
����������
�������

Citation: Solé, R.; Seoane, L.F.

Evolution of Brains and Computers:

The Roads Not Taken. Entropy 2022,

24, 665. https://doi.org/10.3390/

e24050665

Academic Editors: David Wolpert

and Jessica Flack

Received: 28 February 2022

Accepted: 3 May 2022

Published: 9 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Perspective

Evolution of Brains and Computers: The Roads Not Taken
Ricard Solé 1,2,3,* and Luís F. Seoane 4,5

1 ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Dr Aiguader 88, 08003 Barcelona, Spain
2 Institut de Biologia Evolutiva, CSIC-UPF, Pg Maritim de la Barceloneta 37, 08003 Barcelona, Spain
3 Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
4 Departamento de Biología de Sistemas, Centro Nacional de Biotecnología (CSIC), C/Darwin 3,

28049 Madrid, Spain; lf.seoane@cnb.csic.es
5 Grupo Interdisciplinar de Sistemas Complejos (GISC), 28049 Madrid, Spain
* Correspondence: ricard.sole@upf.edu

Abstract: When computers started to become a dominant part of technology around the 1950s, funda-
mental questions about reliable designs and robustness were of great relevance. Their development
gave rise to the exploration of new questions, such as what made brains reliable (since neurons can
die) and how computers could get inspiration from neural systems. In parallel, the first artificial
neural networks came to life. Since then, the comparative view between brains and computers has
been developed in new, sometimes unexpected directions. With the rise of deep learning and the
development of connectomics, an evolutionary look at how both hardware and neural complexity
have evolved or designed is required. In this paper, we argue that important similarities have resulted
both from convergent evolution (the inevitable outcome of architectural constraints) and inspiration
of hardware and software principles guided by toy pictures of neurobiology. Moreover, dissimilar-
ities and gaps originate from the lack of major innovations that have paved the way to biological
computing (including brains) that are completely absent within the artificial domain. As it occurs
within synthetic biocomputation, we can also ask whether alternative minds can emerge from A.I.
designs. Here, we take an evolutionary view of the problem and discuss the remarkable convergences
between living and artificial designs and what are the pre-conditions to achieve artificial intelligence.

Keywords: evolution; brains; deep learning; embodiment; neural networks; artificial intelligence;
neurorobotics

1. Introduction

With the evolution of life came cognition [1]. As soon as cells were able to evolve into
autonomous agents, the combination of receptors gathering signals and mechanisms of
response to those signals rapidly transformed into rich molecular networks. Those networks
provided the basis for the smaller scale of computation: survival requires exploiting
resources in a reliable way that allows reproduction. Since this is a combination of growing
and being robust against fluctuations over a minimal time window, computation was tied
to predictive power [2–5]. It is this power what actually might foster the evolution towards
brains [6], large and small: in order to reduce the uncertainty of external fluctuations,
prediction is a convenient faculty. If we follow the steps towards cognitive complexity that
predate the emergence of brains, several key ingredients seem necessary. Looking at their
evolutionary emergence is relevant for our discussion concerning the space of possible
cognitive networks. One of them was the invention of neurons: specialized cell types with
a marked elongated, branched shape capable of establishing connections. In most cases,
these are polar, unidirectional structures, with response functions that involve nonlinear
thresholds. The power of neurons became a reality as soon as groups of them became
interconnected, leading to the first neural networks. Among the key innovations associated
to these early assemblies, interneurons must have been a crucial step towards information
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processing beyond the sensor–actuator chain. With the Cambrian explosion of life, the rise
of animals favored the development of sensory organs, learning, and movement [7].

All these factors came together within a novel developmental design: brains emerged
within bilateral animals, and those newcomers actively explored their worlds, moving
around. A compelling proposal concerning the origins of brains is, in fact, the so-called
moving hypothesis: it posits that the active exploration of the external world fostered the
evolutionary path that led to brains [6]. In a novel biosphere dominated by predator–prey
arms races, brains were an optimal solution to deal with information. If we fast-forward in
time, several important changes took place paving the way towards complex brains. This
is particularly dramatic for human brains: a rapid expansion during evolution facilitated
the addition of microcircuit modules to a multilayered neocortex [8].

Turning our attention to machines, we can see how inventors and scholars have
repeatedly drawn inspiration from nature’s cognitive systems. Sometimes through outright
imitation, as in the case of mechanical automata (Figure 1a). Others by focusing efforts on
human-specific cognitive problems (e.g., chess, Figure 1b) [9]. In yet other cases, through
converging metaphors—e.g., from Cajal’s flows within neurons and across neural circuits
to technological networks that enable the flow of information (Figure 1c). The exchange
of ideas between computational designs and theoretical neuroscience has been constant.
Prediction too has been a major force in the development of a large part of technology,
particularly after the rise of Information Technology from the 1950s [10]. In parallel with
the development of the theory of computation, the first steps towards a theory of neural
networks came to life, starting from early comparisons between brains and computers.

(a) (b) (c)

Figure 1. Technological metaphors used to describe diverse aspects of cognitive complexity before
electronic computers. (a) Mechanical automata able to write using a set of connected gears that
could be changed to execute diverse writing or drawing tasks. (b) Leonardo Torres-Quevedo 1910-
prototype of his electromechanical chess-playing automaton. (c) Tangled network of interconnections
in a telephone network board.

The first computers were plagued with problems associated to faulty units: vacuum
tubes were prone to failure. Far from the reliable nature of brains, where neurons can
die with no major consequences for the system-level performance, single-element failures
could cause large disruptions. The comparative analysis between brains and computers (or
computational analogies of brains) has been a recurrent topic since von Neumann’s book
The computer and the brain [11]. In the original formulation, the main problem was how
to design reliable computers made of unreliable parts. Such approximation was largely
forgotten within computer science with the rise of integrated circuits, although the problem
became a central topic in the domain of neural networks. With the potential of simulating
neural systems some of the early metaphors of memory involved strong analogies with
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magnetic materials. Such analogies would be developed in depth with the use of the
statistical physics of spin glasses as computational substrates [12,13]. These similarities
eventually provided the basis for the attractor picture that is now widespread.

Over the last decade, a new wave of excitement has emerged with the rise of Deep
Learning networks [14]. These descendants of the early multilayer neural networks de-
veloped in the 1990s have been accompanied with a considerable set of expectations (and
hype). Because of their remarkable power to deal with specific problems far beyond the
capacities of humans, claims have been repeatedly made suggesting that larger systems
will eventually achieve cognitive skills similar (if not greater) than human brains, including
consciousness or awareness. (See the recent stir caused by OpenAI’s chief scientist, Ilya
Sutskever, claiming that “it may be that today’s large neural networks are slightly con-
scious”. https://lastweekin.ai/p/conscious-ai?s=r, accessed on 2 May 2022). However, as
it has happened before many times (the winter–spring cycles of A.I.), artificially intelligent
systems are still rather far from our general intelligence [15], and, indeed, they often appear
brittle when taken even slightly out of their well-controlled closed worlds [16].

All this mimicry, inspiration, and convergences bear some pressing questions: do
natural cognitive designs exhaust the space of the possible? Will every artificial cognitive
solution ever found correspond to an earlier invention in nature? If so, then understanding
natural cognition should be sufficient to learn everything that there is to know about
intelligence and cognition. Might comprehending nature be necessary as well—i.e., does
every cognitive solution respond to some natural challenge or feature that we need to
understand in order to ultimately grasp cognition? If so, which is a minimal set of such
challenges and features that can generate the range of cognitive designs? It is also possible
that nature is not so restrictive and all-encompassing. This would leave a large elbow room
for artificial cognition, human invention, and open-ended progress. Yet, more wondrous
questions are also put forward: what solutions might have been missed in the natural
history of cognition? Are there artificial cognitive designs that cannot be reached by extant
evolutionary forces alone?

