
RESEARCH ARTICLE

Deep learning to predict long-term mortality

in patients requiring 7 days of mechanical

ventilation

Naomi GeorgeID
1,2*, Edward Moseley3, Rene EberID

4,5, Jennifer Siu2,6, Mathew Samuel2,

Jonathan Yam2, Kexin Huang2, Leo Anthony Celi2,4,7, Charlotta Lindvall3,8

1 Department of Emergency Medicine, Division of Critical Care, University of New Mexico Health Science

Center, Albuquerque, New Mexico, United States of America, 2 Harvard T.H. Chan School of Public Health,

Boston, Massachusetts, United States of America, 3 Department of Psychosocial Oncology and Palliative

Care, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America, 4 Massachusetts

Institute of Technology, Cambridge, Massachusetts, United States of America, 5 Université de Montpellier,

Montpellier, France, 6 Department of Otolaryngology, Division of Head & Neck Surgery, University of

Toronto, Toronto, Canada, 7 Department of Medicine, Beth Israel Deaconess Medical Center, Boston,

Massachusetts, United States of America, 8 Department of Medicine, Brigham and Women’s Hospital,

Boston, Massachusetts, United States of America

* nageorge@salud.unm.edu

Abstract

Background

Among patients with acute respiratory failure requiring prolonged mechanical ventilation,

tracheostomies are typically placed after approximately 7 to 10 days. Yet half of patients

admitted to the intensive care unit receiving tracheostomy will die within a year, often within

three months. Existing mortality prediction models for prolonged mechanical ventilation,

such as the ProVent Score, have poor sensitivity and are not applied until after 14 days of

mechanical ventilation. We developed a model to predict 3-month mortality in patients

requiring more than 7 days of mechanical ventilation using deep learning techniques and

compared this to existing mortality models.

Methods

Retrospective cohort study. Setting: The Medical Information Mart for Intensive Care III

Database. Patients: All adults requiring� 7 days of mechanical ventilation. Measurements:

A neural network model for 3-month mortality was created using process-of-care variables,

including demographic, physiologic and clinical data. The area under the receiver operator

curve (AUROC) was compared to the ProVent model at predicting 3 and 12-month mortality.

Shapley values were used to identify the variables with the greatest contributions to the

model.

Results

There were 4,334 encounters divided into a development cohort (n = 3467) and a testing

cohort (n = 867). The final deep learning model included 250 variables and had an AUROC

of 0.74 for predicting 3-month mortality at day 7 of mechanical ventilation versus 0.59 for the
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ProVent model. Older age and elevated Simplified Acute Physiology Score II (SAPS II)

Score on intensive care unit admission had the largest contribution to predicting mortality.

Discussion

We developed a deep learning prediction model for 3-month mortality among patients

requiring� 7 days of mechanical ventilation using a neural network approach utilizing read-

ily available clinical variables. The model outperforms the ProVent model for predicting mor-

tality among patients requiring� 7 days of mechanical ventilation. This model requires

external validation.

Introduction

Nearly 70% of older adults report that they prioritize quality of life over longevity [1]. Many

would prefer death over prolonged survival dependent on mechanical ventilation (MV) [2–5].

Yet, increasingly older adults with acute respiratory failure are treated with MV [6, 7]. By 2020,

more than half of the estimated 600,000 critically ill patients treated with MV will be older

adults (age� 65 years), and approximately 20% will subsequently undergo tracheostomy [8–

13], making tracheostomy one of the most common elective procedure in the intensive care

unit (ICU) [14]. Outcomes among older adults who receive tracheostomy are poor; by

12-months 60–70% will have died, and fewer than 10% will have achieved functional indepen-

dence [10, 12, 13, 15–18]. Identifying the subset of patients who are likely to benefit from tra-

cheostomy, and those who will not, continues to pose a substantial challenge to clinicians [19].

