).

2.1. Full-Length MAP3K1 Ablation (Map3k1−/−) Mice

The Map3k−/− mice carry genomic DNA deletions that remove 132 codons, including
the ATG site in exon 1, resulting in the deletion of the entire MAP3K1 protein [36]. Although
they survived embryonic development, the Map3k1−/− mice were born with an eye open
at birth (EOB) phenotype. In addition, these mice were susceptible to heart failure and
sudden death following cardiac pressure overload [37], and also had delayed tumor cell
dissemination and metastasis [38].

2.2. The Kinase Domain-Deficient (Map3k1∆KD) Mice

Mice lacking the kinase domain of MAP3K1 (Map3k1∆KD) are the most widely investi-
gated in different research laboratories. In the Map3k1∆KD allele, the sequences coding for
the MAP3K1 kinase domain are replaced with the β-galactosidase gene [39]. The kinase
domain-deficient Map3k1∆KD/∆KD mice were born with an EOB phenotype, the same as that
seen in the Map3k1−/− mice. In addition, these mice had compromised immunity, with
reduced T-cell survival, aberrant differentiation of the intra-thymic CD4+ and CD8+ subsets,
and deficient B-cell proliferation and antibody production in response to antigen [40–42].
Some of the immunological functions that depend on the autonomous MAP3K1 activity,
because conditional deletion of Map3k1, specifically in T cells, abolished the invariant
NK T cell proliferative expansion in response to glycolipid antigen [13]. Furthermore,
although MAP3K1 is overall considered dispensable for embryonic survival, a considerable
number of the Map3k1∆KD/∆KD embryos died due to abnormalities in erythropoiesis in the
C57BL/6 background, suggesting that MAP3K1 contributes to embryonic survival in a
genetic background-dependent manner [43].

The Map3k1∆KD allele expresses a kinase domain defective MAP3K1 (N-terminal)-β-
Gal fusion protein, controlled by the endogenous Map3k1 promoter, and is detectable in
situ by X-gal staining [29]. Using whole-mount X-gal staining, MAP3K1 expression was
detected in the ear, specifically in the inner and outer hair cells, Claudius cells, Hensen
cells, border cells of the internal spiral sulcus, and spinal ganglion neurons as well as the
apical surface of supporting cells of the organ of Corti [44,45]. The Map3k1∆KD/∆KD mice,
accordingly, became severely deaf with the degeneration of outer hair cells in the organ
of Corti at postnatal day (P)14 and the loss of cochlear spinal ganglions at P90 [45]. The
organ of Corti in these mice had reduced the expression of FGF/FGFR genes important
for otic placode induction and epithelium development [46,47]. It is worth noting that in
an N-ethyl-N-nitrosourea (ENU) mutagenesis screen, Parker et al. identified a recessive
mutant mouse, termed goya, carrying a mutation in the Map3k1 gene [44]. The mutation was
a single-nucleotide change in the splice donor site of intron 13 that resulted in a truncated
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MAP3K1 containing only the N-terminal half of the protein. The goya mice were therefore
similar to the Map3k1∆KD/∆KD mice in the sense that they expressed a kinase domain-
deficient MAP3K1. Unsurprisingly, the goya mice phenocopied the Map3k1∆KD/∆KD mice
and displayed progressive hearing loss in addition to an EOB phenotype. The genetic
data suggest that the MAP3K1 kinase domain is crucially required for ear/hearing and
eye development.

2.3. The Ubiquitin Ligase Domain-Deficient Mice

A knock-in mouse strain that carries two mutations, C438A and I440A, in the MAP3K1
RING domain was generated. The mutations resulted in the loss of E3 Ub ligase activity [12].
The Map3k1mPHD/mPHD mice died in early embryogenesis, but the Map3k1mPHD/+ mice sur-
vived development and exhibited enlarged testes and hearts, aberrant B-cell development,
and T-cell signaling [12].

Considered together, the different mutant strains reveal a combination of the mul-
tifaceted physiological roles of MAP3K1 and its functional domains in the living organ-
isms. Distinct from the ubiquitin ligase-deficient mice, which are embryonic lethal, the
Map3k1−/−, Map3k1∆KD/∆KD, and goya mice survived embryogenesis and displayed a com-
mon birth defect of the eye. The next section details work that investigated the mechanisms
of MAP3K1 in eye development.