In this paper, we argue that very relevant lessons can (and must) be obtained from
a comparative analysis between evolved and designed cognitive systems. On the one
hand, there are several non-trivial observations that suggest a limited repertoire of design
principles that pervade and constrain the space of the possible: evolved and artificial
architectures often converge. Secondly, there is a question regarding certain dynamical
patterns exhibited by living systems that seldom appear in artificial neural networks. Brains
seem to operate close to critical states: is this a relevant trait to be considered when building
artificial counterparts? Third, we will consider a list of attributes of human brains that
define a gap between our species and any other living organism and we will see why A.I.
systems might require to include evolutionary dynamics to get there.

2. Contingent versus Convergent Evolution

Digital culture historian Kevin Kelly suggested in an essay on A.I. that future develop-
ments would allow us to create “artificial aliens” [17]. Specifically, Kelly conjectured that
ongoing developments within this field will eventually create the conditions for new kinds
of intelligences different from human ones:

Some traits of human thinking will be common (as common as bilateral symmetry,
segmentation, and tubular guts are in biology), but the possibility space of viable minds
will likely contain traits far outside what we have evolved. It is not necessary that this
type of thinking be faster than humans, greater, or deeper. In some cases it will be simpler.
Our most important machines are not machines that do what humans do better, but
machines that can do things we can’t do at all. Our most important thinking machines
will not be machines that can think what we think faster, better, but those that think what
we can’t think.

Such possibility is, from an evolutionary perspective, very appealing. The problem of
how cognitive complexity emerged is a difficult one because behavior does not leave fossils
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(except in some limited and indirect fashion) and little can be said about intelligence. In
this context, an alternative approach to standard comparative and phylogenetic approaches
would be the study of “synthetic minds” resulting from engineering neural networks or
evolvable robots [18]. In a nutshell, by designing or evolving artificial alternatives to
living matter, it could be possible perhaps to recreate the conditions for minds (and even
consciousness) to emerge. In principle, it can be argued that multiple possibilities, perhaps
including these “alien” minds pointed out by Kelly, might be found. Is that the case? Is
there a space of endless possibilities inhabited by artificial intelligences orthogonal to those
found in nature?

Two extreme possibilities can be envisaged. In one, consistent with Kelly’s picture,
completely new forms of intelligence might be possible. This situation fits the picture of
evolutionary change as a highly contingent process with many potential paths available.
Contingency was particularly advocated by the late Stephen J. Gould [19] who suggested
that, if we would be able to re-run the tape of evolution, a completely different biosphere
(and different minds) would be obtained. The human brain actually tells a story of tinkering
associated to its nested origins.

However, the study of development reveals that very strong constraints might deeply
limit the potential paths that can be followed. This is illustrated for example by the
architecture of camera eyes that are found across many biological groups, from some single-
cell organisms or jellyfish to cephalopods or vertebrates. A remarkable design principle is
always at work despite their totally independent origins [20]. If we look at the evolution of
cognition in nature, what do we see? Do minds converge?

A remarkable observation from a comparative analysis of brain structures is that
radically different topologies seem to share very similar functionalities [21]. A perfect
illustration is provided by birds versus mammalian brains. Their early neural organization
diverged 340 Myr ago, evolving in completely independent ways. And yet, their obvi-
ously different neural structures do not generate radically different minds [21–23]. Such a
convergence of minds is supported by the common traits of behavioral patterns, such as
associative learning, predator avoidance or decision making mechanisms that indicate the
presence of a common cognitive toolkit [24,25]. These commonalities in terms of cognitive
repertoires could in fact be shared by aneural systems [26]. Divergent architectural brain
designs are found all over the tree of life. Dolphins, for example, have brains that depart
from primate ones, showing a combination of archaic features combined with a massively
expanded cortex [27]. However, despite the differences, they display complex intelligence,
communication skills, and social life. Similarly, the brains of octopuses (members of the
class of cephalopods that includes squids and cuttlefish) provide a further instance of
convergent traits despite being invertebrates [28]. This group has evolved brains with
multilayered cortical maps as well as a unique 8-fold extra neural cluster that autonomously
controls the arms. Because of their shape-shifting nature and distributed neural autonomy
of the arms, these organisms have been often labeled as “alien” but they perform cognitive
tasks similar to those displayed by other animals.

Behind each evolutionary convergence, we can often find shared external pressures
(e.g., the need to deal with a same niche) or, more fundamentally for cognition, a deep
mathematical principle or constraint. Such key operating principles demand that certain
solutions are found over and again by biological brains and their technological counterparts.
Let us study some of these commonalities and the crucial computational principles that
bring about such design convergences.

2.1. Threshold Units

The new wave of computing machines towards the mid 20th century provided the
right technological context to simulate logic elements similar to those present in nervous
systems [29]. Theoretical developments within mathematical biology by Warren McCulloch
and Walter Pitts revealed one first major result: it is possible to define units of cognition
(neurons) under a logical framework [30–32]. These formal neurons were described in terms
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of threshold units, largely inspired by the state-of-the-art knowledge of real excitable cells.
Not surprisingly, the early works of Walter and Pitts had to do with threshold neurons and
their mathematical description [33]. Over the last decades, major quantitative advances
have been obtained by using a combination of neuron-inspired models with multilayer
architecture and novel hardware improvements combined with massive use of training data.
The growing understanding of single-neuron dynamics suggests that deeper computational
complexity might be at work [34]—but let us focus for a moment on the simplest models.

The pictorial conceptualization behind the McCulloch–Pitts model is sketched in
Figure 2a,b. The formal neuron shown here (Figure 2b) is a simple Boolean system. Its
state, Si ∈ Σ, takes one of two values: Si ∈ Σ ≡ {0, 1} (a description of neurons as spins,
Si ∈ Σ ≡ {−1,+1}, is often convenient to derive potential energies for formal neural
circuits). These two states are commonly associated to neurons resting (inactive) or firing
(sending signals to others). Formal neurons react to incoming signals from a set of N presy-
naptic units. Its response is a sudden activation if a weighted sum of the inputs is larger
than a threshold [35–37]. While activation is all-or-nothing, weights, ωij, are continuous
and tell us how much the state of a presynaptic neuron j affects postsynaptic neuron i
(thus modeling the strength of connections). They can also be positive or negative, hence
implementing excitation and inhibition. In the McCulloch–Pitts approach, postsynaptic
neuron Si integrates incoming signals as:

Si(t + 1) = σ

(
N

∑
j=1

ωijSj(t)− θi

)
. (1)

The additional parameter, θi, defines the neuron’s threshold. The nonlinear function
σ(x) is 1 if its argument is positive and 0 otherwise. Thus, Si fires if the weighted sum
of presynaptic inputs is larger than its threshold. The nonlinearity introduced by σ(·)
implements the all-or-none neural response. Alternative implementations use smooth step
functions—e.g., σ(x) = 1/(1 + exp(−βx)), where β (an inverse temperature) controls how
much the nonlinearity approaches the step function as β→ ∞.