For patients with acute respiratory failure, MV is initially delivered via an endotracheal

tube which is passed through the oral cavity. If the respiratory function does not improve after

a period of 7–21 days, then the endotracheal tube is often replaced [surgically or percutane-

ously] with a tracheostomy tube [20–24]. Among patients who survive their acute illness and

regain good function, tracheostomy can increase comfort, decrease delirium during MV, and

facilitate faster recovery from MV [20–25]. Paradoxically, among the many patients who ulti-

mately do not survive, tracheostomy may serve only to prolong the dying process [15–17, 26].

The toll falls particularly hard on older adults, many of whom will suffer from high rates of dis-

tressing symptoms associated with chronic critical illness for weeks or months after tracheos-

tomy but prior to death. Others risk becoming trapped in a state of chronic critical illness,

enduring a prolonged but often dismal survival [15–17, 26]. Moreover, healthcare costs and

resource utilization associated with the care of older adults who receive tracheostomy are stag-

gering, and do not meet standard thresholds of acceptability for cost effectiveness [27]. Unfor-

tunately, patient’s surrogate decision-makers frequently receive little information regarding

the probability of long-term survival and good functional outcome, and often have unrealistic

expectations regarding survival [12, 28]. This is due in part clinicians lack of awareness of and

comfort with expected prognosis [29–31].

Existing general ICU mortality prediction models, such as the Acute Physiology and

Chronic Health Evaluation (APACHE) score, were developed to predict in-hospital mortality

and perform poorly in predicting long term survival of patients requiring prolonged mechani-

cal ventilation [32, 33]. Clinical tools such as the ProVent Score can be used to predict 1-year

mortality after 14 or 21 days of MV. Such tools were developed with the intention of informing

prognosis in decision-making conversations around tracheostomy [34–38]. However, multiple

randomized trials have demonstrated that ‘early’ tracheostomy placement (< 10 days after

PLOS ONE Early prediction of long-term mortality in prolonged mechanical ventilation using machine learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0253443 June 29, 2021 2 / 13

Funding: The authors received no specific funding

for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0253443


initiation of MV) results in decreased need for sedatives, fewer days of MV, decreased ICU

stay, and may be associated with decreased long-term mortality as compared to ‘late’ (>10

days) tracheostomy placement [22, 39]. Thus, more than 50% of tracheostomies are now

placed early (<10–14 days) [39], at which time the validity of the ProVent Score is unknown.

Among patients with poor prognosis, enduring 14–21 days of ICU care prior to prognostica-

tion may be unnecessarily burdensome.

To address this gap, we sought to develop a mortality prediction model to enhance decision

making around tracheostomy. Our objective was to develop and validate deep learning model

to predict 3- and 12-month mortality among patients requiring more than 7 days of mechani-

cal ventilation for acute respiratory failure.

Methods

Design, setting, and population

Data were obtained from the Medical Information Mart for Intensive Care III (MIMIC-III)

database. MIMIC-III contains records of 61,051 ICU admissions at Beth Israel Deaconess

Medical Center in Boston, Massachusetts from June 2001, through October, 2012 [40]. Inclu-

sion criteria included patients over the age of 18 years admitted to the neurological, trauma,

surgical, cardiac, or medical ICU and who were treated with MV for� 7 days. Patients were

excluded if they had a primary hospital diagnosis of head and neck cancer requiring surgical

intervention in the neck, burns comprising >30% body area, burns involving the head and

neck, or acute neuromuscular disorders (e.g. Guillain Barre) (S1 Table). The data in MIMI-

C-III has been previously de-identified, and the institutional review boards of the Massachu-

setts Institute of Technology (No. 0403000206) and Beth Israel Deaconess Medical Center

(2001-P-001699/14) both approved the use of the database for research. The Guidelines for

Developing and Reporting Machine Learning Predictive Models in Biomedical Research were

followed throughout this project [41].

Feature selection and data processing

Processes-of-care variables selected for inclusion in the model were reviewed by meidcal clini-

cians (NG, CL, JS) and from existing ICU mortality prediction literature and included all the

variables from the ProVent Model (Fig 1). Demographic variables were carefully selected to

avoid overt reinforcement of health disparities. Thus race, ethnicity, insurance status, zip code

were all excluded from the model.