3. The Roles of MAP3K1 in Embryonic Eye Development
3.1. The Signaling Mechanisms of MAP3K1 in Embryonic Eyelid Closure

Mouse eyelid development begins at embryonic day 11.5 (E11.5). At this stage, the
periocular epithelium derived from the surface ectoderm folds at the junction of the future
conjunctiva and cornea to form the initial eyelids. As the embryo grows, the eyelids
continue to elongate, and the epithelium at the eyelid tip moves centripetally, leading
ultimately to the fusion of the upper and lower eyelids [48], which in mice occurs between
E15.5 and E16.5 [48,49]. The eyelids remain fused at birth and separate around postnatal
day 12 (P12) as the result of apoptosis and the keratinization of epithelial cells at the fusion
junction [50]. Therefore, mice are normally born with their eyes closed, whereas those with
a failure of eyelid closure in embryogenesis exhibit an EOB phenotype [51] (Figure 2A).

As mentioned earlier, the MAP3K1-deficient strains, including Map3k1−/−,
Map3k1∆KD/∆KD, and goya, which were generated independently in different laboratories,
all displayed the EOB defects [52,53]. In addition, a mouse strain carrying a spontaneous
27.5 kb germline deletion that removes exons 2–9 and causes the frame-shift of the MAP3K1
protein (Map3k1lg-Ga) also had this phenotype [54]. The genetic evidence is compelling in
support of the essential role of MAP3K1 in eye development.

A histological examination of prenatal eyes identified the developmental origin of the
eye defects. At E15.5, prior to the onset of eyelid closure, the upper and lower eyelids were
separated in both wild-type and Map3k1∆KD/∆KD embryos; however, at E16.5 post eyelid
closure, while the eyelids were clearly fused in wild-type fetuses, they were still manifestly
separated in Map3k1∆KD/∆KD fetuses [29] (Figure 2B). The Map3k1∆KD/∆KD mice, therefore,
have defective eyelid closure in embryonic development.

The X-gal staining of the Map3k1∆KD embryos detected MAP3K1 expression in various
ocular tissues, including the lens, eyelid, and ciliary epithelium, as well as in the retinal
progenitors and pigment epithelial cells [55] (Figure 2C). Consistent with the expression
in the retina and the eyelids, the Map3k1∆KD/∆KD mice had retina defects postnatally due
to aberrant neuronal cell proliferation and apoptosis, besides the EOB phenotype [29,55].
In the embryonic eyelids, MAP3K1 was expressed abundantly in the inferior periderm
near the leading edge, where the phosphorylation of MAP2K4, JNK, and c-Jun, a JNK
downstream target, was elevated in wild-type but not Map3k1∆KD/∆KD embryos [29,56]
(Figure 2C,D). These observations suggest that MAP3K1 regulates a temporal–spatial
activation/phosphorylation of JNK and c-Jun in the embryonic eyelid epithelium.
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however, is insufficient to block eyelid closure because mice harboring a phosphorylation-
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Figure 2. Mouse embryonic eyelid development and closure. (A) Photographs of eyes of the newborn
pups. Mice are normally born with eyelids closed, but those with defective embryonic eyelid closures
are born with an EOB phenotype. Arrowheads point at the eyelid opening margins in EOB mice.
(B) Histological analyses of the embryonic eyes at E15.5 and E16.5. At E15.5, the wild-type and
Map3k1∆KD/∆KD embryos have the same eye structures, with the upper and lower eyelids separated.
At E16.5, the eyelids were fused in the wild-type, but remained separated in the Map3k1∆KD/∆KD

fetuses. Arrowheads point at the leading edge or fusion junction of the upper and lower eyelids.
(C) Eye sections of the whole-mount X-gal stained Map3k1+/∆KD E15.5 embryos were photographed
at 10× (left panel), the red box in the left panel was shown at 40× magnifications (right panel).
Abundant β-gal positive, i.e., MAP3K1-expressing cells were detected in the eyelid epithelium,
particularly in the inferior periderm near the eyelid tip. (D) Immunohistochemistry analyses with
antibodies for the pJNK (upper panels) and p-cJun (lower panels) of the E15.5 eyes. The pJNK and
pJun were detected in the inferior periderm near the eyelid tip in wild-type but not Map3k1∆KD/∆KD

embryos. Nuclei were stained with DAPI (blue). EL: eyelid, CO: cornea, LE: lens, RE: retina. Black
dotted lines mark the basement membrane; white dotted lines mark the boundary between the basal
epithelium and periderm. Arrowheads point at the MAP3K1-expressing periderm.