McCulloch and Pitts crucially showed that formal threshold neurons can build any
logic Boolean circuit. A direct consequence is that brains, or at least their Boolean represen-
tation, can execute at least any logic operation that computers can perform. The elegant
picture emerging from the McCulloch–Pitts model of a formal neuron is a powerful one.
They broke new ground by showing that there was a neural analog to logic circuits and
provide an important message concerning the power of brains as computational systems.
Is this enough to get close to the complexity of brains? The development of ANN has
revealed the enormous potential of so-called semi-symbolic artificial intelligence, but their
achievements are only a tiny subset of the possible.

Are there alternative ways of designing cognitive networks that are not grounded in
threshold-like units? This is a particularly relevant question, since advances in cognitive
neuroscience and in particular artificial neural networks are indeed inspired by basic
units exhibiting such kind of behavior. There is in fact another instance of threshold-
like networks that have evolved in living systems: the webs of gene–gene interactions
that rule the dynamics of cells. These so-called gene regulatory networks have also a long
tradition that starts in the aftermath of cybernetics and is grounded in a picture of gene–gene
interactions similar to the McCulloch–Pitts model [38–41]. Here, too, information exchanges
are mediated by mechanisms that have a different molecular nature but share a fundamental
commonality: responses are typically mediated by threshold-like response functions.
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Figure 2. Convergent design principles in living and computational systems. In (a), a pyramidal
neuron is shown, to be compared with the toy model of a neuron, as suggested by McCulloch and
Pitts (b) where the minimal components are preserved at the logic level. Here, a set of “input neurons”
S1, . . . , Sn send their signals to neuron Si where the sum Σ of all inputs, weighted by their specific
links ωki, is performed and compared with an internal threshold number θi. The decision of firing
or not is then made by means of a threshold function ϕ. Complex tasks can be achieved by using
layered ANN structures, which are characteristic of Deep networks (c) resembling those found in
the brain cortex (d). In both VLSI circuits (e) and brain connectomes (f), a nested hierarchy has been
shown to exist, displaying common statistical laws, such as Rent’s rule. This rule establishes that
the amount of connections C between elements in a sub-system of size N with the rest of the system
scales as a power law C ∼ Np, with p ∼ 0.8 in both neural and VLSI circuits.

2.2. Hierarchical Processing of Sensory Inputs

The second half of the 20th century saw quick advances regarding natural visual
processing—from Hubel and Wiesel’s identification of V1 neurons responding to light bars
tilted at different angles [42,43], to our modern understanding of visual cortical regions
meshed in a complex network of hierarchical and parallel processes [44–46]. We now have a
rather complete view of how static visual stimuli are reconstructed: in the retina, edges are
localized by ganglion cells that integrate information about spatial gradients of light [47,48].
This continues in the primary visual systems, where different neurons (such as the ones
discovered by Hubel and Wiesel) respond to bars of light of different sizes and at different
locations across the visual field. These are building blocks of visual percepts that are later
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assembled, in higher visual cortices, into geometrical shapes and, eventually (as color is
added), into the refined objects that we perceive.

This process is paralleled by modern technology. By design, edge detection has long
been mimicked by filters for image processing [49,50], and a hierarchical organization
was capitalized by early ANN [51]—a choice inherited by state-of-the-art Convolutional
Neural Networks (CNN) [52,53]. Not so much by design, learning algorithms shape the
computational roles and organization of layers across these hierarchies, often leading to the
convergence of individual receptor fields, e.g., of biological neurons and units of parallel
computer vision systems [54]. Some modern CNN show a broader convergence with the
biological visual processing pathway [55–58]. After CNN were trained in object recognition
tasks, individual units were identified whose activity correlated with that of real neurons
in the ventral visual stream of humans performing the same task. This suggests that both
natural and artificial systems converge on some computational steps necessary for visual
recognition. Similar convergences are observed for auditory processing, as activity of CNN
trained on auditory tasks can predict neural activity in the corresponding cortices [59], or
for networks that predict fMRI and MEG responses during language processing tasks [60].
Cutting-edge developments in artificial visual systems incorporate ideas from natural
language processing such as transformers or local context embedding [61,62]. Researchers
are still struggling to understand precisely how these mechanisms operate, or why they
achieve such high performances. Might these ideas actually depart from computational
principles common across neural systems? While this possibility remains open, note that a
hierarchical mode of operation seems a constant even in the most novel architectures.

What fundamental mathematical principles might underlie the evolutionary con-
vergences just outlined? A possibility is that both brains and CNN are tapping into
some essential, objective structure of input stimuli. Using models of interacting spins,
Stephens et al. [63] derived effective statistical physics of natural images, and found that
edge-detecting filters (such as the ones in the retina and early layers of CNN) are the
simplest, most salient features. Might similar statistical relevance in input signals explain
successive layers as we trade simplicity for salience? A way to test this is by applying
Stephens’s approach repeatedly, at several levels of the visual hierarchy—as implemented,
e.g., for language features [64].

2.3. Wiring Cost Universals

A very different kind of convergent design involves the presence of optimal wiring
principles in both brain and very large scale integrated (VLSI) circuits. Vertebrate brains,
and the human brain in particular, are equipped with a very efficient architecture under
strong packing constraints [65] that are followed by brains [66]. This close relationship
between integrated circuits and neural systems is provided by the so-called Rent’s rule,
which defines a power law in networks that exhibit hierarchical modularity. Assuming that
we partition the system into sub-systems of size N, the rule establishes that the number of
connections C linking the subset with the rest of the system scales as

C = 〈k〉Np, (2)

where 〈k〉 gives the average number of links per node, whereas 0 ≤ p ≤ 1 is the so-called
Rent’s exponent. This is characteristic of fractal objects (where the basic pattern is repeated
at different scales) and, thus, an indication of the presence of hierarchical order. When
this method was applied to neural networks, a striking convergence was found. Both the
neural web of the nematode C. elegans and human cortical maps shared a Rent’s exponent
p close to what is the expected value for an optimally efficient hierarchical system. Such
convergence that shares many properties in common with VLSI circuits, illustrates the role
played by cost constraints in promoting convergent designs [67,68].

State-of-the-art design of hardware networks and microchips are pushing the limits
regarding space and other constraints—e.g., some circuits must operate within tolerable
latencies [69]. Machine learning techniques (e.g., reinforcement learning) might soon
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take over the manufacturing of new architectures [70]. Will these new generations of
designs follow Rent’s rule as well? If this and other similar regularities emerge out of the
underlying task (and not from the design process), we propose that convergences and
(more interestingly) deviations from such laws would indicate whether the landscape of
computational designs is being expanded in actual novel ways.

2.4. A Few Building Blocks of Dynamical Systems Enable Complex Cognition

Studying Recurrent Neural Networks (RNN) and certain cortical circuits as dynamical
systems suggests that simple mathematical principles underlie complex cognition as well.
Attractors, saddle nodes, and limit cycles of such complex, high-dimensional systems con-
stitute a dynamic backbone that guides neural activity towards low-dimensional manifolds.
Forces behind cognitive processes become readily accessible—thus opening “the black
box” [71].