Fig 1. Variable selection for machine learning neural network prediction model.

https://doi.org/10.1371/journal.pone.0253443.g001
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The extracted data contained both static information, (e.g. age, sex, duration of hospitaliza-

tion prior to ICU admission, reason for admission, site of admission, and International Classi-

fication of Diseases, 9th Revision codes), as well as temporal and dynamic data (e.g. time-

stamped laboratory values, vital signs, medication administrations). Feature engineering was

performed on continuous variables (e.g. maximum value, minimum value, and mean value).

Only variables obtained from the first 7 days of MV were included. Continuous variables were

standardized to a mean of zero and scaled to unit variance. Additionally, five severity of illness

scores were included as predictors: the Oxford Acute Severity of Illness Score (OASIS), the

Simplified Acute Physiology Score (SAPS), the Simplified Acute Physiology Score Version II

(SAPSII), the Acute Physiology Score III (APSIII), and the Logistic Organ Dysfunction System

(LODS) [42–47]. The Elixhauser van Walraven comorbidity score and its 30 component items

were also included [48]. Mortality data was obtained from the Social Security Death Index.

Model building and validation

The dataset was randomly divided into a training (80%) and a testing set (20%). A multi-layer

feedforward neural network was created. Neural networks approximate the best separating

function for labeled input data and can learn any arbitrary, complex functions. They do not

use weight-sharing across layers; information flows in one-direction, from the input layers,

through intermediate hidden layers to the output layer. A sigmoid activation function was

used in the output layer, with which the output range was interpreted as a prediction probabil-

ity of the primary outcome, 3-month mortality (S1 Fig). For better generalization capabilities,

we utilized dropout and L1-L2 regularization in each hidden layer. These techniques prevent

complex co-adaptations on training data, preventing overfitting. For missing or outlier values

of continuous data, normal values were imputed. Individual outliers were reviewed and dis-

carded if deemed erroneous.

Statistical analysis and outcomes

The primary outcome was 3-month mortality. The final model chosen was based on the high-

est calibration determined by area under the receiver operator curve (AUROC) in the testing

set. The secondary outcome was 12-month mortality. Sensitivity, specificity, AUROC, accu-

racy and F1 score are also reported. Shapley values, which reveal the marginal contribution of

the individual variables across permutations, were reported to facilitate understanding of the

model [49]. The neural network models’ predictive ability was compared to the ProVent

model. The ProVent model was developed to predict mortality among patients requiring MV

for 14 days or more, and has been validated in several studies since its publication [34–37, 50].

We calculated the performance of the ProVent score using the component variables as

reported in the original manuscript. In addition, in order to give the logistic regression model

the ‘best chance’ to compete with the deep learning model we also built ‘extended’ logistic

regression models using the ProVent variables as well as each of the other variables available to

the deep learning model using 10 fold cross-validation (extended LR) and least absolute shrink-

age and selection operator (extended LR LASSO) techniques. The AUROC for was calculated

for ProVent logistic regression based on values at 7 days of MV. Statistical analysis and model

building was performed using Python v3.6 [51].

Results

A total of 61,532 unique ICU stays were identified within the MIMIC database. Of those, there

were 4,334 unique ICU stays representing 3,982 unique ICU patients receiving� 7 days of

MV and meeting the inclusion and exclusion criteria. Patient selection is outline in Fig 2.
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Eighty percent (n = 3,467) of this study sample were used as the initial training data set and the

remaining 20% (n = 867) were used to test the prediction models.

Of the 3,982 patients that met inclusion criteria 59.6% were alive at 3 months. Baseline

patient characteristics are summarized in Table 1. The median age was 65.9 years (interquar-

tile range (IQR) 52.7, 76.8). The majority of patients (70.9%) were white, admitted to the ICU

from the emergency room 49.4%. Median ICU length of stay was 15.7 days (IQR of 10.8, 22.5).

The development and testing cohorts did not significantly differ in terms of illness severity or

baseline comorbidities with the exception of baseline chronic obstructive pulmonary disease

and metastatic cancer. Laboratory values, vital signs, and clinical interventions were not signif-

icantly different between development and testing sets (S2 Table).

