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Genomic prediction using subsampling
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Abstract

Background: Genome-wide assisted selection is a critical tool for the genetic improvement of plants and animals.
Whole-genome regression models in Bayesian framework represent the main family of prediction methods. Fitting
such models with a large number of observations involves a prohibitive computational burden. We propose the use
of subsampling bootstrap Markov chain in genomic prediction. Such method consists of fitting whole-genome
regression models by subsampling observations in each round of a Markov Chain Monte Carlo. We evaluated the
effect of subsampling bootstrap on prediction and computational parameters.

Results: Across datasets, we observed an optimal subsampling proportion of observations around 50% with replacement,
and around 33% without replacement. Subsampling provided a substantial decrease in computation time, reducing the
time to fit the model by half. On average, losses on predictive properties imposed by subsampling were
negligible, usually below 1%. For each dataset, an optimal subsampling point that improves prediction properties was
observed, but the improvements were also negligible.

Conclusion: Combining subsampling with Gibbs sampling is an interesting ensemble algorithm. The investigation
indicates that the subsampling bootstrap Markov chain algorithm substantially reduces computational burden
associated with model fitting, and it may slightly enhance prediction properties.

Keywords: Genome-wide selection, Bayesian analysis, Bootstrapping

Background
The use of genomic tools has become important for the
genetic improvement of complex traits in plants and
animals through genome-wide prediction (GWP). GWP
provides an interesting solution for the selection of traits
with low heritability, such as grain yield in crops and
milk production in dairy cattle, as well as for traits that
present challenging or expensive phenotyping.
Over the past decade, researchers have tried to over-

come the pitfalls of increased computational burden
associated with gains in prediction accuracy from GWP
of complex traits. Increases in predictive ability (and
computational burden) are often associated with better
statistical learning properties, such as regularization and
variable selection [1]. Hence models with an improved
ability to identify patterns provide more robust predic-
tions, but computational costs are involved.
In statistical learning, resampling techniques are

common approaches used to turn weak learners into

strong learners [2]. Gianola et al. [3] showed that boot-
strapping aggregation could improve prediction accuracy
of kernel-based genomic best linear unbiased prediction
(GBLUP) model in genomic prediction of plant and
animals. We hypothesized that a similar approach could
apply to whole-genome regression methods, often
referred to as the Bayesian alphabet [4].
Besides computational advantages offered by some

resampling methods, these techniques may also help to
overcome theoretical shortcomings of some of these
Bayesian methods, such as the bias of BayesA [5]. The
objective of this study was to evaluate the predictive and
computational outcomes from the application of a
resampling technique ensemble with the Gibbs sampler
to a Bayesian ridge regression model.

Sampling procedures
In addition to the increasing number of markers avail-
able over time due to higher density single nucleotide
polymorphism (SNP) arrays and even resequencing,
computation challenges include the large number of
samples from which those genotypes are taken [6]. The
computational burden associated with large population
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sizes is more evident in plant breeding, where hundreds of
crosses with large offspring are genotyped and selected
every season using GWP. Sampling methods are often
necessary to enable such complex statistical procedures in
large datasets. Among those, two main classes of sampling
techniques are Markov chain Monte Carlo (MCMC) and
Bootstrapping.
The MCMC method is possibly the most popular Monte

Carlo algorithm with application to linear models, provid-
ing a feasible framework to resolve high-dimensional
problems (i.e., more parameters than observations) with
moderate computer power [7]. Likewise, bootstrapping
also provides an interesting framework for solving large-s-
cale problems [8, 9], particularly a method known as sub-
sampling [10] used to reduce data dimensionality.

Gibbs sampling
Gibbs sampling is a widely used MCMC technique,
applied in conjunction with Bayesian methods to generate
the posterior distribution of the parameters. The posterior
distribution is denoted as p ΘjXð Þ, where Θ represents the
set of unknown parameters Θ ¼ θ1; ; θ2;…; ; θrf g , and X
represents the data. The Gaussian model described in the
following section, unknown parameters include the inter-
cept ( μ ), the vector of regression coefficients ( b ) and
variance components, as Θ ¼ μ; b; σ2b; σ

2
e

� �
, whereas the

observed data comprises the genotypic information (X) of
individuals and phenotype (y), as X ¼ X; yf g:
Gibbs sampling algorithms are based on updating each

parameter with samples drawn from the full-conditional
posterior distribution, one parameter at a time while
holding every other parameter constant. Each parameter
θ is sampled from

p θ Xjð Þ∝f X θjð Þπ θð Þ; ∀θ∈Θ; ð1Þ

where p θjXð Þ denotes the posterior distribution of θ, the
likelihood is expressed as f Xjθð Þ and the prior distribu-
tion of θ is π θð Þ.
In most implementations, regression coefficients are

sampled individually from normal distributions whereas
variance components are sampled from scaled inverse
chi-squared distributions [4, 5]. Every time a parameter
(i.e., regression coefficients and variance components) or
a conjugated prior is updated, its value is stored as
samples of the posterior distribution. The final Bayesian
estimator is the expectation of the posterior distribution,
obtained as the mean of the posterior distribution.

