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Abstract
Peripheral ischemia, resulting from diminished arterial flow and defective local vasculariza-

tion, is one of the main causes of impaired wound healing in diabetes. Vasodilatory prosta-

glandins (PGs), including PGE2 and PGI2, regulate blood flow in peripheral tissues. PGs

also stimulate angiogenesis by inducing vascular endothelial growth factor. However, PG

levels are reduced in diabetes mainly due to enhanced degradation. We hypothesized that

inhibition of the prostaglandin transporter (PGT) (SLCO2A1), which mediates the degrada-

tion of PGs, would increase blood flow and stimulate vascularization, thereby mitigating

peripheral ischemia and accelerating wound healing in diabetes. Here we report that inhibit-

ing PGT with intravenously injected PGT inhibitor, T26A, increased blood flow in ischemic

hind limbs created in non-diabetic rats and streptozotocin induced diabetic rats. Systemic,

or combined with topical, T26A accelerated closure of cutaneous wounds. Immunohisto-

chemical examination revealed that inhibition of PGT enhanced vascularization (marked by

larger numbers of vessels formed by CD34+ cells), and accelerated re-epithelialization of

cutaneous wounds. In cultured primary human bone marrow CD34+ cells and human epi-

dermal keratinocytes (HEKs) either inhibiting or silencing PGT increased migration in both

cell lines. Thus PGT directly regulates mobilization of endothelial progenitor cells (EPCs)

and HEKs, which could contribute to PGT-mediated vascularization and re-epithelialization.

At the molecular level, systemic inhibition of PGT raised circulating PGE2. Taken together,

our data demonstrate that PGT modulates arterial blood flow, mobilization of EPCs and

HEKs, and vascularization and epithelialization in wound healing by regulating vasodilatory

and pro-angiogenic PGs.
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Introduction
Diabetes-associated non-healing lower extremity wounds, including leg ulcers and foot ulcers,
are major contributors to non-combat limb loss [1]. Impaired wound healing in diabetes is
multi-factorial, including peripheral ischemia due to diminished arterial blood flow and defec-
tive local vascularization[2,3].

Blood flow from arteries mobilizes nutrients, progenitor cells, and other molecular media-
tors to peripheral tissues during wound healing, and is a prerequisite for mounting a successful
repair response [4]. Endothelial progenitor cells (EPCs), mobilized by blood flow, support vas-
cularization, which are essential for wound healing. In diabetes, occlusive peripheral arteries
limit blood flow to distal tissues [5–8]. In addition, the endothelium is dysfunctional and EPCs
are reduced [9,10], such that, at diabetic wound sites, these cells are incapable of properly form-
ing vessels in a timely manner [11].

Prostaglandins (PGs), such as PGE2 and PGI2, are vasodilators, maintaining adequate blood
flow to peripheral tissues[12–15]. PGE2 also promotes angiogenesis by inducing vascular endo-
thelial growth factor (VEGF)[16–18]. Levels of PGE2 and PGI2 in the circulation are regulated
by both synthesis and degradation. The latter is mediated by the prostaglandin transporter
(PGT, SLCO2A1) in series with 15-OH PG dehydrogenase (15PGDH) [19]. We have found
that global deletion or systemic inhibition of PGT raises PGE2 plasma levels in mice and rats
[20–22], and that local application of a PGT inhibitor increases PGE2 at wound sites and accel-
erates cutaneous wound healing in both wild type and diabetic mice [18]. These studies led us
to hypothesize that systemic inhibition of PGT would increase arterial blood flow to distal
limbs and mitigate peripheral ischemia. Similarly, we hypothesized that topical application of a
PGT inhibitor to wounds would increase vascularization at wound sites. Together, these sys-
temic and local effects of PGT inhibition would accelerate wound healing. This study aimed to
test these hypotheses by using streptozotocin (STZ)-induced diabetic rats and their non-dia-
betic controls.

Materials and Methods

Animals
Male Sprague Dawley rats of 200–250 g were purchased from Charles Rivers. STZ was injected
intraperitoneally at a dose of 50 mg/Kg body weight, once daily, for 5 consecutive days. STZ
rats that had a blood glucose level higher than 360 mg/dL were selected for experiments. All
experimental procedures were approved by and performed in compliance with the guidelines
of the Institutional Animal Care and Use Committee (IACUC) at Albert Einstein College of
Medicine. All surgery procedures were conducted while animals were under continuous anes-
thesia with 2.5% isoflurane. For acute limb ischemia experiments lasting for 4–8 hours, animals
were sacrificed immediately after the experiments were finished. For the cutaneous wound clo-
sure experiments, animals were sacrificed after all wounds closed. For histological examina-
tions, at various time points during cutaneous wound healing rats were sacrificed right before
tissue collections. The method of sacrifice is inhalation of carbon dioxide. Detailed procedures
for each experiment are described in the following specific sections.