The final deep learning model included 250 variables. The performance of the neural net-

work and the ProVent Model for prediction of 3- and 12-month mortality at day is shown in

Table 2. The performance of the model for predicting 3-month and 12-month mortality status

is shown in Fig 3. The day 7 neural network model had an AUROC of 0.74 for 3-month mor-

tality and 0.76 for 12-month mortality, versus 0.59 and 0.63 for the ProVent model, respec-

tively. Of note, in our cohort, the ProVent Model performed worse when measured at 7 days

(AUC 0.59) than in previously published studies. The positive and negative predictive value

for the neural network at 3 months was 0.64 and 0.72 respectively, and 0.67 and 0.71 at 12

months. The calibration curve for the testing and training set for both 3-month and 12-month

mortality are shown in S2 Fig, and the area under the precision recall curves are shown in S3

Fig. In addition, comparison of the neural network model with the extended LR and extended

LR LASSO models are available in S3 Table.

Analysis of relative variable importance to the model prediction using shapley values

showed that increased use of renal replacement therapy on day 7 of MV, elevated sodium levels

Fig 2. Flow diagram.

https://doi.org/10.1371/journal.pone.0253443.g002
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Table 1. Patient characteristics.

Training n = 3,467 Testing n = 867 p-value

Sex

Female, n (%) 1494 (43.1) 361 (41.6) 0.462

Age (years)

Median (IQR) 65.8 (52.9, 76.8) 65.9 (52.2, 76.9) 0.694

Race/Ethnicity n (%)

Asian 77 (2.2) 14 (1.6) 0.661

Non-Hispanic Black 277 (8.0) 73 (8.4)

Hispanic 91 (2.6) 19 (2.2)

Unknown/Others 562 (16.2) 150 (17.3)

Non-Hispanic White 2460 (71.0) 611 (70.5)

Source Location of ICU Admission, n (%)

Emergency Department 428 (49.4) 1724 (49.7) 0.397

Office Referral 218 (25.1) 928 (26.8)

Transfer from Hospital or SNF 221 (25.5) 815 (23.5)

First Care Unit, n (%)

Coronary Care Unit 355 (10.2) 94 (10.8) 0.374

Cardiac Surgery Recovery Unit 436 (12.6) 108 (12.5)

Medical Intensive Care Unit 1382 (39.9) 372 (42.9)

Surgical Intensive Care Unit 706 (20.4) 162 (18.7)

Trauma/Surgical Intensive Care Unit 588 (17.0) 131 (15.1)

Illness Severity on ICU Admission (median, IQR)

SOFA Score 6.0 (4.0, 9.0) 6.0 (4.0, 9.0) 0.43

LODS 6.0 (4.0, 8.0) 6.0 (3.0, 8.0) 0.736

OASIS 38.0 (32.0, 44.0) 38.0 (33.0, 44.0) 0.286

SAPS II 42.0 (33.0, 52.5) 43.0 (34,0, 54.0) 0.227

Elixhauser Comorbidities, n (%)

Elixhauser Score, (median, IQR) 4.0 (2.0, 5.0) 4.0 (2.0, 5.0) 0.41

Congestive Heart Failure 1227 (35.4) 325 (37.5) 0.267

Chronic Pulmonary Disease 881 (25.4) 239 (27.6) 0.21

Liver disease 562 (16.2) 142 (16.4) 0.945

Renal Failure 520 (15.0) 117 (13.5) 0.287

Metastatic Cancer 131 (3.8) 33 (3.8) 1.000

Mortality, n%

Time to death, days (median, IQR) 55.1 (18.2, 314.0) 52.2 (18.2, 209.9) 0.309

3-month Mortality 1390 (40.1) 360 (41.5) 0.466

12-month Mortality 1714 (49.4) 428 (49.4) 1.000

Length of Stay (LOS), median (IQR)

Hospital LOS 22.57 (15.7, 32.3) 22.32 (15.7, 31.6) 0.713

ICU Length of Stay 15.69 (11.6, 23.1) 15.78 (11.5, 23.8) 0.863

Hospital Disposition, n (%)