c-Jun is a member of the AP-1 family of transcription factors [57]. Conditional Jun
knockout in keratinocytes (c-Jun-skin-null) produces an EOB phenotype, similar to that
seen in the MAP3K1-deficient mice [58,59]. These observations were originally thought
to be a resounding indication of a MAP3K1-c-Jun pathway in eyelid development. How-
ever, compelling evidence argues against this idea. The Map3k1∆KD/∆KD eyelids decreased
c-Jun phosphorylation but unaltered c-Jun expression [29]. Lacking c-Jun phosphorylation,
however, is insufficient to block eyelid closure because mice harboring a phosphorylation-
deficient c-Jun (JunAA) have normal eyelid development [60]. In addition, MAP3K1 ex-
pression and c-Jun induction appear to be temporal-spatially segregated in the embryonic
eyelids; MAP3K1 expression is abundant in the inferior periderm, while c-Jun induc-
tion is predominant in the epithelium at the leading edge [61]. Moreover, Map3k1 and
c-Jun do not display non-allelic non-complementation in genetic crossing experiments [61],
strengthening the notion that MAP3K1 regulates eyelid development independent of c-Jun.

Searching for other downstream effectors of MAP3K1 led to the identification of
abnormal cell–cell contacts and reduced actin polymerization in the eyelid epithelium of the
Map3k1∆KD/∆KD embryos. In vitro, the Map3k1∆KD/∆KD keratinocytes displayed defective
F-actin formation and migration in comparison to their wild-type counterparts [29]. The
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MAP3K1-regulated cytoskeleton reorganization and epithelial cell migration therefore
likely contribute to eyelid closure.

Recently, Chen et al. reported a new EOB strain derived from N-ethyl-N-17 nitrosourea
mutagenesis, in which they detected a T941A mutation in exon 4 of Map3k1, resulting in an
L314Q substitution [62]. In contrast to the other genetic strains where the Map3k1 mutant
allele is recessive, the Map3k1L314Q is a dominant pathogenetic allele. The Map3k1L314Q/+

heterozygous mice exhibit EOB that is not observed in the heterozygous Map3k1+/− and
Map3k1+/∆KD mice. How MAP3K1(L314Q) induces eyelid closure defects is still a mys-
tery. Since the affected amino acid is located near the SWIM domain that mediates c-Jun
degradation, it is reasonable to speculate that the Map3k1L314Q/+ mutation promotes c-Jun
protein degradation, and thereby the EOB phenotype [9]. In support of the speculation,
the Map3k1L314Q eyelids have indeed reduced c-Jun protein, along with decreased c-Jun
phosphorylation [62].

3.2. Genetic Identification of the MAP3K1 Pathway in Eyelid Morphogenesis

Although the Map3k1∆KD/∆KD eyelids are defective in JNK phosphorylation, whether
JNK is the downstream mediator in the control of eyelid closure remains an open question.
A definitive answer to this question comes from genetic crossing experiments. Genetic
crossing was used more than twenty years ago to study the pathways in relevance to the
EOB phenotype. Specifically, two recessive mutants, Far and lgGa, were found to display
non-allelic non-complementation in embryonic eyelid closure, such that when neither
+/Far nor +/lgGa had eye defects, the double heterozygotes +/Far+/lgGa exhibited the
EOB phenotype [63]. The authors surmised that Far and lgGa represented functionally
related genes whose products worked in the same pathway [64]. The lgGa was mapped to
Chr 13 and interestingly, it was later on shown to carry a deletion of the Map3k1 gene [54].

The above studies pioneered a succession of genetic crossing experiments to search
for players in the MAP3K1 network. The crossing of Map3k1 and Jnk1 mutants showed
that neither Map3k1∆KD/+ nor Jnk1−/− mice had eye defects, but that their combinations,
Map3k1∆KD/+Jnk1−/−, resulted in the EOB phenotype [56]. Additionally, RhoA is a small
GTPase implicated in MAP3K1 signaling in vitro [19,29,65]. RhoA conditional knockout
in the ocular surface epithelium (Rhoa∆OSE/∆OSE) resulted in an eyelid closure delay by
2 days in the Map3k1∆KD/+ background, but did not cause such a delay in the wild-type
background [66]. The genetic data hence demonstrate the existence of a RhoA-MAP3K1-
JNK pathway in embryonic eyelid closure.