Blood Flow
Blood flow in rat hind limbs and in cutaneous wounds that were created on the dorsa of rats
was measured using a PeriScan PIM 3 Imaging System. All blood flow measurements were con-
ducted while rats were anesthetized with 2.5% isoflurane and were placed on a heating pad at
37°C to maintain body temperature.
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For blood flow measurements in the rat hind limbs, the femoral artery was isolated and par-
tially occluded, and acute hind limb ischemia was established in one hind limb using an estab-
lished tourniquet model of limb ischemia with some modification as follows[23–25]. Briefly,
rats were continuously anesthetized with 2.5% isoflurane. Hair was removed from the hind-
quarters with a depilating cream, Nair fromWalgreen. The femoral artery was exposed asepti-
cally through a 5-mm incision and isolated from the femoral vein and nerve, then was ligated
with No. 6.0 Prolene suture just above the bifurcation of the anterior epigastric and lateral cau-
dal femoral arteries. It is important to note that the femoral vein stayed open. The tourniquet
(No. 2 Prolene loop suture) was then passed underneath the femoral vessels to spare them and
placed around the thigh as proximal as possible. Ischemia was achieved and controlled by ten-
sion on the tourniquet and clamping of the common femoral and superficial epigastric arteries.
The other limb was used as control. Blood flow in the ischemic limb was measured before and
after partial occlusion to ensure that ischemia was established. Tourniquet weight and clamp-
ing were adjusted periodically to ensure that blood flow was consistent when agents were
absent or were washed out during experimental procedures. For administration of compounds
intravenously the jugular vein was isolated and a polyethylene catheter (PE 50; 0.97 mm OK,
0.58 mm ID) was advanced into the right ventricle via the right jugular vein.

For blood flow measurements in the cutaneous wounds, circular full-thickness skin exci-
sions of 10 mm diameter were created as described previously [18]. Agents were applied imme-
diately after wounding and once every other day thereafter. Blood flow in the wound was
measured immediately after wounding and every other day before agent re-application.

Plasma PGE2 Measurement
To assess the effect of systemically injected T26A on PGE2 levels in the circulation in rats, 2 mL
of blood was withdrawn from femoral artery 20 minutes after T26A injection via the jugular
vein. Blood was immediately centrifuged at 5,000 rpm and 4°C for 15 minutes. Plasma was col-
lected and kept at −80°C. PGE2 was measured using a PGE2 EIA kit from Cayman Chemical
(Ann Arbor, MI, USA).

Wound Closure
For purpose of monitoring wound closure and its associated cellular events, four 5 mm full-
thickness cutaneous wounds were created on the dorsa of rats [18]. Vehicle or T26A was
administered intraperitoneally (i.p.) immediately after wounding and thereafter once daily,
until wounds were closed. In separate experiments, vehicle or T26A was applied both intraperi-
toneally once daily and topically once every other day immediately after wounding and thereaf-
ter, until wounds closed. Wounds were covered with fresh Tegaderm. Wound dressings were
changed every other day after documentary digital photography. Wound sizes were analyzed
using ImageJ. The open wound was defined as the unepithelialized area and the number of pix-
els was counted for quantification. Wound closure at experimental time points was calculated
as percentage of initial wound area.

Histological Examination of Wounds
At various time points, wounded rats were sacrificed for histological examination. Detailed
method for processing and staining of cutaneous wound tissues was described previously [18].
Minor modification was that anti-CD34 polyclonal antibody (LifeSpan BioSciences, Seattle,
WA, USA) interacting with rat tissues was used and the dilution was 1: 250.

PGTModulates Perfusion and Vascularization

PLOS ONE | DOI:10.1371/journal.pone.0133615 July 31, 2015 3 / 21



Cell Culture
Fresh primary human bone marrow CD34+ cells were obtained from AllCells (Alameda, CA,
USA) and cultured according to the protocol from the supplier. Human epidermal keratino-
cytes (HEKs) were purchased from ScienCell (Carlsbad, CA, USA) and were cultured in serum
free keratinocyte medium containing 1% keratinocyte growth supplement (ScienCell), 1% pen-
icillin- streptomycin, and 5 mM glucose.

To choose optimal PGT siRNA, CD34+ cells or HEKs were seeded on 6-well plates. 24
hours later, when the confluency reached 40–60%, cells were transfected with 4 sets of siRNAs
targeting PGT at various concentrations and GFP siRNA using RNAi Max transfection reagent
(Life Technologies Corporation, Norwalk, CT, USA). GFP siRNA was used as a positive / nega-
tive control to determine transfection efficiency and the effect of silencing, without affecting
PGT gene. Maximal silencing of PGT mRNA (80%) was achieved by transfecting PGT siRNA
set 1 at concentration of 10 nM.

Cell Migration Measurement
Cell migration was assessed by two methods, Cellular Wound Migration Assay and Transwell
Assay, as described previously [18], with slight modification. For the Cellular Wound Migra-
tion Assay, 100,000 EPCs or HEKs were seeded onto 6-well plates and transfected with either
control siRNA or PGT siRNA (Qiagen, Valencia, CA) 24 hours later. After cells reached 100%
confluent, a gap in cells was made in the center of each well with a pipette tip of diameter of
1 mm. Cells were washed with PBS and incubated in medium. Phase contrast pictures were
taken using a microscope (4 x objective) immediately after gaps were made, which was consid-
ered as 0 h time point. Immediately after picture taken cells were treated with or without 100
nM PGE2 or 5 μM T26A for 14 h (for EPCs) or 12 h (for HEKs) and pictures were taken again.
The open area (not covered by cells) in the center of the well at 0 and 14 h (or 12 h) was deter-
mined using ImageJ. Closed area was calculated by subtracting the open area at 14 h (or 12 h)
from the open area at 0 h. The percentage gap closure was calculated by dividing the closed
area by the open area at 0 h.