The phase diagram in Figure 3a shows an attractor (filled circle), a saddle node (empty
circle), and an unstable fixed point (shaded circle) surrounded by a limit cycle (red). This
depicts, qualitatively, the phase diagram of a leaky integrate-and-fire neuron. In real
neurons, membrane potential is changed by currents injected from presynaptic axons,
while recovery is driven by ion fluxes across the membrane that reset the neuron to its
resting state (attractor). Noise or injected currents (of either sign) move the system around
the attractor, sometimes towards the saddle node, which separates two dynamical regimes:
at its left, the system returns to resting; at its right, dynamics are thrust around the limit
cycle—a spike. Note how the dynamics around the saddle node are attractive along the
vertical direction and repulsive along the horizontal one. For such integrator neurons, the
saddle node mediates the “decision” of whether to spike or not by channeling trajectories
along a single line that condenses all relevant information.

Membrane potential

M
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e
 r

e
co

v
e
ry

a b

Figure 3. Attractors, saddle nodes, and repellers in the phase diagram of a dynamical system.
(a) Phase diagram of a spiking neuron. A saddle node attracts trajectories along the vertical direction
and splits the horizontal one in two diverging trajectories. Thus, it mediates the decision of whether
to spike or not. (Plot inspired by [72]). (b) Attractors of the dynamics of a RNN partition the phase
space into attractor basins that store 23 bits of information. Saddle nodes mediate trajectories that
diverge towards each attractor depending on the patterns of bits that need to be stored. (Panel
adapted from [71]).

Early experiments on stimulation of real axons found that spiking behaviors always
fell within a few classes [73,74]. It turns out that there are just a few ways in which
attractors, saddle nodes, and limit cycles can interact in the phase diagrams of spiking
neurons [72,75–78]. These explain integrator and resonator neurons (the later responding
latency, rather than intensity, of input pulses), which pretty much exhaust the range of
observed spiking classes [72]. Such simple decisions (whether to spike, whether to do it
repeatedly, whether to do it at a fixed or variable firing rate) are thus mediated by a small
dynamical alphabet.

Sussillo and Barak (2013) studied whether similar elements mediate decision making
in RNN trained to perform different tasks. These networks are much more complex that
spiking neurons, and their activity moves around high-dimensional spaces. They localized
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fixed points (both attractors and saddle nodes) numerically, and found that they partition
the phase space according to the learned task. Figure 3b shows the backbone of an RNN
that stores the last input (+1 or −1) of three independent neurons (thus, it must store
23 patterns, each in a different attractor). In these and other RNNs, saddle nodes tend to
be stable along most orthogonal directions except one. Thus, as for the integrator neuron,
they channel all unimportant degrees of freedom towards one-dimensional trajectories
(depicted in Figure 3b) that capture the relevant variables for the cognitive process.

Similar principles underlie some decision making processes in humans. Collective
dynamics of cortical networks appear confined to low-dimensional manifolds [9,79–81],
suggesting a channeling of activity towards useful cognitive regions. By combining neural
data on a context-dependent decision task with RNN models, similar dynamical backbones
can be uncovered [82,83].

2.5. Learning, Learning to Learn—Meta-Learning

Learning is a problem in which we saw impressive, yet irregular progress. The puzzle
shows two distinct scales, from the microscopic to overarching principles, which we cannot
fit yet in an all-encompassing picture. We know the details of memory formation in
individual synapses [84], which build associations using Hebbian (”fire together, wire
together”) reinforcement [85]. We also know several algorithms to implement similar
plasticity in formal models of neural networks, with different strategies often giving rise
to distinct cognitive frameworks [12,13,86]. In these algorithms, global information about
system (brain or ANN) performance is precisely deployed to individual synapses [87]. In
the cornerstone backpropagation algorithm [86], the chain rule of the derivative computes
the causal contribution of each synaptic weight towards a global output error—thus,
connections can be precisely corrected. This method is incredibly successful, as shown by
recent ANNs with super-human performance in complex games [88–91].

While we understand functioning microscopic mechanisms and overarching principles
for learning, we do not comprehend how learning descends from the complex, symbolic
framework to the synaptic scale. There are serious issues concerning how the brain could
implement the algorithms that solve these problems in machines [87]. Naive backpropaga-
tion would demand exact, symmetric backward paths to every synapse. Recent advances
suggest solutions enabled by the generalizing and plastic abilities of the brain [87,92]. Un-
der certain circumstances, if we deliver fake error derivatives (as a fixed, randomly weighted
combination of global errors) to synapses, they can first adapt themselves to making these
randomly weighted signals useful, and then proceed with learning as usual [87,93].

Problems become more pressing in Reinforcement Learning (RL) [94]. In RL, scenarios
and rewards change as a response to agent actions. Feedback might arrive late in time. The
problem of credit assignment affects not only individual synapses, but also representations
of earlier, fading states. To implement RL, some form of time travel (see below), even if
deeply unconscious, must take place. Evidence shows that, in mice, hippocampal place
cells replay recent walks through a maze in reverse—a purported mechanism (and elegant
solution) to assign credit to all states that contributed to the eventual reward [95–97].

The prefrontal cortex (PFC) seems a paramount site of RL in humans brains. Within
a broader network (including basal ganglia and the thalamus), PFC implements meta-
learning and generalization by combining two coupled loops of RL [98,99]. An outer RL
loop allows PFC to learn broad classes of models, while the internal loop allows PFC to
converge upon a model within the class that explains current input. This convergence
happens within very few examples—also for inputs derived from models within the family
but not previously shown to the network. Furthermore, this convergence happens without
further modifications to PFC weights. This implies that memory about a current model is
not stored as synapse changes, but as fading states of the network dynamics. Because of
this, this mode of learning happens at the speed of network operation, not at the slower
rate of network learning.
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3. The Gap

The goal of building an artificial intelligence, as defined by the founders of the field,
is far from being achieved. Great expectations were generated by breakthroughs in a
diverse range of domains involving specific problem-solving. However, the achievement of
human-like intelligence, or some alternative cognitive system able to deal with some of the
crucial ingredients associated to the gap, is far from close. Larger multilayered networks
are not enough to get there, and one direction to look has to do with our initial discussion
concerning evolutionary convergence. In this context, although evolutionary algorithms are
used in A.I., evolutionary arguments are too often ignored within the A.I. community. In
this section, we consider some key qualitative traits that make human minds singular [100],
and show how these features might constrain machine intelligence expectations. Table 1
summarizes the most salient similarities and differences, thus outlining our comparative
approach to brains versus machine evolution.

Table 1. Comparative analysis of human and non-human (NH) vertebrate brains, standard deep
artificial neural networks, and evolved neurorobotic agents. This table highlights the current chasm
separating living brains from their computational counterparts. Each item in the non-human is
intended to reflect a characteristic quality, which does not reflect the whole variability of this group
(which is very broad). For the DANN and robotics columns, there is also large variability and our
choice highlights the presence of the given property at least in one instance. As an example, the
wiring of neural networks in neurobotic agents is very often feedforward, but the most interesting
cases studies discussed here incorporate cortical-like, reentrant networks.

Human Brains NH Vertebrate Brains Deep AN Networks EVOL-Neurorobotics

Wiring Hierarchical-nested Hierarchical-nested Feed-forward FF, programmed

Basic units Neurons Neurons Threshold units Threshold units

Internal dynamics Critical Critical Point attractors Sensorimotor control

Time travel Yes Limited None None

Generalisation Yes Limited No No

Language Syntactic Simple None Proto-grammar

Meta-learning Yes Limited Learning To learn None

Mind readers Yes Limited No Emotion detector

Right 6= wrong Yes Yes Built Ethics Built Ethics

Extended mind Vast Limited No Embodiment

Social Learning Dominant Limited No Imitation learning

3.1. Language

Language is a complex system itself, and has a network organization that includes mul-
tiple interacting layers [101,102]. Other species posses complex communication systems,
but none of those shows recursivity—actually, no other species seems able to process recur-
sively organized sequences [103]. This feature ultimately confers open-ended expressive
capabilities to human language [104].

