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Abstract

The impact of missing data on quantitative research can be serious, leading to biased estimates of parameters,
loss of information, decreased statistical power, increased standard errors, and weakened generalizability of findings.
In this paper, we discussed and demonstrated three principled missing data methods: multiple imputation, full
information maximum likelihood, and expectation-maximization algorithm, applied to a real-world data set. Results
were contrasted with those obtained from the complete data set and from the listwise deletion method. The
relative merits of each method are noted, along with common features they share. The paper concludes with an
emphasis on the importance of statistical assumptions, and recommendations for researchers. Quality of research
will be enhanced if (a) researchers explicitly acknowledge missing data problems and the conditions under which
they occurred, (b) principled methods are employed to handle missing data, and (c) the appropriate treatment of
missing data is incorporated into review standards of manuscripts submitted for publication.
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Principled missing data methods for researchers
Missing data are a rule rather than an exception in
quantitative research. Enders (2003) stated that a mis-
sing rate of 15% to 20% was common in educational and
psychological studies. Peng et al. (2006) surveyed quanti-
tative studies published from 1998 to 2004 in 11 educa-
tion and psychology journals. They found that 36% of
studies had no missing data, 48% had missing data, and
about 16% cannot be determined. Among studies that
showed evidence of missing data, 97% used the listwise
deletion (LD) or the pairwise deletion (PD) method to
deal with missing data. These two methods are ad hoc
and notorious for biased and/or inefficient estimates in
most situations (Rubin 1987; Schafer 1997). The APA
Task Force on Statistical Inference explicitly warned
against their use (Wilkinson and the Task Force on
Statistical Inference 1999 p. 598). Newer and principled
methods, such as the multiple-imputation (MI) method,
the full information maximum likelihood (FIML) me-
thod, and the expectation-maximization (EM) method,
take into consideration the conditions under which
missing data occurred and provide better estimates for
parameters than either LD or PD. Principled missing
data methods do not replace a missing value directly;
they combine available information from the observed

data with statistical assumptions in order to estimate the
population parameters and/or the missing data mechan-
ism statistically.
A review of the quantitative studies published in Jour-

nal of Educational Psychology (JEP) between 2009 and
2010 revealed that, out of 68 articles that met our cri-
teria for quantitative research, 46 (or 67.6%) articles ex-
plicitly acknowledged missing data, or were suspected to
have some due to discrepancies between sample sizes
and degrees of freedom. Eleven (or 16.2%) did not have
missing data and the remaining 11 did not provide suffi-
cient information to help us determine if missing data
occurred. Of the 46 articles with missing data, 17 (or
37%) did not apply any method to deal with the missing
data, 13 (or 28.3%) used LD or PD, 12 (or 26.1%) used
FIML, four (or 8.7%) used EM, three (or 6.5%) used MI,
and one (or 2.2%) used both the EM and the LD me-
thods. Of the 29 articles that dealt with missing data,
only two explained their rationale for using FIML and
LD, respectively. One article misinterpreted FIML as an
imputation method. Another was suspected to have used
either LD or an imputation method to deal with attrition
in a PISA data set (OECD 2009; Williams and Williams
2010).
Compared with missing data treatments by articles

published in JEP between 1998 and 2004 (Table 3.1 in
Peng et al. 2006), there has been improvement in the* Correspondence: peng@indiana.edu
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decreased use of LD (from 80.7% down to 21.7%) and
PD (from 17.3% down to 6.5%), and an increased use of
FIML (from 0% up to 26.1%), EM (from 1.0% up to
8.7%), or MI (from 0% up to 6.5%). Yet several research
practices still prevailed from a decade ago, namely, not
explicitly acknowledging the presence of missing data,
not describing the particular approach used in dealing
with missing data, and not testing assumptions associ-
ated with missing data methods. These findings suggest
that researchers in educational psychology have not fully
embraced principled missing data methods in research.
Although treating missing data is usually not the focus

of a substantive study, failing to do so properly causes
serious problems. First, missing data can introduce po-
tential bias in parameter estimation and weaken the ge-
neralizability of the results (Rubin 1987; Schafer 1997).
Second, ignoring cases with missing data leads to the
loss of information which in turn decreases statistical
power and increases standard errors(Peng et al. 2006).
Finally, most statistical procedures are designed for
complete data (Schafer and Graham 2002). Before a data
set with missing values can be analyzed by these statis-
tical procedures, it needs to be edited in some way into
a “complete” data set. Failing to edit the data properly
can make the data unsuitable for a statistical procedure
and the statistical analyses vulnerable to violations of
assumptions.
Because of the prevalence of the missing data problem

and the threats it poses to statistical inferences, this
paper is interested in promoting three principled me-
thods, namely, MI, FIML, and EM, by illustrating these
methods with an empirical data set and discussing issues
surrounding their applications. Each method is demon-
strated using SAS 9.3. Results are contrasted with those
obtained from the complete data set and the LD me-
thod. The relative merits of each method are noted,
along with common features they share. The paper con-
cludes with an emphasis on assumptions associated with
these principled methods and recommendations for re-
searchers. The remainder of this paper is divided into
the following sections: (1) Terminology, (2) Multiple Im-
putation (MI), (3) Full Information Maximum-Likelihood
(FIML), (4) Expectation-Maximization (EM) Algorithm,
(5) Demonstration, (6) Results, and (6) Discussion.

Terminology
Missing data occur at two levels: at the unit level or at
the item level. A unit-level non-response occurs when
no information is collected from a respondent. For
example, a respondent may refuse to take a survey, or
does not show up for the survey. While the unit non-
response is an important and common problem to
tackle, it is not the focus of this paper. This paper fo-
cuses on the problem of item non-response. An item

non-response refers to the incomplete information col-
lected from a respondent. For example, a respondent
may miss one or two questions on a survey, but an-
swered the rest. The missing data problem at the item
level needs to be tackled from three aspects: the propor-
tion of missing data, the missing data mechanisms, and
patterns of missing data. A researcher must address all
three before choosing an appropriate procedure to deal
with missing data. Each is discussed below.

Proportion of missing data
The proportion of missing data is directly related to the
quality of statistical inferences. Yet, there is no estab-
lished cutoff from the literature regarding an acceptable
percentage of missing data in a data set for valid sta-
tistical inferences. For example, Schafer (1999) asserted
that a missing rate of 5% or less is inconsequential.
Bennett (2001) maintained that statistical analysis is
likely to be biased when more than 10% of data are
missing. Furthermore, the amount of missing data is not
the sole criterion by which a researcher assesses the
missing data problem. Tabachnick and Fidell (2012) pos-
ited that the missing data mechanisms and the missing
data patterns have greater impact on research results
than does the proportion of missing data.

Missing data mechanisms
According to Rubin (1976), there are three mechanisms
under which missing data can occur: missing at random
(MAR), missing completely at random (MCAR), and
missing not at random (MNAR). To understand missing
data mechanisms, we partition the data matrix Y into
two parts: the observed part (Yobs) and the missing part
(Ymis). Hence, Y = (Yobs,Ymis). Rubin (1976) defined MAR
to be a condition in which the probability that data are
missing depends only on the observed Yobs, but not on
the missing Ymis, after controlling for Yobs. For example,
suppose a researcher measures college students’ under-
standing of calculus in the beginning (pre-test) and at
the end (post-test) of a calculus course. Let’s suppose
that students who scored low on the pre-test are more
likely to drop out of the course, hence, their scores on
the post-test are missing. If we assume that the probabil-
ity of missing the post-test depends only on scores on
the pre-test, then the missing mechanism on the post-
test is MAR. In other words, for students who have the
same pre-test score, the probability of their missing the
post-test is random. To state the definition of MAR
formally, let R be a matrix of missingness with the same
dimension as Y. The element of R is either 1 or 0, corre-
sponding to Y being observed (coded as 1) or missing
(coded as 0). If the distribution of R, written as P(R|Y, ξ),
where ξ = missingness parameter, can be modeled as
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Equation 1, then the missing condition is said to be MAR
(Schafer 1997 p. 11):

P R Y ; ξj Þ ¼ P R Yobs;Ymis; ξj Þ ¼ R Yobs; ξj Þððð ð1Þ
In other words, the probability of missingness depends

on only the observed data and ξ. Furthermore, if (a) the
missing data mechanism is MAR and (b) the parameter
of the data model (θ) and the missingness parameter ξ
are independent, the missing data mechanism is said to
be ignorable (Little and Rubin 2002). Since condition (b)
is almost always true in real world settings, ignorability
and MAR (together with MCAR) are sometimes viewed
as equivalent (Allison 2001).
Although many modern missing data methods (e.g.,