Bootstrapping aggregation
A natural strategy to increase prediction accuracy is to
build and combine multiple prediction models generated
from samples of a large dataset, averaging the outcome
predictor [11]. Bootstrapping aggregation, or simply

‘bagging’, is implemented in linear models by fitting the
function f 1 xð Þ; f 2 xð Þ;…; f B xð Þ with B bootstrapped
samples of the dataset and the final model, with reduced
variance, will be given by

f̂ avg xð Þ ¼ 1
B

XB

b¼1
f̂ b xð Þ;x⊂X: ð2Þ

Regression coefficients are stored each time the model
is fitted, hence generating an empirical distribution of
each parameter. Bagging parameters are obtained as the
mean of this distribution.
With bootstrapping, when samples are obtained with

replacement, the number of observations sampled is
commonly the same size as the initial dataset, recogniz-
ing that some observations may be sampled more than
once. When bootstrapping is performed with fewer
samples than the original number of observations,
sampling can proceed either with or without replacement.
The latter case is known as subsampling.

Subsampling bootstrap Markov chains
MCMC and Bootstrap are usually implemented separ-
ately, such that some studies have attempted to compare
the performance of these samplers [12]. Nevertheless, both
methods can be co-implemented. A co-implementation
that is becoming popular in the context of big data is a
technique known as subsampling bootstrap Markov chain
(SBMC). In this algorithm, the Markov chain update
mechanism is performed upon a subset ( x ) of the
whole data (X) and a different subset is used to update the
parameters in each round of MCMC. Therefore, each
parameter is sampled from the posterior distribution

p θ xjð Þ∝f x θjð Þπ θð Þ; ∀θ∈Θ; x⊂X: ð3Þ
The concept of subsampling Gibbs sampler was first

presented by Geyer [13] and some predictive properties
were further investigated by MacEachern and Peruggia
[14]. Regarding the applications to genome-wide predic-
tion of complex traits, SBMC can be used to update the
regression coefficients [15], hence increasing the compu-
tational performance of model fitting.

Methods
Statistical model
The family of whole-genome regression methods is a
standard set of models widely applied for genomic
prediction [4]. Among these, Bayesian ridge regression is
a regularized model that assigns the same variance to
every marker. The linear model is described as follows:

y ¼ 1μþ Xbþ e ð4Þ
where y is the response variable (i.e., the phenotypic in-
formation), μ is a scalar representing the intercept, X is
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the genotypic matrix coded as {0,1,2} for {AA, Aa, aa}
where rows correspond to the genotypes and columns
correspond to the molecular markers, b is a vector of
regression coefficients that represents the additive value
of allele substitutions, and e is the vector of residuals. In
this model, both regression coefficients and residuals are
assumed to be normally distributed as beN 0; Iσ2b

� �
and

eeN 0; Iσ2e
� �

. The variances are assumed to follow a
scaled inverse chi-squared distribution with a given prior
shape (S) and prior degrees of freedom (ν), thus σ2beχ�2

Sb; ; νbð Þ and σ2eeχ�2 Se; ; νeð Þ.
High-dimensional methods are regularized to enable

fitting the model without losing predictive properties [2].
The regularization of linear models occurs by shrinking
regression coefficients, which also biases predictions
downwards [1]. The Bayesian ridge regression attempts
to estimate regression coefficients with the minimum
bias necessary for a satisfying prediction (i.e., minimum
variance), a solution referred to as best linear unbiased
predictor [4, 5]. As an optimization problem, the loss
function to be minimized by the model (equation 4) that
balances variance and bias is described as

L2 ¼ ðy−μ−XbÞ′ðy−μ−XbÞ þ λðb′bÞ ð5Þ

where λ is the regularization parameter, the ratio
between the residual variance and the genetic variance
of marker effects, as λ ¼ σ2e=σ

2
b. For the model in consid-

eration, the regularization parameter assumes a single
value for all regression coefficients.