The crossing experiments have further distinguished the differential roles of JNK1 and
JNK2, two ubiquitously expressed mammalian JNK isoforms. JNK1 and JNK2 are known
to have redundant developmental functions [67]. Mice lacking in either JNK1 or JNK2 are
viable with no overt structural abnormalities, but double-deleted Jnk1−/−Jnk2−/− mice die
perinatally accompanied by multiple structural defects [68]. Crossing the Jnk1 and Jnk2
mutants with the Map3k1∆KD mice has led to a number of intriguing observations. While
the Map3k1 gene is haploinsufficient for embryonic eyelid closure in Jnk1-null mice, it is
haplosufficient in Jnk1+/− heterozygous mice, suggesting that the Jnk1 allele contributes
dose-dependently to MAP3K1 signaling. Additionally, unlike the Map3k1∆KD/+Jnk1−/−

mice that display the EOB phenotype, the Map3k1∆KD/+Jnk2−/− mice have normal eye
development [56]. However, the addition of a Jnk2 mutation in the Map3k1∆KD/+Jnk1+/−

background induces a partial EOB defect in the Map3k1∆KD/+Jnk1+/−Jnk2+/− mice, implying
that JNK2 also makes contributions, albeit to a lesser extent, to the pathway. Altogether,
these data show that while both JNK isoforms are involved in embryonic eyelid closure,
JNK1 makes a greater contribution than JNK2 to MAP3K1 signaling, and that non-allelic
non-complementation for the EOB phenotype can identify the molecular constituents of
the MAP3K1 pathways in vivo.
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3.3. Gene–Environment Interactions in Eyelid Morphogenesis

Besides the intrinsic genetic control, environmental factors can robustly modulate
embryonic eyelid closure. Open-eye defects in mice were found following in utero expo-
sure to pharmaceutical or environmental chemicals such as valproic acid [69], metham-
phetamine [70], anticonvulsants [71], lorazepam [72], methanol [73], and organophosphorus
pesticides [74]. Additionally, hormones and retinoic acid treatment of pregnant mice pre-
vented eyelid closure defects in the lgMl/lgMl genetic mutant mice, presenting a case of
gene–environment interaction in eyelid morphogenesis. The identity of the lgMl mutant is
still unknown, although it is evident that this gene function can be effectively modified by
the maternal environment [75].

Another case of gene–environment interaction was found in the relationships between
Map3k1 and 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD). TCDD is an organochlorinated
chemical and the prototype for a large number of environmental pollutants, collectively
known as dioxin-like chemicals. These chemicals are global contaminants with wide-range
toxicity, including a myriad of developmental toxicities [76–78]. In eyelid development, in
utero TCDD exposure did not induce abnormalities in wild-type mice but caused defective
eyelid closure in Map3k1∆KD/+ fetuses, in parallel to a marked inhibition of phospho-JNK in
the embryonic eyelid epithelium [79]. Most, if not all, TCDD toxicity is mediated by the
aryl hydrocarbon receptor (AHR), a transcription factor encoded by the Ahr gene, activated
by TCDD and many other dioxin-like pollutants [80]. In this context, the eyelid toxicity
of TCDD was abolished in Map3k1∆KD/+Ahr−/− compound mutants, indicating that AHR
mediated the crosstalk between MAP3K1 and TCDD.

EGFR and DKK2, two members of the EGFR and WNT pathways, respectively, are also
crucial for embryonic eyelid closure. Similar to Map3k1, both Egfr and Dkk2 homozygous
deletions, but not the hemizygous, induce the EOB defects [81,82]. However, different from
Map3k1, the hemizygous Egfr+/− and Dkk2+/− do not potentiate the toxicity of TCDD in
eyelid closure, demonstrating a remarkable specificity of the pathways that TCDD-AHR
interacts with [79]. The existence of the MAP3K1-TCDD signaling crosstalk raises an
intriguing possibility that other MAP3K1 network genes, such as Jnk and RhoA, can also
modulate the developmental toxicity of TCDD.

3.4. MAP3K1 Signaling Is a Developmental Threshold

Based on the genetic crossing data, Harris and Juriloff postulated that eyelid morpho-
genesis depends on a developmental threshold [63]. The molecular identity of the threshold
had been elusive for the past twenty years, until MAP3K1 came into the picture. MAP3K1
signaling is a tangible threshold to which the different genes, i.e., Map3k1, Jnk1, Jnk2, and
RhoA, contribute with a gradient of strength (Figure 3A). Of these genes, Map3k1 makes
the strongest contribution as its homozygous mutants produce the EOB phenotype; Jnk1 is
weaker because the Jnk1−/− deletion requires Map3k1 hemizygosity to produce the defects;
RhoA and Jnk2 are still the weakest since they require second or third gene mutations and
induce milder symptoms. The genetic mutations cumulatively inhibit MAP3K1 signaling,
which, when decreased to below the threshold levels, triggers eyelid closure failure. The
TCDD-induced eyelid defects in Map3k1∆KD/+ mice also fit nicely in the threshold model, in
which the eye defects occur when the combined genetic and environmental insults cause a
significant inhibition of MAP3K1 signaling.
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3.5. Complex Genetic Control of Embryonic Eyelid Closure