MI, FIML, EM) assume MAR, violation of this as-
sumption should be expected in most cases (Schafer and
Graham 2002). Fortunately, research has shown that
violation of the MAR assumption does not seriously dis-
tort parameter estimates (Collins et al. 2001). Moreover,
MAR is quite plausible when data are missing by design.
Examples of missing by design include the use of mul-
tiple booklets in large scale assessment, longitudinal
studies that measure a subsample at each time point,
and latent variable analysis in which the latent variable is
missing with a probability of 1, therefore, the missing
probability is independent of all other variables.
MCAR is a special case of MAR. It is a missing data

condition in which the likelihood of missingness de-
pends neither on the observed data Yobs, nor on the
missing data Ymis. Under this condition, the distribution
of R is modeled as follows:

P R Y ; ξj Þ ¼ P R Yobs;Ymis; ξj Þ ¼ R ξj Þððð ð2Þ
If missing data meet the MCAR assumption, they can

be viewed as a random sample of the complete data.
Consequently, ignoring missing data under MCAR will
not introduce bias, but will increase the SE of the sample
estimates due to the reduced sample size. Thus, MCAR
poses less threat to statistical inferences than MAR or
MNAR.
The third missing data mechanism is MNAR. It occurs

when the probability of missing depends on the missing
value itself. For example, missing data on the income
variable is likely to be MNAR, if high income earners
are more inclined to withhold this information than
average- or low-income earners. In case of MNAR, the
missing mechanism must be specified by the researcher,
and incorporated into data analysis in order to produce
unbiased parameter estimates. This is a formidable task
not required by MAR or MCAR.
The three missing data methods discussed in this pa-

per are applicable under either the MCAR or the MAR
condition, but not under MNAR. It is worth noting that

including variables in the statistical inferential process
that could explain missingness makes the MAR con-
dition more plausible. Return to the college students’
achievement in a calculus course for example. If the re-
searcher did not collect students’ achievement data on
the pre-test, the missingness on the post-test is not
MAR, because the missingness depends on the unob-
served score on the post-test alone. Thus, the literature
on missing data methods often suggests including add-
itional variables into a statistical model in order to make
the missing data mechanism ignorable (Collins et al.
2001; Graham 2003; Rubin 1996).
The tenability of MCAR can be examined using Little’s

multivariate test (Little and Schenker 1995). However, it
is impossible to test whether the MAR condition holds,
given only the observed data (Carpenter and Goldstein
2004; Horton and Kleinman 2007; White et al. 2011).
One can instead examine the plausibility of MAR by a
simple t-test of mean differences between the group with
complete data and that with missing data (Diggle et al.
1995; Tabachnick and Fidell 2012). Both approaches are
illustrated with a data set at ftp://public.dhe.ibm.com/
software/analytics/spss/documentation/statistics/20.0/
en/client/Manuals/IBM_SPSS_Missing_Values.pdf. Yet,
Schafer and Graham (2002) criticized the practice of
dummy coding missing values, because such a practice
redefines the parameters of the population. Readers
should therefore be cautioned that the results of these
tests should not be interpreted as providing definitive
evidence of either MCAR or MAR.

Patterns of missing data
There are three patterns of missing data: univariate,
monotone, and arbitrary; each is discussed below. Sup-
pose there are p variables, denoted as, Y2,Y2,…,Yp. A
data set is said to have a univariate pattern of missing if
the same participants have missing data on one or more
of the p variables. A dataset is said to have a monotone
missing data pattern if the variables can be arranged in
such a way that, when Yj is missing, Yj + 1,Yj + 2,…,Yp are
missing as well. The monotone missing data pattern oc-
curs frequently in longitudinal studies where, if a partici-
pant drops out at one point, his/her data are missing on
subsequent measures. For the treatment of missing data,
the monotone missing data pattern subsumes the uni-
variate missing data pattern. If missing data occur in any
variable for any participant in a random fashion, the data
set is said to have an arbitrary missing data pattern.
Computationally, the univariate or the monotone missing
data pattern is easier to handle than an arbitrary pattern.

Multiple Imputation (MI)
MI is a principled missing data method that provides
valid statistical inferences under the MAR condition
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(Little and Rubin 2002). MI was proposed to impute
missing data while acknowledging the uncertainty asso-
ciated with the imputed values (Little and Rubin 2002).
Specifically, MI acknowledges the uncertainty by ge-
nerating a set of m plausible values for each unobserved
data point, resulting in m complete data sets, each
with one unique estimate of the missing values. The m
complete data sets are then analyzed individually using
standard statistical procedures, resulting in m slightly
different estimates for each parameter. At the final stage
of MI, m estimates are pooled together to yield a single
estimate of the parameter and its corresponding SE. The
pooled SE of the parameter estimate incorporates the
uncertainty due to the missing data treatment (the be-
tween imputation uncertainty) into the uncertainty in-
herent in any estimation method (the within imputation
uncertainty). Consequently, the pooled SE is larger than
the SE derived from a single imputation method (e.g.,
mean substitution) that does not consider the between
imputation uncertainty. Thus, MI minimizes the bias in
the SE of a parameter estimate derived from a single im-
putation method.
In sum, MI handles missing data in three steps: (1) im-

putes missing data m times to produce m complete data
sets; (2) analyzes each data set using a standard statistical
procedure; and (3) combines the m results into one using
formulae from Rubin (1987) or Schafer (1997). Below we
discuss each step in greater details and demonstrate MI
with a real data set in the section Demonstration.

Step 1: imputation
The imputation step in MI is the most complicated step
among the three steps. The aim of the imputation step is
to fill in missing values multiple times using the informa-
tion contained in the observed data. Many imputation
methods are available to serve this purpose. The preferred
method is the one that matches the missing data pattern.
Given a univariate or monotone missing data pattern, one
can impute missing values using the regression method
(Rubin 1987), or the predictive mean matching method if
the missing variable is continuous (Heitjan and Little
1991; Schenker and Taylor 1996). When data are missing
arbitrarily, one can use the Markov Chain Monte Carlo
(MCMC) method (Schafer 1997), or the fully conditio-
nal specification (also referred to as chained equations)
if the missing variable is categorical or non-normal
(Raghunathan et al. 2001; van Buuren 2007; van Buuren
et al. 1999; van Buuren et al. 2006). The regression me-
thod and the MCMC method are described next.

The regression method for univariate or monotone missing
data pattern
Suppose that there are p variables, Y1,Y2,…,Yp in a data
set and missing data are uniformly or monotonically

present from Yj to Yp, where 1 < j ≤ p. To impute the
missing values for the jth variable, one first constructs a
regression model using observed data on Y1 through Yj − 1

to predict the missing values on Yj:

Y j ¼ β0 þ β1Y 1 þ ⋯ þ βj−1Y j−1 ð3Þ

The regression model in Equation 3 yields the esti-

mated regression coefficients β̂
� �

and the corresponding

covariance matrix. Based on these results, one can im-

pute one set of regression coefficients β̂� from the sam-

pling distributions of β̂ . Next, the missing values in Yj
can be imputed by plugging β̂� into Equation 3 and
adding a random error. After missing data in Yj are im-
puted, missing data in Yj + 1,…,Yp are imputed subse-
quently in the same fashion, resulting in one complete
data set. The above steps are repeated m times to derive
m sets of missing values (Rubin 1987 pp. 166–167; SAS
Institute Inc 2011).

The MCMC method for arbitrary missing pattern
When the missing data pattern is arbitrary, it is difficult
to develop analytical formulae for the missing data. One
has to turn to numerical simulation methods, such as
MCMC (Schafer 1997) in this case. The MCMC tech-
nique used by the MI procedure of SAS is described
below [interested readers should refer to SAS/STAT 9.3
User’s Guide (SAS Institute Inc 2011) for a detailed
explanation].
Recall that the goal of the imputation step is to draw

random samples of missing data based on information
contained in the observed data. Since the parameter (θ)
of the data is also unknown, the imputation step actually
draws random samples of both missing data and θ based
on the observed data. Formally, the imputation step is to
draw random samples from the distribution P(θ,Ymis|
Yobs). Because it is much easier to draw estimates of Ymis

from P(Ymis|Yobs, θ) and estimates of θ from P(θ|Yobs,
Ymis) separately, the MCMC method draws samples in
two steps. At step one, given the current estimate of θ(t)

at the tth iteration, a random sample Y tþ1ð Þ
mis is drawn

from the conditional predictive distribution of P(Ymis|

Yobs, θ
(t)). At step two, given Y tþ1ð Þ

mis , a random sample of

θ(t + 1) is drawn from the distribution of P
�
θ Yobs;Y

tþ1ð Þ
mis Þ

��� .