For the Transwell Assay, 50,000 EPCs were seeded onto matrigel coated filters which were
then inserted in 24-well plates. Twenty four hours later, cells were transfected with either con-
trol siRNA or PGT siRNA. Thirty six hours after transfection, cells were treated with or with-
out 100 nM PGE2 or 5 μM T26A for 8 hours. Cells on the seeding (top) side of the filter were
wiped with Q-tips. Remaining cells on the bottom side of filter were fixed with 4% paraformal-
dehyde at 25°C for 1 hour, and stained with 0.1% crystal violet for 1 hour. Cells on the bottom
of the filter, which had migrated cells, were counted under a 10 x objective under a microscope.

Cell Proliferation Assay
Cell proliferation was assessed using a cell proliferation ELISA with BrdU (Roche) according to
the manufacturer’s protocol[26–28]. HEKs were seeded onto 96-well plate (10000 cells/well) in
100 ml serum free medium containing 1% keratinocyte growth supplement (ScienCell), 1%
penicillin- streptomycin, 5 mM glucose. Twenty four hours later, cells were transfected with
control or PGT siRNA. Twenty four hours after transfection, cells were treated with 100 nM
PGE2 or 5 μMT26A for 2 days. During the last 2-hour of incubation, HEKs were pulse-labeled
with 10 mM BrdU. BrdU incorporation was quantified by measurement with a Micro Plate
Reader at 450 nm.
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Statistical analysis
Group measurements were expressed as average ± SEM. Comparisons between two groups
were analyzed by Student’s t-test, or among multiple groups by ANOVA test, and p< 0.05 was
considered significant.

Results

Peripheral Ischemia in Diabetes Is Associated with Reduced PGE2

Peripheral ischemia often occurs in diabetic patients [29,30]. To demonstrate this phenomena
in animal model, we generated diabetic rats by injecting Sprague Dawley rats with STZ and
measured blood flow in the hind limb of non-diabetic (ND) and diabetic (D) rats using a laser
Doppler. Indeed, blood flow in hind limbs of STZ-induced diabetic rats was only half that of
non-diabetic rats (Fig 1A and 1B). PGE2, as well as PGI2, are vasodilators and play important
roles in regulation of blood flow [15]. Low PGE2 was reported in urine of diabetic rats [31].
Here we found that plasma PGE2 in diabetic rats was only about 30% that of non-diabetic rats
(Fig 1C). These data suggest that peripheral ischemia in diabetes is accompanied with reduced
PGE2.

Systemic Inhibition of PGT Increases Perfusion to Distal Limb
We then asked whether exogenously applied PGE2 could rescue peripheral ischemia. To
answer this question, we first used non-diabetic Sprague Dawley rats and created hind limb
ischemia by partial occlusion of one of the hind limbs, while leaving the other intact. Vehicle or
PGE2 was administered via jugular vein (S1A Fig). The average blood flow after occlusion was
adjusted to be 30% of the value before occlusion (Fig 2A and 2B). Systemic PGE2 caused a 25%
increase in blood flow in the reference limb (337 ± 24 (before administration) versus 421 ± 39
(after administration), n = 5, p< 0.05) (Fig 2A), demonstrating that systemic PGE2 can
increase blood flow to peripheral tissues. In ischemic limbs, while the vehicle did not have sig-
nificant effect, PGE2 doubled blood flow rates (Fig 2A and 2B), indicating that exogenous
PGE2 can mitigate peripheral ischemia.

Fig 1. Peripheral Ischemia in Diabetes Is Associated with Reduced PGE2. (A) Images of representative blood flow in intact hind limbs of non-diabetic
(ND) Sprague Dawley and STZ diabetic (D) rats. (B) Statistical analysis of blood flow in hind limbs. (C) Plasma PGE2. Values are average ± SEM (n = 5).
*p < 0.05, p values were obtained by t-test.

doi:10.1371/journal.pone.0133615.g001
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Our previous study showed that intravenously (i.v.) injected PGT inhibitor, T26A, in rats
increased plasma PGE2 [21], indicating that i.v.T26A is bioavailable and systemic inhibition of
PGT can effectively raise endogenous PGs. To test whether T26A had any effects on blood
flow, we administered i.v. T26A to rats. Similar to PGE2, systemic T26A increased blood flow
in the reference limb (Fig 1A) and doubled blood flow in ischemic limbs (Fig 2A and 2B). The
combination of T26A and PGE2 tripled blood flow, bringing it almost to the level before occlu-
sion (Fig 2A and 2B). The effects of PGE2 or T26A alone lasted for about 40 minutes (Fig 2C).
However, pre-treatment with T26A prolonged the duration of PGE2 effects by more than
4-fold, consistent with an effect of T26A to prevent or significantly slow PGE2 metabolism (Fig
2C) [21]. Thus, systemic inhibition of PGT increases perfusion of peripheral tissues in
ischemia.

To explore the clinical potential of T26A under diabetic conditions, we tested the effects of
T26A and or PGE2 on blood flow in diabetic rats. In the intact hind limbs, treatment with
PGE2 or T26A resulted in 30%–40% significant increase in blood flow. The combination of
PGE2 and T26A increased blood flow to 160% that of untreated diabetic rats (Fig 2D and 2E),
indicating that diabetic rats were responding to the treatments. Occlusion reduced blood flow
to 50% of the level before occlusion (Fig 2D and 2E). PGE2, T26A or the combination returned
blood flow to 80% of the level before occlusion (Fig 2D and 2E). Therefore, inhibition of PGT
can mitigate ischemia in diabetic peripheral tissues.