It has been argued that language has not evolved as a communication means, but
as an advanced representation system [105,106]. This might have been triggered when
facing, with an advanced brain, some evolutionary pressures common to other eusocial
animals [107]. Such pressures would demand displacement: the ability of a signal to
represent arbitrary events not immediately present. This problem is solved by many species
(e.g., ant pheromones indicate a non-present reward), but Bickerton arguedthat this feature,
planted in the much richer hominid brain, would kick-start an irreversible process towards
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full-fledged language. Alternative, more gradualistic views of language evolution assign
perhaps even greater roles to evolutionary pressures [105,108–110].

The final stage of language is irreducibly complex, and it hardly leaves intermediate
fossils in evolution nor in development. The closest to a language fossil is a debated proto-
language form that arises in individuals who are trained late, or that emerges as a chimera
of co-habitating tongues [104,107]. However, this seems an unstable cognitive solution:
children of proto-language speakers readily complete it into a full-fledged language. This
again suggests an irreversible evolution as language complexity crossed some threshold—
as suggested by Bickerton.

As it evolved, language co-opted, or tapped into 15 circuitry for sequence represent-
ation [103]; auditory processing, including complex stimuli such as music [111] and motor
control [109,110,112], among others [105,107]. It also sprawled a semantic network present
all across the neocortex [113,114]. The most prominent regions for language implementation
sit usually at the left hemisphere, around the Sylvian fissure [115–120], thus have ready
access to vital cortices (auditory, motor, etc.). This neural substrate appears to be very
similar across individuals and languages [121]. Besides these commonalities in their
neural implementation, different tongues seem to share other universal traits such as their
productivity [122] and some accounts of efficiency [123]. Notwithstanding the purported
universalities, linguistic codes throughout the world present an astonishing variety [124].

Another feature common to all tongues across this huge diversity is ambiguity—a
rather counter-intuitive trait. Animal communication codes are not ambiguous, as mis-
taken calls can be fatal [104]. Computer languages cannot accept polysemous instructions
either. And yet, ambiguity is ever present in human language [125]. A minimal model
of communication codes that simultaneously optimizes conflicting features suggests that
ambiguity enables large expressive power with smaller vocabularies [126,127].

Ambiguity also enables semantic accessibility. Semantic networks connect words that
are related through their meaning (usually, by being synonyms). They can be derived,
e.g., from curated linguistic corpora [127–129] or from free-association experiments [130].
Semantic networks present a scale-free and small-world structure provided that polysemy
is included. Scale-free graphs are dominated by a few large hubs (central concepts that
link to many others), while most words only have a few connections. This places some
constraints on how language webs can be implemented in neural hardware [102,131],
suggesting that a statistical regularity hides a relevant constraint of language evolution.
Small world is defined by networks with a high clustering (i.e., abundant triplets of
interrelated concepts—thus having abundant local connections) and small average distance
between nodes. Thus, polysemy makes semantic networks easy to navigate through a
search by association [125,132].

Most approaches to implement artificial language attempt to manually hard-wire
some overall computational, syntactic traits, or to infer grammars from large corpora.
However, alternatives exist that take seriously the relevance of Darwinian evolution in
the origins of language. Notably, Luc Steels’s Talking Heads experiment [133–136]) allowed
to develop setups with embodied robots that converse about an external world. Steels
capitalized on Fluid Construction Grammars [137], a framework that includes ambiguity
while managing combinatorial explosions—a key aspect of syntax. As robots exchange
appreciations about their external world, their grammars, syntax, and semantics mature
and their understanding of the environment becomes sharper.

It might be possible to build human-like language by design. However, if Bicker-
ton’s suggestion of an irreversible evolution under the appropriate circumstances are true,
setting up evolutionary frameworks for artificial minds might ease the work. Alterna-
tively, since artificial cognitive systems are different from humans, we can wonder what
effects such evolutionary pressures might have on them—what kinds of communicative or
representation systems such dynamics might bring about.
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3.2. Time Travel

We are time travellers, able to locate ourselves in time by storing past events in multiple
layers of detail while being able to imagine multiple alternative futures [138]. The past
is reached thanks to episodic memory (which is autobiographical in nature) and mixed
evidence suggests that animals might have a rather limited capacity to remember personal
episodes [139,140]. No current artificial system has this ability; although many features
such as goal-directed behavior, planning or causation require time representation.

The powerful capacity of brains to explore possible futures is not reducible to simple
rules of forecasting, which were likely present in early stages of brain evolution. This ability
seems enhanced (if not enabled) by the language capacity—the displacement property (to
represent scenarios not currently available) is naturally extended into imagining futures.
While non-human animals have a limited ability to plan the future, it does not come close
to the human capacity that language brings about. In evolutionary terms, predicting future
events has been a major force towards cognitive complexity: reducing environmental uncer-
tainty can largely counterbalance the costs of a cognitive apparatus [5,6]. Past recollection
and generation of possible futures seem intimately connected, as the same areas that are
used to recall past events have been co-opted to plan future events and ultimately to create
alternative futures [141].

So far, the time dimension of cognition is barely represented within neurorobotics,
where research focuses mainly on the spatial extent of sensory information. The reason
is the preeminent role played by information processing associated to sensory devices,
whereas the role of time is limited to find out the next possible action. Implementing
temporal cognition is being recognized as a missing component in neurorobotics [142]. In
any case, early work on time representation in connectionist models already indicated that
recurrent networks might be a necessary condition [143] and a precursor component of
complex language is used by a symbolic mind.

We expect Reinforcement Learning to be the branch that most early explores time
traveling—as policies extend in time. In recent breakthroughs, RL agents first elaborate
internal representations of their external world [144,145]. This allows a limited forecasting,
and even dreaming worlds over longer periods [144]. This way, policies are better informed,
improving performance. These models based their internal representations (and limited
time travel) in the simplest correlations between sensory information (pixels in a screen
over time). Meanwhile, human mental models include proper objects and agents causally
related. It is the extrapolation of such causal relationships that enable our rich time
travel experience.

3.3. Mind Reading

We can identify emotions and states of mind of others thanks to a set of specialized
systems that evolved as part of our lineage’s social nature. Face recognition processes are
devoted ample and specialized regions in our brain [146], along with a system of mirror
neurons that respond to actions of others as if they were our own [109,147,148]. Although
mirror neurons are shared with other species, the consequences for humans are enormous.
The capacity for reading minds was a crucial component in our evolution as a cooperative
species: knowing the mind of others provides an effective way of making decisions relevant
to group needs. In addition, such mechanisms, likely to be the target of evolution, open the
door to another remarkable trait: self-consciousness. Developing a theory of mind might
inevitably create the conditions for “knowing” your own individual, distinct nature. In this
view, self-consciousness would be a side effect of mind reading.

Thus, here too, evolutionary dynamics has played a central role in developing mecha-
nisms for social interactions that are likely to be a major requirement to develop advanced
artificial cognition. So far, emotions are detected by robotic agents able of visual pattern
recognition and supervised learning. If evolution and social interactions are a requirement
for self-awareness, the often discussed possibility of generating conscious A.I. might neces-
sarily demand interactions among communicating agents. Within robotics, this requires
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the generation of internal representations that encode information about internal states of
other agents—i.e., about information of the external world that is not readily available to
sensory systems.