According to Tanner and Wong (1987), the first step is
called the I-step (not to be confused with the first imput-
ation step in MI) and the second step is called the P-step
(or the posterior step). Starting with an initial value θ(0)

(usually an arbitrary guess), MCMC iterates between the
I-step and the P-step, leading to a Markov Chain:

Y 1ð Þ
mis; θ 1ð Þ

� �
; Y 2ð Þ

mis; θ 2ð Þ
� �

;…; Y tð Þ
mis; θ tð Þ

� �
; and so on.
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It can be shown that this Markov Chain converges in dis-
tribution to P(θ,Ymis|Yobs). It follows that the sequence
θ(1), θ(2),…, θ(t),… converges to P(θ|Yobs) and the sequence

Y 1ð Þ
mis; Y 2ð Þ

mis;…;Y tð Þ
mis;… converges to P(Ymis|Yobs). Thus,

after the Markov Chain converges, m draws of Ymis can
form m imputations for the missing data. In practice, the
m draws are separated by several iterations to avoid corre-
lations between successive draws. Computation formulae
of P(Ymis|Yobs, θ) and P(θ|Yobs,Ymis) based on the multi-
variate normal distribution can be found in SAS/STAT 9.3
User’s Guide (SAS Institute Inc 2011). At the end of the
first step in MI, m sets of complete data are generated.

Step 2: statistical analysis
The second step of MI analyzes the m sets of data se-
parately using a statistical procedure of a researcher’s
choice. At the end of the second step, m sets of param-
eter estimates are obtained from separate analyses of m
data sets.

Step 3: combining results
The third step of MI combines the m estimates into one.
Rubin (1987) provided formulae for combining m point
estimates and SEs for a single parameter estimate and its

SE. Suppose Q̂i denotes the estimate of a parameter Q,
(e.g., a regression coefficient) from the ith data set. Its
corresponding estimated variance is denoted as Û l. Then
the pooled point estimate of Q is given by:

�Q ¼ 1
m

∑
m

i¼1
Q̂i: ð4Þ

The variance of �Q is the weighted sum of two varian-
ces: the within imputation variance ( �U ) and the between
imputation variance (B). Specifically, these three var-
iances are computed as follows:

�U ¼ 1
m

∑
m

i¼1
Û i; ð5Þ

B ¼ 1
m−1

∑
m

i¼1
Q̂i−�Q
� �2

; ð6Þ

T ¼ �U þ 1 þ 1
m

� �
B ¼ the variance of �Q ð7Þ

In Equation 7, the ( 1m) factor is an adjustment for the
randomness associated with a finite number of imputa-
tions. Theoretically, estimates derived from MI with
small m yield larger sampling variances than ML esti-
mates (e.g., those derived from FIML), because the latter
do not involve randomness caused by simulation.

The statistic Q−�Qð Þ= ffiffiffiffi
T

p
is approximately distributed

as a t distribution. The degrees of freedom (νm or ν�
m )

for this t distribution are calculated by Equations 8–10
(Barnard and Rubin 1999):

r ¼ 1 þ 1
m

� �
B

�U
: ð8Þ

νm ¼ m−1ð Þ 1 þ 1
r


 �2
ð9Þ

ν�
m ¼ 1

νm
þ 1

1−gammað Þν0 ν0þ1ð Þ
ν0þ3

" #−1
ð10Þ

In Equation 8, r is the relative increase in variance
due to missing data. The r is defined as the adjusted
between-imputation variance standardized by the within-
imputation variance. In Equation 10, gamma = (1 + 1/m)
B/T, and ν0 is the degrees of freedom if the data are
complete. ν�

m is a correction of νm, when ν0 is small and
the missing rate is moderate (SAS Institute Inc 2011).
According to Rubin (1987), the severity of missing data

is measured by the fraction of missing information (λ̂), de-
fined as:

λ̂ ¼ 1 þ 1
m

� �
B þ 2

νmþ3

T
: ð11Þ

As the number of imputations increases to infinity, λ̂
is reduced to the ratio of the between-imputation var-

iance over the total variance. In its limiting form, λ̂ can
be interpreted as the proportion of total variance (or
total uncertainty) that is attributable to the missing data
(Schafer 1999).
For multivariate parameter estimation, Rubin (1987)

provided a method to combine several estimates into a
vector or matrix. The pooling procedure is a multivariate
version of Equations (4) through (7), which incorporates
the estimates of covariances among parameters. Rubin’s
method assumes that the fraction of missing information

(i.e., λ̂ ) is the same for all variables (SAS Institute Inc
2011). To our knowledge, no published studies have ex-
amined whether this assumption is realistic with real
data sets, or Rubin’s method is robust to violation of this
assumption.

MI related issues
When implementing MI, the researcher needs to be
aware of several practical issues, such as, the multivar-
iate normality assumption, the imputation model, the
number of imputations, and the convergence of MCMC.
Each is discussed below.
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The multivariate normality assumption
The regression and MCMC methods implemented in
statistical packages (e.g., SAS) assume multivariate nor-
mality for variables. It has been shown that MI based on
the multivariate normal model can provide valid esti-
mates even when this assumption is violated (Demirtas
et al. 2008; Schafer 1997, 1999). Furthermore, this as-
sumption is robust when the sample size is large and
when the missing rate is low, although the definition for
a large sample size or for a low rate of missing is not
specified in the literature (Schafer 1997).
When an imputation model contains categorical vari-

ables, one cannot use the regression method or MCMC
directly. Techniques such as, logistic regression and
discriminant function analysis, can substitute for the
regression method, if the missing data pattern is mono-
tonic or univariate. If the missing data pattern is arbi-
trary, MCMC based on other probability models (such
as the joint distribution of normal and binary) can be
used for imputation. The free MI software NORM devel-
oped by Schafer (1997) has two add-on modules—CAT
and MIX—that deal with categorical data. Specifically,
CAT imputes missing data for categorical variables, and
MIX imputes missing data for a combination of categor-
ical and continuous variables. Other software packages
are also available for imputing missing values in categor-
ical variables, such as the ICE module in Stata (Royston
2004, 2005, 2007; Royston and White 2011), the mice
package in R and S-Plus (van Buuren and Groothuis-
Oudshoorn 2011), and the IVEware (Raghunathan et al.
2001). Interested readers are referred to a special volume
of the Journal of Statistical Software (Yucel 2011) for re-
cent developments in MI software.
When researchers use statistical packages that impose

a multivariate normal distribution assumption on cate-
gorical variables, a common practice is to impute miss-
ing values based on the multivariate normal model, then
round the imputed value to the nearest integer or to the
nearest plausible value. However, studies have shown
that this naïve way of rounding would not provide desir-
able results for binary missing values (Ake 2005; Allison
2005; Enders 2010). For example, Horton et al. (2003)
showed analytically that rounding the imputed values
led to biased estimates, whereas imputed values without
rounding led to unbiased results. Bernaards et al. (2007)
compared three approaches to rounding in binary miss-
ing values: (1) rounding the imputed value to the nearest
plausible value, (2) randomly drawing from a Bernoulli
trial using the imputed value, between 0 and 1, as the
probability in the Bernoulli trial, and (3) using an adap-
tive rounding rule based on the normal approximation
to the binomial distribution. Their results showed that
the second method was the worst in estimating odds ra-
tio, and the third method provided the best results. One

merit of their study is that it is based on a real-world
data set. However, other factors may influence the per-
formance of the rounding strategies, such as the missing
mechanism, the size of the model, distributions of the
categorical variables. These factors are not within a
researcher’s control. Additional research is needed to
identify one or more good strategy in dealing with cat-
egorical variables in MI, when a multivariate normal-
based software is used to perform MI.
Unfortunately, even less is known about the effect of

rounding in MI, when imputing ordinal variables with
three or more levels. It is possible that as the level of the
categorical variable increases, the effect of rounding de-
creases. Again, studies are needed to further explore this
issue.