To probe whether PGE2 was a molecular mediator of T26A effects on blood flow, we
assessed PGE2 levels in the circulation of both non-diabetic and diabetic rats with or without
T26A treatment. Intravenously injected T26A tripled plasma PGE2 in both non-diabetic and
diabetic rats (Fig 2F), raising plasma PGE2 in diabetic rats to a level similar to that of non-dia-
betic rats (Fig 2F). These data suggest that T26A increases blood flow, probably, via raising
endogenous PGE2.

Inhibition of PGT Accelerates CutaneousWound Healing
Adequate tissue perfusion is critical to cutaneous wound healing. To test whether enhanced
peripheral perfusion by systemic inhibition of PGT could have any effects on cutaneous wound
healing, we created cutaneous wounds on the dorsa of Sprague Dawley rats, administered i.p.
T26A once daily, and measured wound size (see experimental design in S1B Fig). In the above
blood flow experiments, T26A was administered via i.v. injection, because i.v. injection is a fast
systemic route and rats did not need to be kept alive after the experiment. In this wound heal-
ing experiment, rats needed to be alive for the duration of wound healing and the suitable sys-
temic administration was i.p. injection. I.p. T26A significantly shortened 50% wound closure
time by 2 days and shortened complete wound closure time by 3–4 days (Fig 3A and 3B). Previ-
ously, we have shown that topical T26A accelerates cutaneous wound closure in mice [18],

Fig 2. Systemic Inhibition of PGT Increases Perfusion to Distal Limb. (A) Images of representative blood
flow in hind limbs of non-diabetic Sprague Dawley rats before and after various treatments. Left hind limb of
each rat was partially occluded. 500 μL of vehicle (2% DMSO + 2% cremophor in water), or 10 μMPGE2, or
1.2 mM T26A was injected via jugular vein. (B) Statistical analysis of blood flow as percentage of blood flow
before occlusion (BO). AO, after occlusion. (C) Representative pharmacodynamics of the effects of PGE2

and T26A on blood flow presented as percentage of blood flow before occlusion. (D) Images of
representative blood flow in hind limbs of STZ diabetic rats before and after various treatments. Left hind limb
of each rat was partially occluded. 500 μL of vehicle (2% DMSO + 2% cremophor in water), or 10 μMPGE2,
or 1.2 mM T26A was injected via jugular vein. (E) Statistical analysis of blood flow as percentage of blood
flow before occlusion (BO). Blood flow was measured using a PeriScan PIM 3. For all analyses of laser
Doppler measurements the color scale was set at 0–800, and the intensity was set at 0.34. (F) Plasma PGE2.
Values are average ± SEM (n = 5). *p < 0.05, p values were obtained by t-test for E and by ANOVA test for
the rest.

doi:10.1371/journal.pone.0133615.g002
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which led to the next set of experiments. In addition to systemic T26A, we applied T26A topically
in the present rat model (S1B Fig). The combination of systemic and topical treatments resulted
in further acceleration of wound healing over that of systemic T26A alone (Fig 3A and 3B).

While it took about 15 days for the wounds to close in untreated Sprague Dawley rats, it took
20 days for wounds to close in STZ diabetic rats (Fig 3A and 3C). Systemic T26A significantly
shortened complete wound closure time in diabetic rats by 4 days. The combination of systemic
and local T26A treatments further shortened wound closure time, bringing it similar to that of
non-diabetic control rats (Fig 3A and 3C). These results demonstrate that systemic, or in combi-
nation with local, inhibition of PGT can mitigate impaired wound healing in diabetes.

Inhibition of PGT Stimulates Vascularization
Neovascularization is critical to wound healing. Histological examination revealed that rats
treated with systemic and local T26A demonstrated neovascularization as early as day 2, as
indicated by CD34 staining (Fig 4). T26A not only advanced the time point at which CD34
+ cells peaked, from day 6 to day 4 in non-diabetic rats, but also doubled the amount of CD34
+ vessels (Fig 4). After the peak time, amount of vessels started to decline as vessels
reorganized.

Neovascularization was severely impaired in wounds of diabetic rats. At day 4 the moderate
neovascularization observed in vehicle-treated non-diabetic rats was absent in diabetic rats.
The amount of vessels in diabetic rats did not reach peak level until day 8, and consequently,
the reorganization was delayed. In addition, the peak level of vessels in diabetic rats was only
half of that in non-diabetic rats (Fig 4).

Systemic and local treatment with T26A significantly improved neovascularization in dia-
betic rats. T26A treatment resulted in modest CD34 reactivity in the wound bed at day 2, but a
steady increase thereafter. The number of CD34+ cells in T26A-treated diabetic rats reached a
peak at day 6 and started declining afterwards, indicating advanced reorganization, remodeling
and healing of the wound. The peak level of vessels in T26A-treated diabetic rats at day 6 was
2-fold higher than that in vehicle treated diabetic rats at day 8 (Fig 4).