3.4. Right from Wrong

We have a moral mind, and evidence indicates that there is some hardwired tendency
to make the right moral decisions early on in life. Cooperating moral minds have been
helpful in fostering communities, and thus generate meaning under the context of social
interactions [149].

Building moral machines is a hot topic within both A.I. and robotics. Here, too, moral
brains are evolved systems [150,151], whereas machines require an explicit programming
of moral norms [152]. While the goal of evolving machines that will avoid harming humans
has been a recurrent topic within fictional works such as Asimov’s rules of robotics (As
noted by Brooks (2003) and Mitchell (2019), Asimov’s Three Rules of Robotics illustrate
the nontrivial character of moral decisions. Because of the importance of context (or the
environment) apparently well-established programmed rules can conflict with each other
and create unexpected, and sometimes undesirable outcomes), it becomes a pressing issue
as autonomous robots are being deployed [153]. This connects inevitably with time travel
and mind reading: moral decisions imply choices and understanding their implications for
others. That means having a theory of mind, representing counterfactuals, future paths (as
it occurs with the famous trolley experiment), and the implications of these actions.

3.5. Extended Mind

A major ingredient for the success of humans in their ecological conquest of the
biosphere is related to their remarkable capacity for understanding and manipulating
their environments. We are somehow limited by our senses or physiology, but none of
these limitations really matters, since all of them can be overcome by the appropriate
technological interface. This is part of what Clark and Chalmers dubbed the extended
mind [154]. Extended cognition starts with the embodied nature of agents and ends in the
specific interfaces that they use to connect with their worlds. It can be found in very simple
organisms. One very interesting example is provided by spiders, as their spiderwebs
define a powerful example of niche-constructed structures that outsource information
processing by means of an externalized structure [155]. In this case where small brains are
involved, external structures allow to reduce environmental uncertainty. Insect nests would
be another successful example [156]. In this case, nests act as both engineered structures
regulating from self-organization and a vehicle for ecological engineering.

Little is found in their synthetic counterparts: beyond embodiment, robot-driven
manipulation of their environments is almost absent. In silico counterparts based on
reinforcement learning are the closest experiments in this direction, although limited to
simulated environments [157,158]. A very recent, promising proposal uses the web as an
embodied environment to improve artificial question-answering [159].

3.6. Social Learning

Thanks to language and mind reading, and fostered by extended cognition, humans
massively involve themselves in complex social interactions. One particularly relevant
aspect of this is social learning: the extraordinary capacity to learn from others and be-
ing able to transmit information through teaching. A great deal of this is connected
with imitation, which is unevenly distributed in non-human vertebrates. Songbirds or
cetaceans display high levels of imitation, while non-human primates have rather limited
skills [106]. Some authors suggested that this is a crucial attribute that is needed to create
true human-like machines [160]. Social learning has been a very active domain within
robotics, particularly within the context of human–robot interactions. A broad range of so-
cial robot scenarios can be defined [161], from ant-like robots to potential socially-intelligent
agents (the latter within the domain of speculation). A specially relevant development in
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this area deals with the design of human-shaped robots able to learn facial expressions and
react to them in meaningful ways [162,163].

What is required to move forward beyond imitation and emotion detection? Here, we
might need mind-reading features and embodied interactions in order to properly create
complex social exchanges. An important contribution in this direction is the work of Arbib
and co-workers aimed at building agents that are explicitly equipped with a mirror neuron
system [164]. In their model, which avoids the extra complexities of language, they con-
sidered gestures as the communication channel between virtual simulations of interacting
agents. In this dyadic brain model, two agents interact by combining both (simulated)
visual and manual interactions. In a nutshell, the model allows two agents to learn how
to exchange, predict and react to each other’s gestures in a ritualized manner. These are
very promising steps towards linking social learning with mind reading. As suggested by
some authors, these might have been crucial ingredients for major cognitive transitions in
human evolution [163,165], and the transition would be, once again, a qualitative shift.

We expect progress in ‘mind reading’, ‘right from wrong’, and ‘social learning’ to go
hand by hand, as some of these lines can be preconditions or even foster advances for
others. While there is still a relevant gap to the complexity of these traits in humans, some
progress is being made with agents that use reinforcement learning in simulated games or
virtual environments [166–168].

4. A Space of Cognitive Complexity

The set of properties displayed by human brains that define a cognitive gap can be
represented in a unified way by means of a morphospace—i.e., a three-dimensional space that
allows a mapping of all given case studies within a finite domain. By using such a space,
we can locate the different systems and compare them. Additionally, the presence of voids
(i.e., empty volumes lacking any candidate system) can provide evidence for constraints or
forbidden evolutionary paths. This approach was first introduced within the context of
morphological traits of shells [169] and has been later on widely used within Paleobiology
and evolutionary biology [21,170–172], and in other different contexts including network
science [173–175] and computational neuroscience [176–181]. Morphospaces provide us
with a global picture of possible designs and how they relate to each other (whether they are
distant or close) in a feature space. By making reasonable assumptions about relationships
between features, we can still make some qualitative assessments about our systems of
interest [176,179,180,182].

A morphospace of cognitive complexity is outlined in Figure 4. We propose three axes:

1. Computational complexity: This needs to be understood as some measure over the
tasks performed by each kind of agent. That would include memory, learning, decision
making, and other cognitive traits.

2. Degree of autonomy: This is a crucial attribute of adaptive complexity. We can define
autonomy as “the property of a system that builds and actively maintains the rules
that define itself, as well as the way it behaves in the world” [183].

3. Interactions between agents: This third and no less relevant dimension might enable
cognition capabilities that transcend the individual. Tight interactions between agents
might be a pre-requisite for (or a consequence of) eusociality [184], as they might
enable a switch of the selective focus of Darwinian selection.

At the bottom-front of the morphospace, we locate the region where artificial systems
exist, whereas most living organisms populate the left vertical, high-autonomy wall. The
bottom surface of this space includes all those systems that lack the social component—
they need little interaction with others to sprawl their cognitive phenotype. Here, we
have several kinds of robots as well as mechanical automata, protocells, and solitary
organisms. A most obvious feature of our plot is that living and artificial systems appear
separated by a gap that grows bigger as systems become more complex or more socially
interactive. The divide reflects a fundamental difference between biological and artificial
systems: the pressure of Darwinian selection and evolution that promotes autonomy
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(as discussed in [185] in terms of selfishness) [182,186]. Composed replicative units are
more complex, thus can support the propagation of their selves with enhanced internal
computation that enables to predict ever more complex environments [5]. Due to evolution,
this computational prowess must further protect autonomy—thus closing a reinforcing
loop that necessarily pushes biological replicators towards the left wall of our morphospace.
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Figure 4. A Morphospace of cognitive complexity. Autonomous, computational, and social complexi-
ties constitute the three axes of this space. Human brains are located in the upper corner, scoring with
maximal autonomy, computational complexity, and agency. The examples shown here include both
natural and artificial systems, as indicated. Plants (*) are located in the upper left corner since ecologi-
cal interactions are known to play a key role, some of them by means of chemical communication
exchanges. Current A.I. implementations cluster together in the high-computation and low-social
complexity regime, with variable degrees of interaction-based rules (as it occurs with multiagent Deep
Reinforcement learning, DRL). Simple embodied systems displaying low computational complexity
include mechanical automata, xenobots or Braitenberg vehicles. Another limit case here is provided
by self-propelled robots (**) which are randomly moving, bullet-shaped agents carrying no sensors
nor internal states, that interact physically leading sometimes to collective swarming patterns. The
boundaries of this artificial subset (dark gray) are limited in the Autonomy direction by a boundary
where several instances of mobile neurorobotic agents are located (such as Asimo, Kephera robots
or different versions of robots build by Gerald Edelman and collaborators). The left wall of high
autonomy is occupied by living systems displaying diverse levels of social complexity. This includes
some unique species such as Physarum (+) that involves a single-celled individual. On the right, six
different particular case studies are highlighted, namely: (a) Gray–Walter tortoise (a simple cybernetic
mobile robot), (b) Kismet social robot able to detect and respond to emotions from visual cues,
(c) swarms of Kephera robots with evolvable neural networks, sensors, and lights to communicate
information, (d) talking heads experiment using humanoid robots (image courtesy of Luc Steels, in
the image). Two examples of animal minds that share common complexities with human behavior,
despite their marked differences in brain architecture are (e) magpies and (f) octopuses (image by
Kelly Tarlton).