Coefficient update
Sorensen and Gianola [16] show that the full conditional
distribution of regression coefficients for Gibbs sampling
from a normal distribution has a closed form. The
expectation is derived from the Cholesky decomposition
of the left-hand side (LHS) of the mixed model equation.
The computational cost of operations such as solving
the mixed model equation is described in terms of n
observations and p parameters. The cost associated with
the Cholesky decomposition is p3 , making it com-
putationally unfeasible for high-dimensional prob-
lems (p≫n), such as whole-genome regression methods.
On the other hand, the Gauss-Seidel residual updating
(GSRU) algorithm [15] has a computational cost of 3pn ,
which is much lower than for the Cholesky decomposition
in this scenario. A Gibbs sampler based on GSRU updates
the jth regression coefficient as

bjtþ1 j � eN xj’et þ xj’xjb
t
j

xj’xj þ λj
;

σ2e
xj’xj þ λ

 !
ð6Þ

where xj is the vector corresponding to the jth marker
and � represents the data and all parameters other

than the one being updated. The coefficient update is
followed by update of the vector of residual

etþ1 ¼ et þ xjðbtþ1
j −btjÞ: ð7Þ

The greatest advantage of GSRU comes from the low
computational cost of updating the right-hand side
(RHS) of the mixed model equation [15], solving the lin-
ear system one parameter at a time without computing
X’X. Subsequently, variance components are updated as

σ2bj � ∼b′bþ Sbvb
χ2pþvb

andσ2e j�∼e′eþSeve
χ2nþve

:

ð8Þ

where Se, νe, Sb, and νb correspond to the prior parame-
ters “shape” and “degrees of freedom” of the residual
and genetic variance, respectively.

SBMC extension
We here propose incorporating subsampling into the Gibbs
sampler. This variation implies sampling a ψ fraction of the
data ( ψ∈ ½0; 1� ) to update regression coefficients and
residual variance in each round of MCMC.
For a matter of notation, let X e and e e represent the

bagged subsamples, in other words, a fraction of X and
e that contains ψ percent of observations sampled at
random in a given round of MCMC. This modified
GSRU would have an expected computational cost of
3pnψ.
To accommodate bagged samples, sampling algo-

rithms of regression coefficients and residual variance
undergo a slight modification. Regression coefficients
are updated or sampled as

bjtþ1 j � ∼N x ej′e et þ ψx′jxjb
t
j

ψxj′xj þ λj;
σ2e

ψxj′xj
þ λj

0@ 1A ð9Þ

with subsequent residual update

eetþ1 ¼ e et þ xjðbjtþ1−btj Þ: ð10Þ

The entire kth round of MCMC is updated using the
subsampled dataset xk ¼ fX e; e eg . Since the residual
variance is a function of the number of observations, its
update is slightly modified from equation 8 as

σ2e j � ∼e e′ e eþ Seve
χ2ψnþve :

ð11Þ

The sampling procedure above assumes that the vari-
ance associated to markers in the subsamples are
approximately the same as in the whole data (σ2

xe≈σ2x ).
That is, the marker sum of squares (x’x) is expected to
reduce linearly according to the proportion of bag
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samples (ψx’x) to avoid recalculating the sum of squares
of bagged markers (x e′ x e) for each round of MCMC.
In genetic terms, the subset is assumed to have the same
allele frequencies as the whole set.
The SBMC algorithm is implemented in the R package

bWGR [17] using the R2 rule proposed by Pérez and de
Los Campos [18] to estimate prior shapes using the
whole data, based on R2 ¼ 0:5, with the values of prior
degrees of freedom set as νe ¼ 5 and νb ¼ 5. In the R2

rule [18], prior shapes are estimated as

Sb ¼ R2 � σ2y � vb þ 2ð Þ=
X

j
σ2xj ð12Þ

and

Se ¼ 1−R2
� �� σ2y � ve þ 2ð Þ: ð13Þ

Dataset
Three datasets available on R packages [18, 19] were
chosen to demonstrate the effect of bagging on genomic
prediction, including a wheat panel from the Inter-
national Maize and Wheat Improvement Center (CIM-
MYT), as the median of grain yield observed in four
environments [20]; a mouse panel designed to study
body mass index [21] but using only half the SNP panel
obtained by skipping every other marker; a soybean
panel with eight bi-parental families with elite parents
from the SoyNAM project [19] with phenotypes
observed in eighteen environments; and a simulated
F2 population with 10 chromosomes of 50 cM each,
genotyped at density of 1 SNP/cM, and with one
QTL every 10 cM placed between markers. Herit-
ability of traits was computed by restricted max-
imum likelihood (REML) upon the animal model
with additive kernel [22]. Markers with minor allele
frequency below 0.05 were removed. Datasets are
summarized in Table 1.