The imputation model
MI requires two models: the imputation model used in
step 1 and the analysis model used in step 2. Theoreti-
cally, MI assumes that the two models are the same. In
practice, they can be different (Schafer 1997). An appro-
priate imputation model is the key to the effectiveness of
MI; it should have the following two properties.
First, an imputation model should include useful

variables. Rubin (1996) recommends a liberal approach
when deciding if a variable should be included in the im-
putation model. Schafer (1997) and van Buuren et al.
(1999) recommended three kinds of variables to be in-
cluded in an imputation model: (1) variables that are of
theoretical interest, (2) variables that are associated with
the missing mechanism, and (3) variables that are corre-
lated with the variables with missing data. The latter two
kinds of variables are sometimes referred to as auxiliary
variables (Collins et al. 2001). The first kind of variables
is necessary, because omitting them will downward bias
the relation between these variables and other variables
in the imputation model. The second kind of variables
makes the MAR assumption more plausible, because
they account for the missing mechanism. The third kind
of variables helps to estimate missing values more pre-
cisely. Thus, each kind of variables has a unique contri-
bution to the MI procedure. However, including too
many variables in an imputation model may inflate the
variance of estimates, or lead to non-convergence. Thus,
researchers should carefully select variables to be in-
cluded into an imputation model. van Buuren et al.
(1999) recommended not including auxiliary variables
that have too many missing data. Enders (2010) sugges-
ted selecting auxiliary variables that have absolute corre-
lations greater than .4 with variables with missing data.
Second, an imputation model should be general

enough to capture the assumed structure of the data. If
an imputation model is more restrictive, namely, making
additional restrictions than an analysis model, one of
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two consequences may follow. One consequence is that
the results are valid but the conclusions may be conser-
vative (i.e., failing to reject the false null hypothesis), if
the additional restrictions are true (Schafer 1999). An-
other consequence is that the results are invalid because
one or more of the restrictions is false (Schafer 1999).
For example, a restriction may restrict the relationship
between a variable and other variables in the imputation
model to be merely pairwise. Therefore, any interaction
effect that involves at least three variables will be biased
toward zero. To handle interactions properly in MI,
Enders (2010) suggested that the imputation model in-
clude the product of the two variables if both are con-
tinuous. For categorical variables, Enders suggested
performing MI separately for each subgroup defined by
the combination of the levels of the categorical variables.

Number of imputations
The number of imputations needed in MI is a function
of the rate of missing information in a data set. A data
set with a large amount of missing information requires
more imputations. Rubin (1987) provided a formula to
compute the relative efficiency of imputing m times, in-

stead of an infinite number of times: RE = [1+ λ̂ /m]-1,

where λ̂ is the fraction of missing information, defined
in Equation 11.
However, methodologists have not agreed on the opti-

mal number of imputations. Schafer and Olsen (1998)
suggested that “in many applications, just 3–5 imputa-
tions are sufficient to obtain excellent results” (p. 548).
Schafer and Graham (2002) were more conservative in
asserting that 20 imputations are enough in many prac-
tical applications to remove noises from estimations.
Graham et al. (2007) commented that RE should not be
an important criterion when specifying m, because RE
has little practical meaning. Other factors, such as, the
SE, p-value, and statistical power, are more related to
empirical research and should also be considered, in
addition to RE. Graham et al. (2007) reported that statis-
tical power decreased much faster than RE, as λ in-
creases and/or m decreases. In an extreme case in which
λ=.9 and m = 3, the power for MI was only .39, while the
power of an equivalent FIML analysis was 0.78. Based
on these results, Graham et al. (2007) provided a table
for the number of imputations needed, given λ and an
acceptable power falloff, such as 1%. They defined the
power falloff as the percentage decrease in power, com-
pared to an equivalent FIML analysis, or compared to
m = 100. For example, to ensure a power falloff less than
1%, they recommended m = 20, 40, 100, or > 100 for a
true λ =.1, .5, .7, or .9 respectively. Their recommended
m is much larger than what is derived from the Rubin
rule based on RE (Rubin 1987). Unfortunately, Graham

et al.’s study is limited to testing a small standardized re-
gression coefficient (β = 0.0969) in a simple regression
analysis. The power falloff of MI may be less severe
when the true β is larger than 0.0969. At the present,
the literature does not shed light on the performance of
MI when the regression model is more complex than a
simple regression model.
Recently, White et al. (2011) argued that in addition to

relative efficiency and power, researchers should also
consider Monte Carlo errors when specifying the op-
timal number of imputations. Monte Carlo error is
defined as the standard deviation of the estimates (e.g.
regression coefficients, test statistic, p-value) “across re-
peated runs of the same imputation procedure with the
same data” (White et al. 2011 p. 387). Monte Carlo error
converges to zero as m increases. A small Monte Carlo
error implies that results from a particular run of MI
could be reproduced in the subsequent repetition of the
MI analysis. White et al. also suggested that the number
of imputations should be greater than or equal to the
percentage of missing observations in order to ensure an
adequate level of reproducibility. For studies that com-
pare different statistical methods, the number of imputa-
tions should be even larger than the percentage of
missing observations, usually between 100 and 1000, in
order to control the Monte Carlo error (Royston and
White 2011).
It is clear from the above discussions that a simple

recommendation for the number of imputations (e.g.,
m = 5) is inadequate. For data sets with a large amount
of missing information, more than five imputations are
necessary in order to maintain the power level and con-
trol the Monte Carlo error. A larger imputation model
may require more imputations, compared to a smaller
or simpler model. This is so because a large imputation
model results in increased SEs, compared to a smaller or
simpler model. Therefore, for a large model, additional
imputations are needed to offset the increased SEs. Spe-
cific guidelines for choosing m await empirical research.
In general, it is a good practice to specify a sufficient m
to ensure the convergence of MI within a reasonable
computation time.

Convergence of MCMC
The convergence of the Markov Chain is one of the de-
terminants of the validity of the results obtained from
MI. If the Markov Chain does not converge, the imputed
values are not considered random samples from the
posterior distribution of the missing data, given the ob-
served data, i.e., P(Ymis|Yobs). Consequently, statistical
results based on these imputed values are invalid. Unfor-
tunately, the importance of assessing the convergence
was rarely mentioned in articles that reviewed the theory
and application of MCMC (Schafer 1999; Schafer and
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Graham 2002; Schlomer et al. 2010; Sinharay et al.
2001). Because the convergence is defined in terms of
both probability and procedures, it is complex and diffi-
cult to determine the convergence of MCMC (Enders
2010). One way to roughly assess convergence is to visu-
ally examine the trace plot and the autocorrelation func-
tion plot; both are provided by SAS PROC MI (SAS
Institute Inc 2011). For a parameter θ, a trace plot is a
plot of the number of iterations (t) against the value of
θ(t) on the vertical axis. If the MCMC converges, there is
no indication of a systematic trend in the trace plot. The
autocorrelation plot displays the autocorrelations be-
tween θ(t)s at lag k on the vertical axis against k on the
horizontal axis. Ideally, the autocorrelation at any lag
should not be statistically significantly different from
zero. Since the convergence of a Markov Chain may be
at different rates for different parameters, one needs to
examine these two plots for each parameter. When there
are many parameters, one can choose to examine the
worst linear function (or WLF, Schafer 1997). The WLF
is a constructed statistic that converges more slowly
than all other parameters in the MCMC method. Thus if
the WLF converges, all parameters should have con-
verged (see pp. 2–3 of the Appendix for an illustration
of both plots for WLF, accessible from https://oncourse.iu.
edu/access/content/user/peng/Appendix.Dong%2BPeng.
Principled%20missing%20methods.current.pdf). Another
way to assess the convergence of MCMC is to start the
chain multiple times, each with a different initial value. If
all the chains yield similar results, one can be confident
that the algorithm has converged.

Full information maximum-likelihood (FIML)
FIML is a model-based missing data method that is
used frequently in structural equating modeling (SEM).
In our review of the literature, 26.1% studies that had
missing data used FIML to deal with missing data. Un-
like MI, FIML does not impute any missing data. It esti-
mates parameters directly using all the information that
is already contained in the incomplete data set. The
FIML approach was outlined by Hartley and Hocking
(1971). As the name suggests, FIML obtains parameter
estimates by maximizing the likelihood function of the
incomplete data. Under the assumption of multivariate
normality, the log likelihood function of each observa-
tion i is:

logLi ¼ Ki−
1
2
log Σj j− 1

2
xi−μð Þ0

Σ−1 xi−μð Þ; ð12Þ

where xi is the vector of observed values for case i, Ki is
a constant that is determined by the number of observed
variables for case i, and μ and Σ are, respectively, the
mean vector and the covariance matrix that are to be es-
timated (Enders 2001). For example, if there are three

variables (X1, X2, and X3) in the model. Suppose for case
i, X1 = 10 and X2 = 5, while X3 is missing. Then in the
likelihood function for case i is:

xi ¼ 10
5


 �
; μ ¼ μ1

μ2


 �
; and Σ ¼ σ11 σ12

σ21 σ22


 �
:

The total sample log likelihood is the sum of the indi-
vidual log likelihood across n cases. The standard ML al-
gorithm is used to obtain the estimates of μ and Σ, and
the corresponding SEs by maximizing the total sample
log likelihood function.
As with MI, FIML also assumes MAR and multivariate

normality for the joint distribution of all the variables.
When the two assumptions are met, FIML is demonstra-
ted to produce unbiased estimates (Enders and Bandalos
2001) and valid model fit information (Enders 2001).
Furthermore, FIML is generally more efficient than
other ad hoc missing data methods, such as LD (Enders
2001). When the normality assumption was violated,
Enders (2001) reported that (1) FIML provided unbiased
estimates across different missing rates, sample sizes,
and distribution shapes, as long as the missing mechanism
was MCAR or MAR, but (2) FIML resulted in negatively
biased SE estimates and an inflated model rejection rate
(namely, rejecting fitted models too frequently). Thus,
Enders recommended using correction methods, such as
rescaled statistics and bootstrap, to correct the bias associ-
ated with nonnormality.
Because FIML assumes MAR, adding auxiliary vari-

ables to a fitted model is beneficial to data analysis in
terms of bias and efficiency (Graham 2003; Section titled
The Imputation Model). Collins et al. (2001) showed
that auxiliary variables are especially helpful when (1)
missing rate is high (i.e., > 50%), and/or (2) the auxiliary
variable is at least moderately correlated (i.e., Pearson’s
r > .4) with either the variable containing missing data
or the variable causing missingness. However, incorpor-
ating auxiliary variables into FIML is not as straight-
forward as it is with MI. Graham (2003) proposed the
saturated correlates model to incorporate auxiliary vari-
ables into a substantive SEM model, without affecting
the parameter estimates of the SEM model or its model
fit index. Specifically, Graham suggested that, after the
substantive SEM model is constructed, the auxiliary vari-
ables be added into the model according to the following
rules: (a) all auxiliary variables are specified to be corre-
lated with all exogenous manifest variables in the model;
(b) all auxiliary variables are specified to be correlated
with the residuals for all the manifest variables that are
predicted; and (c) all auxiliary variables are specified to
be correlated to each other. Afterwards, the saturated
correlates model can be fitted to data by FIML to in-
crease efficiency and decrease bias.
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Expectation-maximization (EM) algorithm
The EM algorithm is another maximum-likelihood based
missing data method. As with FIML, the EM algorithm
does not “fill in” missing data, but rather estimates the pa-
rameters directly by maximizing the complete data log
likelihood function. It does so by iterating between the E
step and the M step (Dempster et al. 1977).
The E (expectation) step calculates the expectation of

the log-likelihood function of the parameters, given data.
Assuming a data set (Y) is partitioned into two parts: the
observed part and the missing part, namely, Y = (Yobs,
Ymis). The distribution of Y depending on the unknown
parameter θ can be therefore written as:

P Y θÞ ¼ P Y obs;Ymis θÞ ¼ P Y obs θÞP Ymis Y obs; θÞ:jðjðjðjð
ð13Þ

Equation 13 can be written as a likelihood function as
Equation 14:

L θ Y Þ ¼ L θ Yobs;YmisÞ ¼ cL θ YobsÞP Ymis Y obs; θÞ;jðjðjðjð
ð14Þ

where c is a constant relating to the missing data mech-
anism that can be ignored under the MAR assumption
and the independence between model parameters and
the missing mechanism parameters (Schafer 1997 p. 12).
Taking the log of both sides of Equation 14 yields the
following:

l θ Y Þ ¼ l θ YobsÞ þ logP Ymis Y obs; θÞ þ logc;jðjðjð
ð15Þ

where l(θ|Y) = log P(Y|θ) is the complete-data log likeli-
hood, l(θ|Yobs) is the observed-data log likelihood, log c
is a constant, and P(Ymis|Yobs, θ) is the predictive distri-
bution of the missing data, given θ (Schafer 1997). Since
log c does not affect the estimation of θ, this term can be
dropped in subsequent calculations.
Because Ymis is unknown, the complete-data log likeli-

hood cannot be determined directly. However, if there is
a temporary or initial guess of θ (denoted as θ(t)), it is
possible to compute the expectation of l(θ|Y) with
respect to the assumed distribution of the missing data
P(Ymis|Yobs, θ

(t)) as Equation 16:

Qðθjθ tð ÞÞ ¼ E½lðθjY Þj Yobs; θ
tð Þ�

¼ ∫lðθjY ÞPðYmisjYobs; θ
tð ÞÞdYmis ¼ lðθjYobsÞ

þ∫ logPðYmisjYobs; θÞPðYmisjYobs; θ
tð ÞÞdYmis:

ð16Þ
It is at the E step of the EM algorithm that Q(θ|θ(t)) is

calculated.

At the M (Maximization) step, the next guess of θ is
obtained by maximizing the expectation of the complete
data log likelihood from the previous E step:

θ tþ1ð Þ ¼ argmax
θ

Qðθjθ tð ÞÞ: ð17Þ

The EM algorithm is initialized with an arbitrary guess
of θ0, usually estimates based solely on the observed
data. It proceeds by alternating between the E step and
M step. It is terminated when successive estimates of θ
are nearly identical. The θ(t+1) that maximizes Q(θ|θ(t))
is guaranteed to yield an observed data log likelihood
that is greater than or equal to that provided by θ(t)

(Dempster et al. 1977).
The EM algorithm has many attractive properties.

First, an EM estimator is unbiased and efficient when
the missing mechanism is ignorable (ignorability is dis-
cussed under the section Missing Data Mechanisms,
Graham 2003). Second, the EM algorithm is simple,
easy to implement (Dempster et al. 1977) and stable
(Couvreur 1996). Third, it is straightforward in EM to
compare different models using the likelihood ratio test,
because EM is based on the likelihood function. As-
suming Model B is nested within Model A, these two
models can be compared based on the difference in the
log likelihoods corresponding to these two models,

namely l
�
θ̂A Y obsÞ−l

�
θ̂ B Y obsÞ:j

��� Such a difference in the

log likelihoods follows a chi-square distribution under
suitable regularity conditions (Schafer and Graham
2002; Wilks 1938). The degree of freedom of the chi-
square statistic is the difference in the number of para-
meters estimated between the two models. Fourth, EM
can be used in situations that are not missing data
related. For example, EM algorithm can be used in mix-
ture models, random effect models, mixed models, hier-
archical linear models, and unbalanced designs including
repeated measures (Peng et al. 2006). Finally, the EM al-
gorithm and other missing data methods that are based
on the observed data log likelihood, such as FIML, are
more efficient than the MI method because these me-
thods do not require simulations whereas MI does.
However, the EM algorithm also has several disadvan-

tages. First, the EM algorithm does not compute the de-
rivatives of the log likelihood function. Consequently, it
does not provide estimates of SEs. Although extensions
of EM have been proposed to allow for the estimation of
SEs, these extensions are computationally complex.
Thus, EM is not a choice of the missing data method
when statistical tests or confidence intervals of estimated
parameters are the primary goals of research. Second,
the rate of convergence can be painfully slow, when the
percent of missing information is large (Little and Rubin
2002). Third, many statistical programs assume the
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multivariate normal distribution when constructing l(θ|
Y). Violation of this multivariate normality assumption
may cause convergence problems for EM, and also for
other ML-based methods, such as FIML. For example, if
the likelihood function has more than one mode, the
mode to which EM will converge depends on the star-
ting value of the iteration. Schafer (1997) cautions that
multiple modes do occur in real data sets, especially
when “the data are sparse and/or the missingness pat-
tern is unusually pernicious.” (p. 52). One way to check
if the EM provides valid results is to initialize the EM al-
gorithm with different starting values, and check if the
results are similar. Finally, EM is model specific. Each
proposed data model requires a unique likelihood func-
tion. In sum, if used flexibly and with df, EM is powerful
and can provide smaller SE estimates than MI. Schafer
and Graham (2002) compiled a list of packages that of-
fered the EM algorithm. To the best of our knowledge,
the list has not been updated in the literature.

Demonstration
In this section, we demonstrate the three principled
missing data methods by applying them to a real-world
data set. The data set is complete and described under
Data Set. A research question posted to this data set
and an appropriate analysis strategy are described next
under Statistical Modeling. From the complete data
set, two missing data conditions were created under the
MAR assumption at three missing data rates. These
missing data conditions are described under Generating
Missing Data Conditions. For each missing data condi-
tion, LD, MI, FIML, and EM were applied to answer the
research question. The application of these four methods
is described under Data Analysis. Results obtained from
these methods were contrasted with those obtained from
the complete data set. The results are discussed in the
next section titled Results.

Data Set
Self-reported health data by 432 adolescents were col-
lected in the fall of 1988 from two junior high schools
(Grades 7 through 9) in the Chicago area. Of the 432
participants, 83.4% were Whites and the remaining
Blacks or others, with a mean age of 13.9 years and near-
ly even numbers of girls (n = 208) and boys (n = 224).
Parents were notified by mail that the survey was to be
conducted. Both the parents and the students were
assured of their rights to optional participation and
confidentiality of students’ responses. Written parental
consent was waived with the approval of the school
administration and the university Institutional Review
Board (Ingersoll et al. 1993). The adolescents reported
their health behavior, using the Health Behavior Ques-
tionnaire (HBQ) (Ingersoll and Orr 1989; Peng et al.