Most artificial agents have not come together through Darwinian selection. Instead,
they are typically designed or programmed to perform functions under environment-free
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scenarios, with some exceptions. The closest to large autonomy are embodied neurorobots
(again, embodiment as a driver for true cognitive complexity) that are capable of sensing
external cues, move in space and react in simple ways. Gray–Walter’s tortoise or Braiten-
berg’s vehicles (GW robot and B vehicle in Figure 4, left) are early precursors: they are
electromechanical robots with a minimal sensorimotor architecture that allows them to
respond to simple cues (approaching or avoiding lights or returning to the charging source).
One great leap has been provided by the development of robots able to learn through
experience using ANN, combining movement, visual processing, and motor responses
(Darwin robots in particular have been developed under a set of design principles that are
inspired in cortical architectures. In their implementation, these simulated cortical areas
mimic reentrant neuroanatomic connections (an important feature that pervades high-level
brain properties, including consciousness). Moreover, each area contains neuronal units
that represent both activity levels and the timing of the activity of groups of neurons. As it
occurs with real brains, neuronal synchronization allows neural binding) [187].

As we move up from this surface and consider the role played by agent interactions,
we also see a rather uneven distribution of case studies. Within the artificial domain, with
few exceptions, interactions are limited to some particular features associated to the way
they have been trained to perform very specific types of tasks (such as playing games).
Two important exceptions are Luc Steel’s Talking Heads [135] and swarm robotic systems
such as Kilobots [188,189]. In the latter, computational complexity is externalized while
autonomy is required to making decisions associated to their relative location to others. One
corner in this domain involves self-propelled robots that have been extensively studied as a
class of active matter [190]. They have zero computational complexity (they move by means
of vibrations) and their random behavior in isolation discards non-zero autonomy since
they have no real sensing of the external world. Another, isolated corner is represented by
fictional entities (such as Asimov’s robots or HAL9000) that would be pre-programmed to
behave as intelligent agents without being exposed to social interactions.

By contrast, life covers the left wall by a diverse range of possible combinations of
computational complexity and social computation. The bottom of the wall, as we pointed
out before, is occupied by individual-based life styles, including single-cell species (proto-
zoa or Physarum), Hydra or solitary insects. As we move up in the social axis, two major
winners in the competition are social insects and humans. They have both successfully
conquered the planet [184] thanks to their enormous adaptive potential, although the
cognitive complexity of individuals is markedly different [191,192]. Collective intelligence
in social insects results from parallel, spatially-extended interactions between individuals
that can be blind and exhibit a very poor individual repertoire in isolation. What about
other animals? Mounting evidence indicates that there is a continuum of both social and
cognitive complexity that allows to tentatively allocate different groups (again, this is a
coarse-grained picture, with considerable variability) equipped with diverse neural appa-
ratuses [193] and displaying a varying degree of social complexity. Once again, humans
depart from them in a rather singular way: they are individually complex and able to
massively engineer their environments by means of the extended mind resulting from
cultural evolution, technology, and information.

This departure is highlighted in Figure 5, where an additional space of possible
cognitions is shown. Here the cognitive complexity dimension is completed by system
size (how many agents define the group) and the role played by extended cognition (EC).
Here, we move beyond the boundaries of single multicellular agents and consider groups
of agents of diverse kinds, from small primate groups to the massive, multi-queen ant
colonies known as “supercolonies”. The case study of ants is particularly relevant in terms
of their ecological impact on the biosphere by means of an active modification of their
environments, only comparable to the impact of humans. As E.O. Wilson pointed out,
had humans failed to colonize the planet, the biosphere would be dominated by social
insects [184]. However, in stark contrast with human or vertebrate brains (see Table 1), ants
are equipped with small brains and the cognitive power comes from the collective intelligence
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resulting from agent–agent interactions as well as with their capacity to build large-scale
structures (Figure 5a) that are several orders of magnitude larger than the individual size.
These have inspired the development of simple robotic agents that build structures, such as
the artificial termites (eTermites in the morphospace) in Figure 5b [194]. Humans, on the
other hand, can act as ecosystem engineers and exploit their EC on multiple scales, from
single individuals to large collectives. The large, empty void in the space is a reminder
of the enormous distance taken by humans in relation to any other species, as well as the
lack of machine learning models of agents displaying EC. Some steps in this direction have
been made, which are inspired in some key examples such as framing (Figure 5c). Using a
deep reinforcement learning system, a set of agents can discover rules of cooperation that
might recapitulate the early steps towards managing ecosystems before the emergence of
agriculture [195] (Figure 5d). Finally, one remarkable example of EC is provided by the
spiderwebs created by spiders having very small brains (Figure 5e) that act as effective
auditory sensors with a total surface that is 104 times larger than the individual spider.
By building this externalized cognitive apparatus, individuals are released from body
size constraints [196]. Can these kind of structures (rather special mind extensions within
biology) be generated by an evolutionary model of spider behavior (Figure 5f) but require
to define a priori some constraints related to the types of rules required to generate the
web [197]? Here again, the evolutionary emergence of the innovation represented by the
spiderweb is far from the current state of the art of A.I. Crossing the empty land with two
cognitive agents displaying complex extended mind remains a challenge.

between robots is limited to each one yielding
to the one ahead of it in this physical loop.

Because robots may take multiple possible
paths through a structure, the ordering of the build-
ing process can occur in many different ways.

Accordingly, the structure will emerge in differ-
ent ways in different instances of building with
the same structpath, with intermediate structures
that may be observed in one instance but not
another; however, the agent rules guide the

process to always end in the same final structure
(movie S2).

In addition to this approach for producing
predetermined structures, the same robots can use
different local rules to build structures whose de-
tailed form emerges from the construction pro-
cess. Multiple structures built with the same
rules share qualitative features but differ in de-
tail. Such a rule set could, for example, be used to
generate a randomized street layout for a building
complex. Figure 2E shows an example of a hy-
brid system built by such a rule set (19), where
buildings chosen randomly from a set of pre-
defined types are positioned at the ends of lanes
of stochastically determined lengths. The robots
again use stigmergy to coordinate their actions;
for example, particular configurations of bricks
constitute cues to agree on which building type
should be constructed at the end of a given lane.