PGT Regulates Endothelial Progenitor Cell Migration
CD34+ cells are EPCs produced by bone marrow. Increased CD34+ cells at the wound site
resulting from T26A treatment suggests that systemic inhibition of PGT stimulates migration
of CD34+ cells traveling from the bone marrow to distal cutaneous wounds. To determine
whether PGT directly modulates the mobility of EPCs, we performed migration assays in pri-
mary CD34+ cells from human bone marrow. After cells were transfected with siRNAs and
subsequently reached 100% confluent, we created a 1-D gap and treated them with or without
PGE2 or T26A for 14 hours. In wells transfected with control (Ctl) siRNA and without any
treatment 38.5% of the gap closed (Fig 5A and 5C). PGE2 treatment accelerated gap closure to
82.3% at 14 hours. Treatment with T26A increased gap closure to 78.3%, similar to PGE2 treat-
ment. To verify that T26A increased cell migration in response to T26A was due to inhibition
of PGT, we transfected cells with PGT siRNA. Silencing PGT increased gap closure to 74.5%

Fig 3. Inhibition of PGT Accelerates Wound Healing. (A) Photographs of representative cutaneous wounds in non-diabetic (ND) Sprague Dawley rats and
STZ diabetic (D) rats on various days post-wounding. Four 5-mm cutaneous wounds were created on the opposite sides of the dorsa of rats. Vehicle (2%
DMSO + 2% cremophor in water) or T26A was immediately applied either systemically alone or systemically plus topically. For systemic (Sys) application,
500 μL of vehicle or 1.2 mM T26A was injected intraperitoneally immediately after wounding and once daily thereafter. For topical (Top) application, 15 μL of
vehicle or 2 mM T26A was applied to the wound immediately after wounding and every other day thereafter. (B, C) Wound closure rates of non-diabetic
Sprague Dawley rats (B) or STZ diabetic rats (C) treated with PGT inhibitor (T26A) or vehicle. Values are average ± SEM (n = 5). *p < 0.05, p values were
obtained by ANOVA test.

doi:10.1371/journal.pone.0133615.g003
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Fig 4. Inhibition of PGT Stimulates Vascularization.Representative images of CD34 (A) staining of cutaneous wounds of non-diabetic (ND) Sprague
Dawley rats or STZ diabetic (D) rats. Rats were treated with both i.p. injected 500 μL of vehicle (2% DMSO + 2% cremophor in water) or 1.2 mM T26A, once
daily, and topically applied 15 μL of vehicle or 2 mM T26A, once every other day. (B) Analysis of CD34+ cells. Numbers of CD34+ cells were counted in 5
random high power fields for each rat tissue. Five rats (per treatment) were used. Values are average ± SEM. *p < 0.05 or **p < 0.01, p values were obtained
by ANOVA test.

doi:10.1371/journal.pone.0133615.g004
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Fig 5. PGT Regulates Endothelial Progenitor Cell Migration. (A) Representative photographs of human bone marrow EPC wound migration. EPCs were
seeded on 6-well plates and transfected with either control siRNA or PGT siRNA 24 hours later. After cells reached 100% confluent, gaps were created in the
center of each well and pictures were taken. Immediately after picture taken, cells were treated with or without 100 nM PGE2 or 5 μM T26A for 14 hours and
pictures were taken again. (B) Representative EPCs migrated through the filters. EPCs were seeded on matrigel coated filters which were then inserted in
24-well plates. Twenty four hours later, cells were transfected with either control siRNA or PGT siRNA. Thirty six hours after transfection, cells were treated
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(Fig 5A and 5C). To confirm these results, we performed another migration assay, the transwell
assay. While PGE2 increased the number of migrated cells through the filter by 2.5 fold, inhibit-
ing or silencing PGT doubled that number (Fig 5B and 5D). The results obtained by these two
migration assays consistently show that PGT directly regulates EPC migration and suppression
of PGT enhances EPC mobility.

Inhibition of PGT Stimulates Re-epithelialization by Enhancing Cell
Migration and Proliferation
We performed additional histological evaluation of wound healing, including scoring the
degree of epithelial coverage of the wound bed. At day 2, non-diabetic rats treated with topical
and systemic T26A had greater re-epithelialization of the wound as compared to vehicle-
treated rats (25% coverage vs. 10% coverage) (Fig 6). At days 4 and 6, there was 40% more

with or without 100 nM PGE2 or 5 μM T26A for 8 hours. Cells on the seeding (top) side of the filter were wiped with Q-tips. Remaining cells on the bottom side
of filter were fixed with 4% paraformaldehyde at 25°C for 1 hour, and stained with 0.1% crystal violet for 1 hour. Cells on the bottom of the filter, which had
migrated cells, were counted with a 10 x objective under a microscope. (C) Analysis of EPC gap closure presented as percentage of closed gap to the initial
gap. (D) Analysis of the transwell assay of EPCs migrated through the filters. These experiments were conducted for three rounds, each round in duplicate
for each condition. Values are average ± SEM. *p < 0.05, p values were obtained by ANOVA test.

doi:10.1371/journal.pone.0133615.g005

Fig 6. Inhibition of PGT Stimulates Re-epithelialization. Representative images of H&E (A) staining of cutaneous wounds of non-diabetic Sprague
Dawley rats or STZ diabetic rats. Rats were treated with both i.p. injected 500 μL of vehicle (2% DMSO + 2% cremophor in water) or 1.2 mM T26A, once
daily, and topically applied 15 μL of vehicle or 2 mM T26A, once every other day.

doi:10.1371/journal.pone.0133615.g006
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papillary epithelial proliferation into the dermis in T26A-treated rats as compared to the vehi-
cle-treated rats. At day 8, in T26A treated wounds, more than 90% of the gap was re-epithelial-
ized over a smooth thin layer of granulation tissue, whereas in vehicle-treated wounds only
70% of the gap was re-epithelialized (Fig 6).