Prediction metrics
Prediction statistics were obtained with a 10-fold cross
validation scheme. We fitted the Bayesian ridge regres-
sion model using subsampling from 25 to 100%, by
increment of 1%, with and without replacement. We set
the algorithm for 4000 MCMC iterations to ensure
convergence [16], with 500 of burn-in [18].

To determine the efficacy of subsampling, we evalu-
ated the mean square prediction error (MSPE), predic-
tion bias as the slope of linear regression between
predictions and observations (βy;y ), computation time in

minutes, and predictive ability as the Pearson’s correl-
ation between predictions and observations (Cory;y ).

Results
The mean outcome of prediction metrics across datasets
is presented in Fig. 1. The results by individual dataset
are presented in the Additional file 1. Numeric results
for some proportions of subsampling are presented in
Table 2.

Computational improvement
The computational time had a linear response to sub-
sampling (Fig. 1d). As expected, subsampling is clearly
beneficial to speed up the computation of model fitting.
The same trend was observed for individual datasets
(Additional file 1). Although our evaluation of the im-
provement of computational performance used relatively
small datasets, we believe the results must hold for
larger datasets.
In comparison to fitting the model with whole data

(Table 2), the computation time to fit the model at 50%
subsampling was 33.6% faster with replacement and
58.3% faster without replacement. Yet, the computational
cost was less than expected, once 3pnψ with ψ ¼ 0:5
should provide a model fitting 100% faster. This difference
can be attributed to the computational cost of the sam-
pling process along with the fixed cost of the initial prob-
lem settings. Computationtime 100% faster was achieved
for subsampling 33% (or less) without replacement.
Interestingly, subsampling with replacement presented

a slightly higher computational cost, also presenting
worse predictive properties for subsampling lower than
40% or higher than 60%.

Implications of subsampling on prediction parameters
Bias
The use of the complete dataset was nearly unbiased
(Table 2). Subsampling with replacement was biased
downwards, presenting the least bias at 40% replace-
ment (βy;y ¼ 0:824). Subsampling without replacement

presented slight upward bias, being 1.8 and 5.8%

Table 1 Summary of datasets used in this study

Species Population type Trait n p h2 Source

Mouse Heterogeneous stock Body mass index 1814 5173 0.146 Legarra et al. [21]

Soybean Nested Ass. Panel Grain yield 1079 4307 0.345 Xavier et al. [19]

Wheat Diverse panel Grain yield 599 1209 0.434 Crossa et al. [20]

Simulation Experimental F2 Simulated 400 500 0.516 Technow [23]
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more biased than the complete dataset at 33 and 50%
subsampling, respectively.

Predictive ability
Across datasets (Table 2), the loss in predictive ability
was negligible. Correlation between predictions and
observations decreased 0.2% by subsampling with
replacement at 50% subsampling, and 0.4% without re-
placement at both 33 and 50% subsampling.

MSPE
The negative impact on MSPE due to subsampling was
also negligible. An increase of 0.3 and 0.2% were observed
at 33 and 50% subsampling without replacement (Table 2).
The impact of subsampling on MSPE was slightly higher
with replacement, increasing 1.76% at 50% subsampling.

Dataset specific analysis
Although negligible, we observed a slight improvement
in predictive ability and MSPE for all datasets at some
optimal subsampling point. The optimal subsampling
and respective improvement in predictive ability and
MSPE are presented in Table 3.

Discussion
Prediction machinery
Any algorithm that enhances prediction or computation
performance is valuable for machine learning. At its op-
timal utilization, SBMC has the potential of improving
prediction while reducing the computational cost [14].
However, reported results vary regarding any prediction

Fig. 1 Prediction metrics (y axis) varying the amount of data under subsampling (x axis). Average across four datasets. a Bias as the slope
between predicted and observed values; b Predictive ability as the correlation between predicted and observed values; c Mean squared
prediction error; and d Computation time to fit the linear model

Table 2 Summary of prediction metrics with for the complete
dataset (Complete), and subsampling 50% with replacement
(wR), and 33 and 50% without replacement (woR)