2006; Resnick et al. 1993), self-esteem, using Rosenberg’s
inventory (Rosenberg 1989), gender, race, intention to
drop out of school, and family structure. The HBQ
asked adolescents to indicate whether they engaged in
specific risky health behaviors (Behavioral Risk Scale) or
had experienced selected emotions (Emotional Risk
Scale). The response scale ranged from 1 (never) to 4
(about once a week) for both scales. Examples of beha-
vioral risk items were “I use alcohol (beer, wine, booze),”
“I use pot,” and “I have had sexual intercourse/gone all
the way.” These items measured frequency of adoles-
cents’ alcohol and drug use, sexual activity, and delin-
quent behavior. Examples of emotional risk items were
“I have attempted suicide,” and “I have felt depressed.”
Emotional risk items measured adolescents’ quality of
relationship with others, and management of emotions.
Cronbach’s alpha reliability (Nunnally 1978) was .84 for
the Behavioral Risk Scale and .81 for the Emotional Risk
Scale (Peng and Nichols 2003). Adolescents’ self-esteem
was assessed using Rosenberg’s self-esteem inventory
(Rosenberg 1989). Self-esteem scores ranged from 9.79
to 73.87 with a mean of 50.29 and SD of 10.04. Fur-
thermore, among the 432 adolescents, 12.27% (n = 53)
indicated an intention to drop out of school; 67.4%
(n = 291) were from families with two parents, including
those with one step-parent, and 32.63% (n = 141) were
from families headed by a single parent. The data set is
hereafter referred to as the Adolescent data and is avail-
able from https://oncourse.iu.edu/access/content/user/
peng/logregdata_peng_.sav as an SPSS data file.

Statistical Modeling
For the Adolescent data, we were interested in pre-
dicting adolescents’ behavioral risk from their gender,
intention to drop out from school, family structure, and
self-esteem scores. Given this objective, a linear regres-
sion model was fit to the data using adolescents’ score
on the Behavioral Risk Scale of the HBQ as the de-
pendent variable (BEHRISK) and gender (GENDER),
intention to drop out of school (DROPOUT), type of
family structure (FAMSTR), and self-esteem score (ES-
TEEM) as predictors or covariates. The emotional risk
(EMORISK) was used subsequently as an auxiliary vari-
able to illustrate the missing data methods. Hence, it
was not included in the regression model. For the linear
regression model, gender was coded as 1 for girls and 0
for boys, DROPOUT was coded as 1 for yes and 0 for
no, and FAMSTR was coded as 1 for single-parent fam-
ilies and 0 for intact or step families. BEHRISK and ES-
TEEM were coded using participant’s scores on these
two scales. Because the distribution of BEHRISK was
highly skewed, a natural log transformation was applied
to BEHRISK to reduce its skewness from 2.248 to 1.563.
The natural-log transformed BEHRISK (or LBEHRISK)
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and ESTEEM were standardized before being included
in the regression model to facilitate the discussion of the
impact of different missing data methods. Thus, the re-
gression model fitted to the Adolescent data was:

zLBEHRISK ¼ β0 þ β1GENDER þ β2DROPOUT

þ β3zESTEEM þ β4FAMSTR þ �

ð18Þ

The regression coefficients obtained from SAS 9.3
using the complete data were:

ẑLBEHRISK ¼ −0:055−0:434 � GENDER þ 1:172

� DROPOUT−0:191 � zESTEEM þ 0:367

� FAMSTR
ð19Þ

According to the results, when all other covariates
were held as a constant, boys, adolescents with intention
to drop out of school, those with low self-esteem scores,
or adolescents from single-parent families, were more
likely to engage in risky behaviors.

Generating missing data conditions
The missing data on LBEHRISK and ESTEEM were
created under the MAR mechanism. Specifically, the
probability of missing data on LBEHRISK was made to
depend on EMORISK. And the probability of missing
data on ESTEEM depended on FAMSTR. Peugh and
Enders (2004) reviewed missing data reported in 23 ap-
plied research journals, and found that “the proportion
of missing cases per analysis ranged from less than 1%
to approximately 67%” (p. 539). Peng, et al. (2006) re-
ported missing rates ranging from 26% to 72% based
on 1,666 studies published in 11 education and psych-
ology journals. We thus designed our study to corres-
pond to the wide spread of missing rates encountered by
applied researchers. Specifically, we manipulated the
overall missing rate at three levels: 20%, 40%, or 60%
(see Table 1).We did not include lower missing rates
such as, 10% or 5%, because we expected missing data
methods to perform similarly and better at low missing
rates than at high missing rates. Altogether we generated
three missing data conditions using SPSS 20 (see the

Appendix for SPSS syntax for generating missing data).
Due to the difficulty in manipulating missing data in the
outcome variable and the covariates, the actual overall
missing rates could not be controlled exactly at 20% or
60%. They did closely approximate these pre-specified
rates (see the description below).
According to Table 1, at the 20% overall missing rate,

participants from a single-parent family had a probability
of .20 of missing ESTEEM, while participants from a
two-parent family (including the intact families and
families with one step- and one biological parent) had a
probability of .02 of missing scores on ESTEEM. As
the overall missing rate increased from 20% to 40% or
60%, the probability of missing on ESTEEM likewise in-
creased. Furthermore, the probability of missing in
LBEHRISK was conditioned on the value of EMORISK.
Specifically, at the 20% overall missing rate, if EMORISK
was at or below the first quartile, the probability of
LBEHRISK missing was .00 (Table 1). If EMORISK was
between the first and the third quartiles, the probability
of LBEHRISK missing was .10 and an EMORISK at or
above the third quartile resulted in LBEHRISK missing
with a probability of .30. When the overall missing rate
increased to 40% or 60%, the probabilities of missing
LBEHRISK increased accordingly.
After generating three data sets with different overall

missing rates, the regression model in Equation 18 was
fitted to each data set using four methods (i.e., LD, MI,
FIML, and EM) to deal with missing data. Since missing
on LBEHRISK depended on EMORISK, EMORISK was
used as an auxiliary variable in MI, EM, and FIML
methods. All analyses were performed using SAS 9.3.
For simplicity, we describe the data analysis for one of
the three data sets, namely, the condition with an overall
missing rate of 20%. Other data sets were analyzed simi-
larly. Results are presented in Tables 2 and 3.

Data analysis
The LD method
The LD method was implemented as a default in PROC
REG. To implement LD, we ran PROC REG without
specifying any options regarding missing data method.
The SAS system, by default, used cases with complete
data to estimate the regression coefficients.

Table 1 Probability of missing for LBEHRISK and ESTEEM at three missing rates

Overall
missing rate

Missing
variable

FAMSTR Missing
variable

EMORISK

Single family Intact/step family ≤ Q1 Between Q1 & Q3 ≥ Q3

20% ESTEEM .20 .02 LBEHRISK .00 .10 .30

40% ESTEEM .40 .05 LBEHRISK .10 .20 .60

60% ESTEEM .80 .10 LBEHRISK .20 .40 .80

Note. Q1 = first quartile, Q3 = third quartile.
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The MI method
The MI method was implemented using a combination
of PROC MI (for imputation), PROC REG (for OLS re-
gression analysis), and PROC MIANALYZE (for pooling
in MI). According to White et al. (2011), the number of
imputations should be at least equal to the percentage
of missing observations. The largest missing rate in

the present study was 60%. Thus, we decided to impute
missing data 60 times before pooling estimates. The im-
putation model included all four covariates specified in
Equation 18, the dependent variable (LBEHRISK), and
EMORISK as an auxiliary. For PROC MI, MCMC was
chosen as the imputation method because the missing
data pattern was arbitrary. By default, PROC MI uses
the EM estimates as starting values for the MCMC
method. The iteration history of EM indicated that the
algorithm converged rather quickly; it took four itera-
tions to converge for the 20% overall missing rate. The
convergence in MCMC was further inspected using the
trace plot and the autocorrelation function plot for the
worst linear function (SAS Institute Inc 2011). The in-
spection of the trace plot did not identify any systematic
trend, or any significant autocorrelation for lags greater
than two in the autocorrelation function plot. We there-
fore concluded that the MCMC converged and the
choice of 1000 as the number of burn-in and 200 as the
number of iterations between imputations was adequate.
The number of burn-in is the number of iterations be-
fore the first draw. It needs to be sufficiently large to en-
sure the convergence of MCMC. The fraction of missing
information (λ) for each variable with missing data was
estimated by PROC MI to be .11 for LBEHRISK and .10

Table 2 Regression Coefficients from Four Missing Data Methods

Complete data LD MI FIML EM

(a) Overall missing rate = 20%a

GENDER −0.434*** −0.412*** −0.414*** −0.421*** −0.421***

(0.082) (0.091) (0.086) (0.087) (0.083)