Epithelial migration over the wound was notably slower in wounds of diabetic rats com-
pared to control rats, as re-epithelialization did not start until after day 2. At each time point,
there was significantly less re-epithelialization in wounds of diabetic rats compared to control
rats (Fig 6). In the re-epithelialized wounds, there was less papillary proliferation of the epithe-
lium into the dermis (interpreted to be late development of hair follicles) in diabetic rats. Treat-
ment with T26A accelerated re-epithelialization at each time point. At day 8, T26A treatment
of wounds in diabetic rats resulted in 80–90% re-epithelialization and more papillary epithelial
proliferation into the dermis compared to vehicle controls (Fig 6).

To confirm that PGT regulates epidermal cell migration, we conducted in vitro wound
migration assay in HEKs in the presence or absence of PGE2 or T26. In wells transfected with
control (Ctl) siRNA and without any treatment 22.5% of the gap closed 12 hours after gap crea-
tion (Fig 7A and 7B). PGE2 and T26A increased gap closure to 67.8% and 48.1%, respectively.
To verify that T26A increased cell migration in response to T26A was due to inhibition of
PGT, we transfected cells with PGT siRNA. Silencing PGT increased gap closure to 45.5% (Fig
7A and 7B).

Additionally, we assessed PGT modulation of HEKs proliferation. Fig 7C shows that PGE2
increased proliferation of HEKs by 1.89 fold as compared to control, in accordance with litera-
ture [32,33]. Both inhibition and silence of PGT significantly increased HEKs proliferation by
1.75 and 1.69 fold, respectively. These in vitro results show that PGT directly regulates HEK
migration and proliferation.

Inhibition of PGT Increases Perfusion of Cutaneous Wounds
To determine whether the increase in vessels due to T26A-induced neovascularization (shown
in Fig 4A) had functional implications, we created 10-mm full-thickness wounds on the dorsa
of rats and measured blood flow at wound sites immediately after wounding and every other
day thereafter. Blood flow dropped to a low level after wounding. It gradually increased as the
wounds healed, reaching a peak level and returning to the basal level thereafter (Fig 8). At day
2 there was slight increase in cutaneous blood flow in vehicle treated non-diabetic control
wounds. However, T26A doubled blood flow in wounds compared to vehicle. Blood flow
reached a maximum in T26A-treated wounds at day 6 (Fig 8B), whereas it took more than 10
days for blood flow to reach maximum in vehicle-treated non-diabetic wounds (Fig 8B). Vehi-
cle- and T26A-treated wounds were 80% healed at days 10 and 6 (Fig 3A and 3B), respectively,
which correlated with the days at which blood flow in the wounds peaked. Thus, local blood
flow correlates with wound closure.

In diabetic wounds, there was no change in blood flow at day 2 (Fig 8), which is consistent
with the lack of vascularization at day 2 (Fig 4). In diabetic rats it took 14 days for blood flow to
reach peak level and peak flow was only about 70% of that measured in non-diabetic wounds
(Fig 8). Whereas vehicle did not significantly affect blood flow in diabetic wounds, T26A not
only increased peak flow, but also left-shifted the time course toward that of non-diabetic con-
trol wounds (Fig 8B). These results demonstrate that T26A-induced vessels were functional
and contributed to accelerated wound healing.
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Fig 7. PGT Regulates Human Epidermal Keratinocytes Migration and Proliferation. Representative photographs of human epidermal keratinocytes
(HEK) woundmigration. HEKs were seeded on 6-well plates and transfected with either control siRNA or PGT siRNA 24 hours later. After cells reached
100% confluent, gaps were created in the center of each well and pictures were taken. Immediately after picture taken, cells were treated with or without
100 nM PGE2 or 5 μM T26A for 12 hours and pictures were taken again. (B) Analysis of HEK gap closure presented as percentage of closed gap to the initial
gap. (C) Measurements of HEK proliferation by BrdU incorporation method. These experiments were conducted for three rounds, each round in duplicate for
each condition Values are average ± SEM. *p < 0.05, p values were obtained by ANOVA test.

doi:10.1371/journal.pone.0133615.g007
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Fig 8. Inhibition of PGT Increases Perfusion to CutaneousWounds. (A) Representative images of blood flow in 10-mmwounds on the dorsa of non-
diabetic (ND) Sprague Dawley rats or STZ diabetic (D) rats. Rats were treated with both i.p. injected 500 μL of vehicle (2% DMSO + 2% cremophor in water)
or 1.2 mM T26A, one dose daily, and topically applied 30 μL of vehicle or 2 mM T26A, once every other day. Blood flow in the wound area was measured
using a PeriScan PIM 3 immediately after wounding and every other day before fresh vehicle or T26A application. (B) Analysis of average blood flow in
wounds during healing as a function of time. The color scale for Doppler measurements was set at 0–800, and the intensity was set at 0.34. Values are
average ± SEM (n = 5). *p < 0.05, p values were obtained by ANOVA test.