Died 979 (28.2) 250 (28.8) 0.651

Home / Home health care 396 (11.4) 111 (12.8)

Hospice 26 (0.7) 9 (1.0)

Long Term Acute Care 468 (13.5) 106 (12.2)

Short Term Hospital/other 40 (1.2) 12 (1.4)

Subacute Nursing Facility (SNF) 1558 (44.9) 379 (43.7)

https://doi.org/10.1371/journal.pone.0253443.t001
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on day 1 of MV, increased age, and increased heart rate on day 7 of MV had the largest impact

on the model’s prediction of 3-month. Similarly, increased age, increased heart rate on day 7

of MV, use of renal replacement therapy on day 7 of MV, and low diastolic blood pressure on

day 7 had the greatest impact on the model’s prediction of 12-month mortality (Fig 4).

Discussion

We demonstrate that a feedforward neural network model, based on clinical variables readily

available during routine processes-of-care in the ICU, can accurately predict 3- and 12-month

mortality among ICU patients requiring mechanical ventilation for� 7 days. Our model had

superior performance at 7 days compared to one of the most commonly used mortality predic-

tion models for mechanically ventilated patients, the ProVent Score, and can be applied earlier

in a patients’ ICU course.

Predicting which ICU patients are at high risk for a poor outcome is essential in order to

make more informed decisions regarding medical interventions at the end of life, and mini-

mize suffering for patients who are on a dying trajectory [15, 52, 53]. However, mortality risk

prediction models among ICU patients are infrequently used to inform clinical decisions [12,

28–31]. This is attributable to several factors. First, the most common ICU mortality predic-

tion models, such as the APACHE, SAPS, LODS, and MPM scores, are derived from data

Table 2. Deep model performance versus ProVent.

Model Three-Month Mortality 12-Month Mortality

Deep Learning at 7 Days

Area under ROC 0.74 0.76

Sensitivity 0.58 0.72

Specificity 0.76 0.65

Accuracy 0.69 0.69

F1 Score 0.61 0.69

ProVent at 7 Days

Area under ROC 0.59 0.63

Sensitivity 0.41 0.73

Specificity 0.78 0.53

Accuracy 0.63 0.63

F1 Score 0.47 0.66

https://doi.org/10.1371/journal.pone.0253443.t002

Fig 3. Predicting 3- and 12-month mortality at day 7 of mechanical ventilation.

https://doi.org/10.1371/journal.pone.0253443.g003
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obtained in the first 24 hours of the ICU stay. Yet, many patients and families prefer to attempt

a trial of therapy (typically several days in duration), prior to goals of care decision-making,

after which predictions gleaned during the first 24 hours may no longer accurately reflect the

prognosis. Second, most mortality prediction models, including the SOFA score and APACHE

score, are calibrated to predict in-hospital mortality [32, 33, 43]. However, post-discharge

prognosis can also contribute to more meaningful discussions with patients.

Among patients surviving� 7 days of mechanical ventilation, one of the most critical deci-

sions clinicians, patients, and families will face is whether or not to undergo tracheostomy.

Among patients on mechanical ventilation with a good long-term prognosis, transition to tra-

cheostomy can improve comfort, facilitate early mobility, and enhance recovery [54]. How-

ever, for older adult ICU survivors, those requiring ongoing treatment with mechanical

ventilation often face a dismal quality of life, dying within a year of tracheostomy placement

[55].

For most ICU patients requiring MV the decision of whether to undergo tracheostomy falls

to a surrogate decision maker(s), who in turn relies on the ICU clinicians to share information

about prognosis and guide expectations. Surrogate decision-makers often seek prognostic dis-

closures from clinicians [30]. However, studies have shown significant problems with commu-

nication of ICU prognosis; information may be subject to bias and is often poorly

communicated by clinicians, misunderstood by families, or never disclosed at all [12, 28]. Cli-

nicians themselves have only modestly accurate prognostic ability in terms of mortality–often

overestimating the probability of a survival [31, 56]. If surrogate decision-makers of patients

with poor prognosis were made aware of risk for poor outcome, it is likely many would not

choose tracheostomy and ongoing MV [2, 57].