DROPOUT 1.172*** 1.237*** 1.266*** 1.263*** 1.263***

(0.125) (0.142) (0.132) (0.132) (0.126)

ESTEEM −0.191*** −0.213*** −0.215*** −0.212*** −0.212***

(0.041) (0.046) (0.044) (0.044) (0.041)

FAMSTR 0.367*** 0.377*** 0.365*** 0.366*** 0.366***

(0.087) (0.101) (0.096) (0.092) (0.088)

Actual N 432 349 432 N/A 414

(b) Overall missing rate = 60%b

GENDER −0.434*** −0.39** −0.414*** −0.413*** −0.413***

(0.082) (0.131) (0.1) (0.104) (0.086)

DROPOUT 1.172*** 1.557*** 1.559*** 1.532*** 1.562***

(0.125) (0.209) (0.17) (0.158) (0.131)

ESTEEM −0.191*** −0.193** −0.217*** −0.214** −0.215***

(0.041) (0.065) (0.063) (0.06) (0.043)

FAMSTR 0.367*** 0.479* 0.302* 0.3** 0.3**

(0.087) (0.192) (0.116) (0.111) (0.091)

Actual N 432 171 432 N/A 367

Note. Standard error estimates in parentheses. MI results were based on 60 imputations. FIML results were obtained with EMORISK as an auxiliary variable in
the model.
aThe actual overall missing rate was 19.21%. bThe actual overall missing rate was 60.42%.
* p < .05. ** p < .01. ***p < .001.

Table 3 Percentage of Bias in Estimates

LD MI FIML EM

(a) Overall missing rate = 20%a

GENDER 5.07 4.61 3.00 3.00

DROPOUT 5.55 8.02 7.76 7.76

ESTEEM −11.52 −12.57 −10.99 −10.99

FAMSTR 2.72 −0.54 −0.27 −0.27

(b) Overall missing rate = 60%b

GENDER 10.14 4.61 4.84 4.84

DROPOUT 32.85 33.02 30.72 33.28

ESTEEM −1.05 −13.61 −12.04 −12.57

FAMSTR 30.52 −17.71 −18.26 −18.26

Note. Percentage of bias was calculated as the ratio of the difference between
the incomplete data estimate and the complete data estimate divided by the
complete data estimate.
aThe actual overall missing rate was 19.21%. bThe actual overall missing rate
was 60.42%.
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for ESTEEM. These λ̂s would have resulted in 3% power
falloff, compared to FIML, if only five imputations were
used (Graham et al. 2007). Instead, we specified 60 im-
putations based on White et al. (2011)’s recommenda-
tion. The resulting 60 imputed data sets were used in
steps 2 and 3 of MI.
The second step in MI was to fit the regression model

in Equation 18 to each imputed data set using PROC
REG (see the Appendix for the SAS syntax). At the end
of PROC REG, 60 sets of estimates of regression coeffi-
cients and their variance-covariance matrices were out-
put to the third and final step in MI, namely, to pool
these 60 estimates into one set. PROC MIANALYZE
was invoked to combine these estimates and their vari-
ances/covariances into one set using the pooling formula
in Equations 4 to 7 (Rubin 1987). By default, PROC
MIANALYZE uses νm, defined in Equation 9, for hy-
pothesis testing. In order to specify the corrected de-
grees of freedom νm

* (as defined in Equation 10) for
testing, we specified the “EDF=427” option, because 427
was the degrees of freedom based on the complete data.

The FIML method
The FIML method was implemented using PROC
CALIS which is designed for structural equation model-
ing. Beginning with SAS 9.22, the CALIS procedure has
offered an option to analyze data using FIML in the
presence of missing data. The FIML method in the
CALIS procedure has a variety of applications in path
analyses, regression models, factor analyses, and others,
as these modeling techniques are considered special
cases of structural equation modeling (Yung and Zhang
2011). For the current study, two models were specified
using PROC CALIS: an ordinary least squares regression
model without the auxiliary variable EMORISK, and a
saturated correlates model that included EMORISK. For
the saturated correlates model, EMORISK was specified
to be correlated with the four covariates (GENDER,
DROPOUT, ESTEEM, and FAMSTR) and the residual
for LBEHRISK. Graham (2003) has shown that by cons-
tructing the saturated correlates model this way, one can
include an auxiliary variable in the SEM model without
affecting parameter estimate(s), or the model fit index
for the model of substantive interest, which is Equation
18 in the current study.

The EM method
The EM method was implemented using both PROC MI
and PROC REG. As stated previously, the versatile
PROC MI can be used for EM if the EM statement was
specified. To include auxiliary variables in EM, one lists
the auxiliary variables on the VAR statement of PROC
MI (see the Appendix for the SAS syntax). The output

data set of PROC MI with the EM specification is a data
set containing the estimated variance-covariance matrix
and the vector of means of all the variables listed on the
VAR statement. The variance-covariance matrix and the
means vector were subsequently input into PROC REG
to be fitted by the regression model in Equation 18. In
order to compute the SE for the estimated regression co-
efficients, we specified a nominal sample size that was
the average of available cases among all the variables.
We decided on this strategy based on findings by
Truxillo (2005). Truxillo (2005) compared three strat-
egies for specifying sample sizes for hypothesis testing in
discriminant function analysis using EM results. The
three strategies were: (a) the minimum column-wise n
(i.e., the smallest number of available cases among all
variables), (b) the average column-wise n (i.e., the mean
number of available cases among all the variables), and
(c) the minimum pairwise n (the smallest number of
available cases for any pair of variables in a data set). He
found that the average column-wise n approach pro-
duced results closest to the complete-data results. It is
worth noting that Truxillo (2005)’s study was limited to
discriminant function analysis and three sample size
specifications. Additional research is needed in order to
determine the best strategy to specify a nominal sample
size for other statistical procedures.

Results
Results derived from the 40% missing rate exhibited pat-
terns between those obtained at 20% and 60% missing
rates. Hence, they are presented in the Appendix. Table 2
presents estimates of regression coefficients and SEs de-
rived from LD, MI, FIML and EM for the 20% and 60%
missing data conditions. Table 3 presents the percent of
bias in parameter estimates by the four missing data
methods. The percentage of bias was defined and calcu-
lated as the ratio of the difference between the incom-
plete data estimate and the complete data estimate,
divided by the complete data estimate. Any percentage
of bias larger than 10% is considered substantial in sub-
sequent discussions. The complete data results are in-
cluded in Table 2 as a benchmark to which the missing
data results are contrasted. The regression model based
on the complete data explained 28.4% of variance (i.e.,
Radj
2 ) in LBEHRISK, RMSE = 0.846, and all four predic-

tors were statistically significant at p < .001.
According to Table 2, at 20% overall missing rate, esti-

mates derived from the four missing data methods were
statistically significant at p < .001, the same significance
level as the complete data results. LD consistently re-
sulted in larger SE, compared to the three principled
methods, or the complete data set. The bias in estimates
was mostly under 10%, except for estimates of ESTEEM
by all four missing data methods (Table 3). The three
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principled methods exhibited similar biases and esti-
mated FAMSTR accurately.
When the overall missing rate was 60% (Table 2), esti-

mates derived from the four missing data methods
showed that all four covariates were statistically signifi-
cant at least at p < .05. LD consistently resulted in larger
SE, compared to the three principled methods, or the
complete data set. All four methods resulted in substan-
tial bias for three of the four covariates (Table 3). The
three principled methods once again yielded similar
biases, whereas bias from LD was similar to these three
only for DROPOUT. Indeed, DROPOUT was least ac-
curately estimated by all four methods. LD estimated
ESTEEM most accurately and better than the three
principled methods. The three principled methods esti-
mated GENDER most accurately and their estimates for
FAMSTR were better than LD’s. Differences in absolute
bias due to these four methods for ESTEEM or GEN-
DER were actually quite small.
Compared to the complete data result, the three prin-

cipled methods slightly overestimated SEs (Table 2), but
not as badly as LD. Among the three methods, SEs
obtained from EM were closer to those based on the
complete data, than MI or FIML. This finding is to be
expected because MI incorporates into SE the uncer-
tainty associated with plausible missing data estimates.
And the literature consistently documented the superior
power of EM, compared to MI (Collins et al. 2001; Gra-
ham et al. 2007; Schafer and Graham 2002).
In general, the SE and the bias increased as the overall

missing rate increased from 20% to 60%. One exception
to this trend was the bias in ESTEEM estimated by LD;
they decreased instead, although the two estimates dif-
fered by a mere .02.