Deficiency of embryonic eyelid closure does not abrogate embryonic and fetal survival,
but results in an EOB phenotype that is extremely easy to recognize in the newborn
pups [83]. For this reason, more than 140 mutant strains in the Mouse Genome Informatics
(MGI) database are reported to have the EOB phenotype in addition to the Map3k1 mutants.
An investigation of the mutants has led to the findings that eyelid closure requires: (i) the
RA-RXR/RAR and PITX2-DKK2 pathways; (ii) the FOXL2 and OSR2 transcription factors
operating in the periocular mesenchyme; and (iii) the activation of the MAP3K1, EGFR,
ROCK, and PCP pathways in the eyelid epithelial cells [84–92]. The FGF10-FGFR and
BMP-BMPR pathways, on the other hand, regulate eyelid morphogenesis by acting through
mesenchymal–epithelium interactions [93,94]. Some of the signaling events are detected
in just a few cells, where morphogenesis is regulated by compartmentalized and spatially
segregated local signals [61,95,96]. The molecular mechanisms underlying embryonic
eyelid closure may serve as a good model for understanding other genetically complex
morphological processes in mammals.

3.6. Congenital Eye Defects Associated with the EOB Phenotype

The large number of genetic mutants displaying the EOB defects suggests that there
are many situations in which gene mutations will induce eyelid closure failure and the
subsequently congenital eye defects. Analyses of Map3k1∆KD/∆KD and other EOB mice
have identified numerous types of corneal pathogenesis, including epithelial erosion,
hyperplasia, squamous metaplasia, and corneal stroma neovascularization [53,97]. As
the mouse cornea is immature at birth and becomes fully developed on postnatal day (P)
12—timing that coincides with eye opening [98]—the closed eyelids are speculated to offer
protection to the immature corneas from environmentally induced injuries.
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The EOB mice also display multiple developmental abnormalities of the ocular ad-
nexa [99]. A number of ocular adnexal tissues become fully developed while the eyelids
are closed. When the eyelids are fused, the orbicularis oculi muscle and tarsal plate become
mature, the smooth muscles attach to the tarsal plate responsible for eyelid elevation, and
meibomian glands start to form to produce meibum that prevents evaporation of the tear
film [100–102]. Without eyelid closure, the tarsal muscles are truncated, inferior oblique
muscles are misplaced in the prenatal E18.5 fetuses, and eyelid tarsal muscles are hy-
poplastic, LPS extension is blunted, and inferior rectus muscles are mis-located in the adult
mice [99,103]. The EOB mice also have hypoplastic and ill-formed meibomian glands [104].
Taken together, the analyses of the EOB mice suggest that eyelid closure deficiency may
lead to congenital corneal dystrophy and adnexal abnormalities.

4. MAP3K1 Regulates Sexual Determination and Differentiation

Mammalian sex organ development begins at the embryonic stages, where two sets
of ducts, i.e., the Müllerian ducts (MDs) and the Wolffian ducts (WDs), arise from the
mesonephric kidneys [105]. The ducts form in both sexes in early embryogenesis, and after
sex determination, the testis-derived hormones in males promote WD elongation while
triggering MD regression. The male WDs continue to develop into separate but contiguous
organs, including epididymis, vas deferens, and seminal vesicles. Conversely, owing to the
lack of testis-derived hormones in females, the WDs regress, and the MDs elongate and
differentiate. The MDs further develop into the female reproductive tracts composed of
the fallopian tubes, uterus, cervix, and vagina. Many genes and signaling pathways play
crucial roles in sex and reproductive tract development; their deficiency leads to anomalies
in sex determination and differentiation [106].