It is imperative that clinicians have prognostic information about the probability of survival

after tracheostomy prior to placement of tracheostomy in order to facilitate decision-making.

Among long-term survivors, delay in tracheostomy decision past 10 days may threaten the

patient’s ability to maximally benefit from tracheostomy, and increases the duration of bur-

densome symptoms associated with endotracheal tubes. Among decedents, the delay in trache-

ostomy decision may mean a missed opportunity for earlier transition to hospice care or

Fig 4. SHAP values for 3 and 12-month mortality. �value on ICU day 1 of ICU; + value on day 1 mechanical

ventilation; ~ value on day 7 of mechanical ventilation; RRT: Renal Replacement Therapy; min: minimum value; max:

maximum value; BP: blood pressure; RR: respiratory rate.

https://doi.org/10.1371/journal.pone.0253443.g004
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natural death with less suffering than results from continued ICU care with mechanical

ventilation.

Severity scores like ProVent are based on logistic regression models that assume linear and

additive relationship of predictors and outcomes. However, these assumptions may not be

valid in the context of critical illness with very complex underlying processes and complicated

interactions between patient factors, disease features and treatments administered. Indeed, in

our study the ProVent score performed poorly as compared to the machine learning model.

This is likely due in part to the fact that the ProVent model was not developed for application

at day 7, and also due to the strengths of machine learning. Machine learning methods can

offer a more flexible statistical approach and have been shown to outperform conventional

logistic regression statistical models for several medical conditions [58, 59]. Interestingly, in

our study the LASSO model, which is a hybrid between regression and machine learning tech-

niques, significantly outperformed the ProVent model giving results similar to the neural

network.

In terms of accuracy, our model compares similarly to other machine learning mortality

prediction models developed for critically ill patients. Dybowski et. al. used a cohort of 258

ICU patients to create an artificial neural network enhanced by generic algorithms achieving

an AUC 0.86, however their study was limited to a small subset of patients who either had a

systemic inflammatory response syndrome or hemodynamic shock [60]. Pirracchio et al devel-

oped a “Super Learner” model using ensemble machine learning technique with multiple

learning algorithms to predict in-hospital mortality [58]. Kim et. al compared decision trees,

artificial neural networks, and support vector machine models predicting mortality in pediat-

ric ICU patients, achieving an AUC 0.87–0.89, outperforming traditionally used regression

models [61].

To the best of our knowledge our model is the first to predict long-term mortality among

mechanically ventilated patients� 7 days of MV. Our approach is strengthened in the use

multiple time points within a patient’s clinical trajectory (baseline variables collected at ICU

admission, then day 1 of MV, and day 7 MV) which allows for flexibility and time-sequence

analysis in the event of patient status changes during their clinical course.

There are limitations to this study, and the results should only be interpreted in the context

of its study design. All database analyses are susceptible to coding misclassification and bias from

error. Further, the data comes from a single institution, whose organization and clinical practice

patterns may differ from other institutions, limiting the generalizability of our model. In addition,

the data in MIMIC only extends to 2012. Our data was compared to the ProVent prediction

model which was optimized for day 14 and 21 of mechanical ventilation. Because we believe day 7

on mechanical ventilation to be more clinically relevant, this comparison may be limited. None-

theless this study represents an important methodology to build a clinical tool that can provide

more detailed insight into the prognosis of patients who may require tracheostomy.

Conclusion

Here we demonstrate the ability of using a neural network to predict 3- month mortality in

patients on mechanical ventilation for more than 7 days. Deep learning prediction models are

becoming increasingly important in our data-driven clinical decision-making, especially in the

absence of randomized controlled trials. Further optimization of these by external validation,

prospective validation using external cohorts, and subgroup analysis within specific popula-

tions is integral prior to widespread implementation. Ultimately, integration of deep learning

prediction models like ours into electronic health records will provide valuable information to

enable providers and patients to more informed decisions.
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