Time (min.) Cory;y MSPE βy;y
Complete 55.90 0.4814 0.7431 1.0058

woR 33% 27.90 0.4794 0.7454 1.0239

woR 50% 35.32 0.4794 0.7447 1.0642

wR 50% 41.84 0.4802 0.7562 0.8161

Cory;y , correlation between observed and predicted value; MSPE, mean
squared prediction error; βy;y , Prediction bias
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improvement provided by subsampling [8, 24]. Sub-
sampling has not been investigated in big data, for nei-
ther large n nor large p , and that is a specific niche
where subsampling may work best.
Previous studies indicate that there are no guarantees

that SBMC will improve prediction, but it at least pro-
vides results equivalent to the whole dataset; however,
we showed that subsampling can also provide a positive
outcome for genomic prediction besides the computa-
tional aspects (Table 3), where the improvement reached
2.5% for the mouse data. We recommend including a
bagging WGR with 50% subsampling without replace-
ment in cross-validation studies looking for the most ac-
curate prediction model.

Random data
An interesting statistical property provided by SBMC
is that data is sampled from a larger set, which is as-
sociated with that definition of a random term. This
occurs because the observations used to update pa-
rameters are sampled from the empirical distribution
of the data. This property violates the Bayesian as-
sumption that data are given.
In classical Bayesian analysis, inferences are made

based upon the posterior distribution of parameters
given data, whereas random data implies that the pa-
rameters are sampled from the distribution of parame-
ters given the current state of data. MCMC drives the
posterior towards a relative entropy, possibly with larger
sample variance associated with the continuous resam-
pling used to update parameters with different subsets
of data, but without obvious implications for the inter-
pretation of the results [25].

Incompleteness of data
Geyer [26] discussed the issue of subsampling Markov
chains concluding “one does not get a better answer by
throwing away data.” Nevertheless, he emphasizes that
the value of the technique is 1) the reduction of dimen-
sionality of n , and 2) the reduction of auto-correlation
among chains.
Our counterargument is that the all data are used in

the course of model fitting, although not simultaneously.
In addition, accurate estimates are obtained when the
subsampling strategy is used correctly [14]. We show

that subsampling is a valid approach for genomic predic-
tion purposes to fit high-dimensional models (p≫n).

Future directions
Subsampling uses only part of the data to fit the model
in each MCMC round, that enables the computation of
prediction statistics with the subset left out, which is
referred to as out-of-bag statistics (OOB) [27]. The in-
formation provided by OOB is similar to the outcome of
a cross-validation, with the advantage of being computed
during the model fitting. Therefore, OOB could be used
to re-weight observations (i.e., boosting). Another possi-
bility is to adapt SBMC to other learning methods, such
as elastic net [28], where OOB statistics could be utilized
in the search for the tuning parameters without having
to perform explicit cross-validation [29].

Conclusion
SBMC decreases computation time without compromis-
ing prediction properties. We observed that subsampling
approximately 33–50% without replacement and
40–60% with replacement in each round of MCMC is
advantageous for fitting the model. Subsampling can
dramatically reduce computational burden with little
reduction in accuracy and, in some cases, enhanced
predictive properties. This study provides insight into a
general method for incorporating a particular type of
bagging ensemble into the Gibbs sampling of whole-
genome regressions.

Additional file

Additional file 1: Results presented by individual dataset Figure S1.
Time to fit the model (y axis) varying the subsampling method (x axis).
Figure S2. Prediction ability (y axis) varying the subsampling method (x axis).
Methods include Bayesian ridge regression (BRR) with regular sampler,
and SBMC subsampling from 25 to 100%, with and without replacement.
Figure S3. Mean squared prediction error (y axis) varying the subsampling
method (x axis). Methods include Bayesian ridge regression (BRR) with
regular sampler, and SBMC subsampling from 25 to 100%, with and without
replacement. Figure S4. Bias (y axis) varying the subsampling method (x axis).
Methods include Bayesian ridge regression (BRR) with regular sampler, and SBMC
subsampling from 25 to 100%, with and without replacement. (DOCX 232 kb)
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best linear unbiased prediction; GSRU: Gauss-Seidel residual updating;
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Table 3 Optimal sampling observed for individual datasets to enhance predictive ability (PA) and mean squared prediction error
(MSPE). Subsampling performed with (wR) and without replacement (woR)

Optimal PA Increase in PA Optimal MSPE Decrease in MSPE

Mouse wR 66% 2.5% woR 32% <0.1%

Soybean woR 25% 0.1% woR 25% 0.1%

Wheat woR 34% 0.7% woR 33% 0.5%

Simulated F2 wR 87% 0.1% wR 66% 0.2%
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