doi:10.1371/journal.pone.0133615.g008
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Discussion
Peripheral ischemia has a direct adverse impact on wound healing [34]. It is strongly associated
with diabetes [30] and 46% of amputations in diabetic patients can be attributed to ischemia
[35]. In the present study, by using diabetic rats and their non-diabetic matched controls, we
identified a novel modulator of perfusion, PGT, and tested inhibition of PGT as an innovative
strategy to mitigate peripheral ischemia and correct defective wound healing in diabetes. We
found that inhibition of PGT increased arterial blood flow, promoted perfusion of peripheral
tissues, enhanced migration of EPC and HEK, and stimulated neovascularization and re-epi-
thelialization in cutaneous wounds, resulting in accelerated wound healing not only in non-
diabetic rats, but more importantly, in diabetic rats.

Perturbed prostanoid lipid profiles have been reported in humans and rodents with diabetes
mellitus. A reduced ratio of vasodilatory PGI2 to vasoconstrictive thromboxane (TxA2) has
been reported in humans [36,37], which is a critical contributor to peripheral ischemia. Low
PGE2 and or PGI2 were found in embryo, nerve and urine of diabetic rats [31,38,39]. Here for
the first time we show that PGE2 level in blood of diabetic rat is only 30% that of non-diabetic
rats (Fig 2F). In diabetic mice, we and others have shown that PGE2 is low in cutaneous
wounds [18,40].

While the upstream common synthases (COX1 and COX2) of vasodilatory PGs and vaso-
constrictory TxA2 are not altered in diabetic rodents or humans [40,41], we have found that
the transporter that mediates the metabolism / degradation of PGs, PGT, is drastically induced
by hyperglycemia in cultured dermal endothelial cells and in the skin of diabetic mice [18] and
rats (S2 Fig), strongly suggesting that it is the induced PGT-mediated PGE2 degradation, rather
than PGE2 biosynthesis, that is responsible for low PGE2 in diabetes. Systemic inhibition of
PGT by i.v. T26A raises PGE2 levels in the circulation of both non-diabetic and diabetic rats
(Fig 2F). Topically applied T26A increases PGE2 in cutaneous wounds of diabetic mice [18].
Thus inhibition of PGT can recover PGE2 and possibly other PGs in diabetes.

PGE2 and PGI2 are potent vasodilators. As degradation of TxA2 (a potent vasoconstrictor,
product of COX1 and COX2) does not require PGT mediated process [42], the induced PGT
selectively reduces vasodilatory PGs. It is conceivable that inhibition of PGT would cause vaso-
dilation. Indeed, in a separate study we found that T26A potentiated PGE2 induced vasodila-
tion of mouse aorta and reduced blood pressure in both mice and rats [43]. The vasodilatory
effect of T26A could be a significant contributor to increased perfusion in hind limb. Under
normal condition, PGs play a major role in controlling blood flow through large vessels [15].
When vascular occlusion occurs, PG synthesis and signaling are augmented, apparently in an
attempt to maintain vasodilation and flow. Under diabetic condition, peripheral arteries are at
high risk of being occlusive, limiting blood flow to distal tissues [5–8], as we show in this report
that the blood flow in hind limb of diabetic rat is only 50% that of non-diabetic rats (Fig 1).
However, applied exogenous PGE2 is able to increase blood flow (Fig 2D and 2E), indicating
that vasodilatory role for PGs is maintained in diabetes mellitus, and suggesting a strategy
wherein inhibition of PG metabolism, and thus raising the levels of endogenous PGs, would be
beneficial for tissue perfusion in diabetes. Indeed, an inhibitor of PGT was able to enhance per-
fusion of intact and occluded hind limbs of diabetic rats (Fig 2D and 2E) by increasing PGE2 in
the circulation (Fig 2F).

Note that increased blood flow from circulation to distal hind limb was a result of systemic
inhibition of PGT by i.v. T26A (Fig 2A–2E), rather than local application of T26A. PGT is
expressed in major organs and tissues including lung, heart, kidney, skeletal muscle and skin
[18,44], and in several cell types such as endothelial and epithelial cells [18,45]. While systemi-
cally administered T26A can effectively increase perfusion in the hind limb, it is not impossible
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for locally applied T26A to increase blood flow in the hind limb, as hind limb is composed of
skin, skeletal muscle, vasculatures, bone, epithelial cells and endothelial cells.

In addition to vasodilation, which facilitates movements of cells in the circulation, inhibition
of PGT directly enhances the mobility of endothelial cells and epidermal keratinocytes (Figs 5,
7A and 7B). The vessels at the wound site shown in Fig 4A were marked by CD34 staining.
CD34+ cells are bone-marrow derived progenitor cells, which are capable of differentiating
into both endothelial and osteogenic lineages under the appropriate stimulating conditions
[46]. Upon wounding the differentiation of circulating CD34+cells is directed towards the
endothelial lineage [47] and endothelial cells migrate to the wound site to increase capillary
density and stimulate neovascularization [48]. Inhibition of PGT increases vessels marked by
CD34 at the wound site (Fig 4), probably by stimulating differentiation of CD34+ cells towards
endothelial cells and by enhancing the mobility of CD34+ cells. The latter is evidenced by our
in vitro data showing that either silencing or inhibiting PGT enhances migration of primary
CD34+ cells freshly isolated from human bone marrow (Fig 5).