The 46, XY disorder of sex development (DSD) is a condition in which a genetically
male individual has ambiguous or feminized genitalia, complete or partial gonadal dysge-
nesis, abnormal testis, and reduced to no sperm production [107]. Accumulated clinical
genomics data show that approximately 13–18% of 46, XY DSD patients carry MAP3K1
allelic variants [106,108–115]. The pathogenic mutations are found throughout the MAP3K1
gene, but the majority are non-synonymous changes affecting the GEF and ARM domains
of the protein. One of the first mutations identified in familial cases was a splice-acceptor
mutation (634-8T > A) that results in the addition of two amino acid residues, leucine
and glutamine, in the GEF domain [114]. Missense mutations of L189 in the GEF domain
and P153 substitution of Leucine at the N-terminal to the GEF domain were subsequently
found in sporadic 46, XY DSD patients [111,113]. Mutations affecting the ARM domain
of MAP3K1, including the loss of 34 amino acid residues (G727-I761del) and missense
substitutions, G616R and L706R, were also identified in both familial and sporadic cases.
Additionally, a genetic variant resulting in an A1433V mutation in the kinase domain was
reported in two sporadic 46, XY DSD patients [106]. Up to date, MAP3K1 is considered one
of the most commonly mutated genes associated with 46, XY DSD.

The genetic variants affecting the GEF and ARM domains exhibit gain-of-function
properties in signal transduction. In vitro studies showed that the mutated MAP3K1
displayed enhanced binding with co-factors, i.e., RHOA and MAP3K4, and caused the
increased activation of the downstream targets such as p38 and ERK1/2 [17,113–116].
Hyperactivation of p38 and ERKs might in turn activate the WNT-β-catenin pathway to
block SOX9 function, which is required for male sex development. Thus, mutations of
MAP3K1 tilt the balance of sex development and differentiation through the dysregulation
of WNT signaling.

5. Conclusions and Perspectives

Studies of mouse models offer significant insights into MAP3K1 signaling in eyelid
morphogenesis. First, MAP3K1 orchestrates a signaling network—the different network
genes display non-allelic non-complementation in embryonic eyelid closure. Besides
Map3k1, Jnk1, Jnk2, and Rhoa, other components of the network are yet to be identified. For
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example, Far, mapped to Chr. 2, exhibits non-allelic non-complementation with Map3k1+/−

for an EOB phenotype [63], suggesting that Far is a component of the same network [54,63].
The genetic identity of Far, up to the present date, remains unknown. Second, MAP3K1
signaling is a developmental threshold for eyelid morphogenesis, leading to the proposition
that any genetic or environmental insults, or their combinations, that repress MAP3K1
signaling could increase the risks of and possibly cause defects in the eye (Figure 3A).
The threshold model may serve as a theoretical basis for predicting the polygenic and
multifactorial etiology of eyelid morphogenetic disorders due to the complex interactions
of many genetic variants and environmental chemicals.

Translation of the knowledge from mouse studies in order to understand human eye
development and diseases is lacking. The developmental timeline of eyelids in human
and mice is similar [100,101,117–119], but unlike mice, the closure and re-opening of the
human eyelid is accomplished entirely in utero, occurring between 7 and 24 weeks of fetal
life. This has made it challenging to detect lid closure defects in humans. Up to date,
little is known about the human incidence of eyelid closure defects and the associated
disease phenotypes. If the developmental eyelid closure serves analogous functions in mice
and humans, its deficiency in humans will likely increase the risks of maternal exposure-
induced ocular surface anomalies, such as corneal clouding and dystrophies, and adnexal
abnormalities, such as congenital blepharoptosis and strabismus. These human disorders
are not uncommon; their pathological origins are diverse and still poorly understood.

The major breakthrough in the translational front is the compelling human genomics
data associating MAP3K1 variants with the 46, XY DSD syndrome. Mechanistically, the
mutant MAP3K1 has gain-of-function properties, ultimately leading to the hyperactivation
of WNT that in turn crucially regulates sex determination and differentiation [17,105,120].
This mechanism, however, has not been validated in vivo in an animal model because a
MAP3K1 gain-of-function mouse, to our knowledge, has not been developed.

In mice, MAP3K1 expression is detected in the developing reproductive tissues of
both sexes [114,121]. If MAP3K1 gain-of-function up-regulates WNT, its loss-of-function ac-
cordingly may lead to WNT hypoactivation, which is linked to abnormalities in female sex
differentiation (Figure 3B). The ablation of WNT isoforms in mice indeed results in diverse
female reproductive disorders [122–125]; in humans, WNT4 missense mutations are associ-
ated with 46, XX DSD and MD anomaly [126–128]. The Map3k1-null mice, without major
defects in testis formation, have not been carefully examined for female sex tissues [121].
Investigating Map3k1 loss-of-function in female sex development in the mouse models will
likely shed new light on and consolidate the MAP3K1–WNT axis in sex determination
and differentiation.
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