Discussion
During the last decade, the missing data treatments
reported in JEP have shown much improvement in
terms of decreased use of ad hoc methods (e.g., LD and
PD) and increased use of principled methods (e.g.,
FIML, EM, and MI). Yet several research practices still
persisted including, not explicitly acknowledging the
presence of missing data, not describing the approach
used in dealing with missing data, not testing assump-
tions assumed. In this paper, we promote three prin-
cipled missing data methods (i.e., MI, FIML, and EM) by
discussing their theoretical framework, implementation,
assumptions, and computing issues. All three methods
were illustrated with an empirical Adolescent data set
using SAS 9.3. Their performances were evaluated under
three conditions. These three conditions were created
from three missing rates (20%, 40%, and 60%). Each in-
complete data set was subsequently analyzed by a re-
gression model to predict adolescents’ behavioral risk

score using one of the three principled methods or LD.
The performance of the four missing data methods was
contrasted with that of the complete data set in terms of
bias and SE.
Results showed that the three principled methods

yielded similar estimates at both missing data rates. In
comparison, LD consistently resulted in larger SEs for
regression coefficients estimates. These findings are
consistent with those reported in the literature and
thus confirm the recommendations of the three prin-
cipled methods (Allison 2003; Horton and Lipsitz 2001;
Kenward and Carpenter 2007; Peng et al. 2006; Peugh
and Enders 2004; Schafer and Graham 2002). Under the
three missing data conditions, MI, FIML, and EM
yielded similar estimates and SEs. These results are con-
sistent with missing data theory that argues that MI and
ML-based methods (e.g., FIML and EM) are equivalent
(Collins et al. 2001; Graham et al. 2007; Schafer and
Graham 2002). In terms of SE, ML-based methods
outperformed MI by providing slightly smaller SEs. This
finding is to be expected because ML-based methods do
not involve any randomness whereas MI does. Below we
elaborate on features shared by MI and ML-based
methods, choice between these two types of methods,
and extension of these methods to multilevel research
contexts.

Features shared by MI and ML-based methods
First of all, these methods are based on the likelihood
function of P(Yobs, θ) = ∫ P(Ycomplete, θ)dYmis. Because this
equation is valid under MAR (Rubin 1976), all three
principled methods are valid under the MAR assump-
tion. The two ML-based methods work directly with the
likelihood function, whereas MI takes the Bayesian ap-
proach by imposing a prior distribution on the likeli-
hood function. As the sample size increases, the impact
of the specific prior distribution diminishes. It has been
shown that,

If the user of the ML procedure and the imputer use
the same set of input data (same set of variables and
observational units), if their models apply equivalent
distributional assumptions to the variables and the
relationships among them, if the sample size is large,
and if the number of imputations, M, is sufficiently
large, then the results from the ML and MI procedures
will be essentially identical. (Collins et al. 2001 p. 336)

In fact, the computational details of EM and MCMC
(i.e., data augmentation) are very similar (Schafer 1997).
Second, both the MI and the ML-based methods allow

the estimation/imputation model to be different from
the analysis model—the model of substantive interest.
Although it is widely known that the imputation model
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can be different from the analysis model for MI, the fact
that ML-based methods can incorporate auxiliary va-
riables (such as, EMORISK) is rarely mentioned in the
literature, except by Graham (2003). As previously dis-
cussed, Graham (2003) suggested using the saturated
correlates model to incorporate auxiliary variables into
SEM. However, this approach results in a rapidly ex-
panding model with each additional auxiliary variable;
consequently, the ML-based methods may not converge.
In this case, MI is the preferred method, especially when
one needs to incorporate a large number of auxiliary
variables into the model of substantive interest.
Finally, most statistical packages that offer the EM,

FIML and/or MI methods assume multivariate normal-
ity. Theory and experiments suggest that MI is more ro-
bust to violation of this distributional assumption than
ML-based methods (Schafer 1997). As discussed previ-
ously, violation of the multivariate normality assumption
may cause convergence problems for ML-based me-
thods. Yet MI can still provide satisfactory results in the
presence of non-normality (refer to the section titled MI
Related Issues). This is so because the posterior distri-
bution in MI is approximated by a finite mixture of the
normal distributions. MI therefore is able to capture
non-normal features, such as, skewness or multiple mo-
des (Schafer 1999). At the present, the literature does
not offer systematic comparisons of these two methods
in terms of their sensitivity to the violation of the multi-
variate normality assumption.

Choice between MI and ML-based methods
The choice between MI and ML-based methods is not
easy. On the one hand, ML-based methods offer the ad-
vantage of likelihood ratio tests so that nested models
can be compared. Even though Schafer (1997) provided
a way to combine likelihood ratio test statistics in MI,
no empirical studies have evaluated the performance of
this pooled likelihood ratio test under various data con-
ditions (e.g., missing mechanism, missing rate, number
of imputations, model complexity). And this test has not
been incorporated into popular statistical packages, such
as, SAS, SPSS. ML-based methods, in general, produce
slightly smaller SEs than MI (Collins et al. 2001; Schafer
and Graham 2002). Finally, ML-based methods have
greater power than MI (Graham et al. 2007), unless im-
putations were sufficiently large, such as 100 or more.
On the other hand, MI has a clear advantage over

ML-based methods when dealing with categorical vari-
ables (Peng and Zhu 2008). Another advantage of MI
over ML-based methods is its computational simplicity
(Sinharay et al. 2001). Once missing data have been im-
puted, fitting multiple models to a single data set does
not require the repeated application of MI. Yet it re-
quires multiple applications of ML-based methods to fit

different models to the same data. As stated earlier, it is
easier to include auxiliary variable in MI than in ML-
based methods. In this sense, MI is the preferred me-
thod, if one wants to employ an inclusive strategy to
selecting auxiliary variables.
The choice also depends on the goal of the study. If

the aim is exploratory, or if the data are prepared for a
number of users who may analyze the data differently,
MI is certainly better than a ML-based method. For
these purposes, a data analyst needs to make sure that
the imputation model is general enough to capture
meaningful relationships in the data set. If, however, a
researcher is clear about the parameters to be estimated,
FIML or EM is a better choice because they do not
introduce randomness due to imputation into the data,
and are more efficient than MI.
An even better way to deal with missing data is to

apply MI and EM jointly. In fact, the application of MI
can be facilitated by utilizing EM estimates as starting
values for the data augmentation algorithm (Enders
2010). Furthermore, the number of EM iterations nee-
ded for convergence is a conservative estimate for the
number of burn-ins needed in data augmentation of MI,
because EM converges slower than MI.

Extension of MI and ML-based methods to multilevel
research contexts
Many problems in education and psychology are mul-
tilevel in nature, such as students nested within class-
room, teachers nested within school districts, etc. To
adequately address these problems, multilevel model have
been recommended by methodologists. For an imputation
method to yield valid results, the imputation model must
contain the same structure as the data. In other words,
the imputation model should be multilevel in order to im-
pute for missing data in a multilevel context (Carpenter
and Goldstein 2004). There are several ways to extend MI
to deal with missing data when there are two levels. If
missing data occur only at level 1 and the number of level
2 units is low, standard MI can be used with minor adjust-
ments. For example, for a random-intercept model, one
can dummy-code the cluster membership variable and in-
clude the dummy variables into the imputation model. In
the case of a random slope and random intercepts model,
one needs to perform multiple imputation separately
within each cluster (Graham 2009). When the number of
level 2 units is high, the procedure just described is cum-
bersome. In this instance, one may turn to specialized MI
programs, such as, the PAN library in the S-Plus pro-
gram (Schafer 2001), the REALCON-IMPUTE software
(Carpenter et al. 2011), and the R package mlmmm (Yucel
2007). Unfortunately, ML-based methods have been ex-
tended to multilevel models only when there are missing
data on the dependent variable, but not on the covariates
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at any level, such as student’s age at level 1 or school’s SES
at level 2 (Enders 2010).
In this paper, we discuss and demonstrate three prin-

cipled missing data methods that are applicable for a
variety of research contexts in educational psychology.
Before applying any of the principled methods, one
should make every effort to prevent missing data from
occurring. Toward this end, the missing data rate should
be kept at minimum by designing and implementing
data collection carefully. When missing data are inevi-
table, one needs to closely examine the missing data
mechanism, missing rate, missing pattern, and the data
distribution before deciding on a suitable missing data
method. When implementing a missing data method, a
researcher should be mindful of issues related to its pro-
per implementation, such as, statistical assumptions, the
specification of the imputation/estimation model, a sui-
table number of imputations, and criteria of convergence.
Quality of research will be enhanced if (a) researchers

explicitly acknowledge missing data problems and the
conditions under which they occurred, (b) principled
methods are employed to handle missing data, and (c)
the appropriate treatment of missing data is incorpo-
rated into review standards of manuscripts submitted for
publication.
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