The effect of inhibition of PGT on migration of epidermal keratinocytes has been shown in
our previous study [18]. Here we confirm that PGT directly regulates epidermal keratinocytes
migration by utilizing siRNA technology (Fig 7A and 7B). To eliminate the concern that cells
in the gap 12 hours after gap creation could be a result of proliferation, we chose 12 hours,
much shorter than the doubling time of HEKs, which is about 26 hours [49]. During that 12
hours, neither inhibition nor silence of PGT had significant effects on HEK proliferation (data
not shown). Another reason why gap closure was not due to proliferation is that the gap was
created when cells were 100% confluent and PGE2 has no significant effects on proliferation of
confluent keratinocyte culture [32]. Similar arguments could be applied to the migration assay
of CD34+ cells. In case of CD34+ cells, we applied an additional assay, transwell assay. In the
transwell assay, migrated cells from one side of the filter to the other during 8 hours should be
solely attributed to migration, not proliferation. Together, these results indicate that PGT
directly regulates migration of both HEKs and endothelial progenitor cells.

Although suppression of PGT did not significantly affect the proliferation of confluent kera-
tinocytes, it did increase proliferation when keratinocytes were seeded at low density (Fig 7C).
Together, the effects of PGT suppression on migration and proliferation of cultured keratino-
cytes support the in vivo effects of PGT inhibition on re-epithelialization.

So far we have shown that inhibition of PGT directly increases migration in human dermal
microvascular endothelial cells [18], human endothelial progenitor cells (Fig 5), and human
epidermal keratinocytes (Fig 7A and 7B). Together, these in vitro data obtained in human cells
not only indicate that PGT directly regulates cell mobility, but also suggest that accelerated
wound healing in rodents by inhibition of PGT can be potentially translated into humans.

Increased CD34+ cells resulting from inhibition of PGT would cause enhanced vasculogen-
esis, which is one of the two vascularization processes. The other process is called angiogenesis.
We have reported that inhibition of PGT increases angiogenesis via induction of VEGF [18].
By stimulating both vasculogenesis and angiogenesis, inhibition of PGT enhances vasculariza-
tion. Furthermore, the greater amount of new vessels formed as a result of T26A treatment are
functional, as indicated by the higher level of blood flow at the wound site in T26A treated ani-
mals (Fig 8). Notice that the time for blood flow to reach peak level (Fig 8) is 1–2 days later
than the time for the amount of vessels to reach peak level (Fig 4). This is because newly formed
vessels need time to reorganize and then become functional.

Elevated blood flow at wound sites allows for the delivery of more nutrients and signaling
mediators important to wound healing. Among those molecular mediators are growth factors,
such as VEGF and platelet derived growth factor (PDGF), and hormone lipids such as PGE2
and PGI2. We have reported that local inhibition of PGT increases PGE2 and VEFG in
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cutaneous wounds in mice [18]. Here we show that systemic inhibition of PGT raises PGE2 in
the circulation in rats (Fig 2F). Together these data provide a molecular mechanism by which
PGT inhibition stimulates vascularization and accelerated wound healing.

In summary, we report a novel role of PGT in modulation of hind limb perfusion and in the
mobilization of EPCs. Inhibition of the PG reuptake transporter PGT alone, or in combination
with exogenous PGE2, appears to be a promising new approach to large vessel occlusion gener-
ally, and to wound healing specifically, especially as these two processes are altered patholog-
ically in diabetes mellitus.

Supporting Information
S1 Fig. Experimental design. (A) Design for testing the effects of PGE2 and or PGT inhibitor,
T26A, on peripheral perfusion. Hind limb ischemia was created by partial occlusion. Blood
flow was measured before occlusion (BO) and after occlusion (AO). Either vehicle (Veh), PGE2
or T26A was injected via jugular vein after AO and blood flow was measured after injections.
(B) Design for testing the effects of PGE2 and or T26A on cutaneous wound healing. Cutaneous
wounds were created on the dorsa of rats. Intraperitoneal (i.p.) and or topical (Top) T26A or
Veh was applied immediately after wounding. Thereafter, i.p. T26A or Veh was administered
once daily until wounds closed. Top T26A or Veh was administered once every other day until
wounds closed.
(DOCX)

S2 Fig. PGT is induced in skin of diabetic rats. PGT mRNA expression levels in skin of
non-diabetic Sprague Dawley and STZ induced diabetic rats (n = 5 per group), Values are
average ± sd. ��p< 0.01 by t-test. Total RNA was extracted from skin of rats with Trizol. 1μg
of total RNA was used to synthesize cDNA with RTIIIase and OligodT from Life Technologies.
Quantitative real time PCR using the Sybrgreen master mix was performed by a 7900HT PCR
machine from Applied Biosystems. PGT (rat) primers: 5’TTTATGGCCTCCTCATCGAC3'
(forward) and 5'CTGCAGGCTGTATTCCCTGT3' (backward). Beta-actin (rat) primers:
5'AAGTCCCTCACCCTCCCAAAAG3' (forward) and 5'AAGCAATGCTGTCACCTTCCC3'
(backward).
(DOCX)
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