To demonstrate the feasibility of such a de-
centralized multirobot construction system, we
present a proof-of-concept implementation in hard-
ware (19) (Fig. 1C and Fig. 4). Design choices
were driven by the requisite primitive operations
that robots must perform: pick up a brick from a
cache; attach a brick directly in front of them-
selves; detect nearby robots; when on the struc-
ture, move forward one site (while staying at the
same level or climbing up or down one brick)
or turn in place 90° left or right; when off the
structure, circle its perimeter. For locomotion,
we equipped robots with whegs [hybrid wheel-
legs (22)], chosen for their empirical effective-
ness in climbing (23). Each robot is equipped with
seven active infrared sensors to detect black-and-
white patterns on the bricks and ground for
navigation; an accelerometer to register tilt angle
for climbing and descent; an arm to lift and lower

Fig. 3. Target struc-
tures and correspond-
ing structpaths. For each
predefined target structure
at left, the corresponding
structpath representation
at right is generated by
the offline compiler (19).
From top to bottom: a sim-
ple structure with a unique
structpath if the seed lo-
cation is given; the temple
of Fig. 2C, showing one of
many possible structpaths;
a structure enclosing inter-
nal courtyards. Sites in the
structpath are shaded ac-
cording to height (darker =
higher); a dot marks the
seed brick. Directions are
color-coded to clarify flows
(red, left; blue, right; green,
up; yellow, down).

Fig. 4. Hardware demonstration. Independent autonomous robots with purely onboard sensing collectively work on prespecified structures. (A) A castle-like
structure (movie S3). (B) A sequence of overhead snapshots building a branching structure (movie S4).
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Figure 5. A Morphospace of extended minds. A space of cognitive agents (left) can also be con-
structed by considering again the agent complexity axis (as in the previous figure) along with the
number of agents involved in a given group as well as the role played by extended cognition (EC).
The latter includes the presence of active mechanisms of niche construction, ecosystem engineering
or technological skills. The corner occupied by plants (*) involves (for example, in a forest) small
computational power, massive populations and an “extended mind” that needs to be understood in
terms of their interconnectedness and active modification of their environments, particularly soils.
While ants in particular rival humans in their shear numbers and ecological dominance, the massive
role played by externalized technology in humans makes them occupy a distinct, isolated domain in
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our cube (with both individuals and groups able to exploit EC). Some remarkable examples of EC
are displayed on the right panels. Termites create complex spatial structures (a) fungus-growing
chamber) and have inspired some swarm robotic systems (b) able to construct structures. Farming
has been one of the ways humans have engineered their environments (c), and some deep multi-
agent reinforcement learning models (d) show how a collective of agents interacting with a given,
limited resource can give rise to cooperative strategies. The dominant role of EC in some species
beyond humans is illustrated by cobweb spiders (e). They are equipped with a tiny brain, but their
spiderwebs act as sophisticated antennas, which allow for a powerful sensing and response to their
environments. In this context, efficient cobwebs can be evolved using artificial evolution (f). The gap
separating humans from the rest of natural and artificial systems is highlighted by the empty volume
on the right, which needs to be explored by future models of artificial cognition.

Solving the problem of constructing a true A.I., as suggested by the structure of the
morphospace, will require much more than cumulative innovations. As it occurs with
evolution, new innovations might require major evolutionary transitions [18]. These results
are further expanded and summarized in Table 1, where different features associated
to cognitive complexity are presented for the main four groups of systems discussed
here, namely human and non-human vertebrate brains as well as deep networks and
neurorobotic agents.

5. Discussion

Can machines ever achieve true intelligence? In a recent paper entitled “Building
machines that learn and think like people” [198], it has been argued that, for ANN to
rapidly acquire generalization capacities through learning-to-learn, some important com-
ponents are missing. One is to generate context and improve learning by building internal
models of intuitive physics. Secondly, intuitive psychology is also proposed as a natural
feature present since early childhood (children naturally distinguish living from inanimate
objects) which could be obtained by introducing a number of Bayesian approximations.
Finally, compositionality is added as a way to avoid combinatorial explosions. In their
review, Lake et al. discussed these improvements within the context of deep networks and
problem-solving for video games, and thus considered the programming of primitives that
enrich the internal degrees of freedom of the ANN. These components would expand the
flexibility of deep nets towards comprehending causality. (See also the life-long work of
Jürgen Schmidhuber for important developments over the last decades in the meta-learning
or learning-to-learn paradigms: https://people.idsia.ch/~juergen/metalearning.html, ac-
cessed on 2 May 2022). Lake et al. also pointed at several crucial elements that need to be
incorporated, being language a prominent one. So far, despite groundbreaking advances in
language processing, the computational counterparts of human language are very far from
true language abilities. These improvements will without doubt create better imitations
of thinking, but they are outside an embodied world where—we believe—true complex
minds can emerge by evolution.

Are there alien minds? Yes and no. An affirmative answer emerges from the obvious:
artificial systems do not need to follow biological constraints or Darwinian evolutionary
paths. Being designed by humans or evolved within computers using ad hoc optimization
procedures, the final outcome can depart from biology in multiple ways. A deep network
can outperform humans in a very specific task using a training algorithm based on feed-
forward convolutional nets that, although inspired by experiments, lack the re-entrant
loops that might be crucial to achieve true intelligence and awareness. Robotic agents can
have behavioral patterns of response to complex environments, but the cognitive skills are
externalized: algorithms are being executed in a rather powerful computer that resides
somewhere else outside the body. However, these are systems where agency plays a minor
role. Perhaps, the really relevant question is this: are there autonomous alien minds?

If convergent designs are an indication that there is a limited repertoire of possible
neural architectures and cognitive autonomous agents, the future of A.I. is in the evolution-
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ary arena. That means that the roads not taken necessarily cross the land of embodiment:
as it occurs with naturally evolved systems, moving in an uncertain world was one of the
engines of brain evolution. Moreover, another crucial component of evolutionary inno-
vations is the emergence of new forms of cooperation. Cognitive agents mean evolving
communication and dealing with information [193]. What kind of interesting phenomena
can be observed using these two ingredients? Evolved robotic systems illustrate fairly
well the ways in which evolutionary dynamics simultaneously link some of these com-
ponents of cognition. As an example, robotic agents moving on a landscape where both
positive and negative inputs (sources of charge and discharge, respectively) are located on
given spots develop communication along with cooperative strategies that improve group
fitness [199,200]. Each robot is equipped with a set of sensors and lights and start forag-
ing with a random configuration. A feedforward ANN allows evolving the interactions
between sensors and lights and to generate communication among robots that allows for
cooperation and altruism. Finding and avoiding positive and negative scenarios create
the conditions for increasing group fitness. However, crowding also triggers cheating and
deception (a familiar trait of evolution): robots can also evolve into lying to each other.
Despite the simple nature of the players, a combination of some key evolvable features can
lead to unexpected insights.

As pointed out in the Introduction, the paths that lead to brains seem to exploit com-
mon, perhaps universal properties of a handful of design principles and are deeply limited
by architectural and dynamical constraints. Is it possible to create artificial minds using
completely different design principles, without threshold units, multilayer architectures or
sensory systems such as those that we know? Since millions of years of evolution have led,
through independent trajectories, to diverse brain architectures and yet not really different
minds, we need to ask if the convergent designs are just accidents or perhaps the result
of our constrained potential for engineering designs. Within the context of developmen-
tal constraints, the evolutionary biologist Pere Alberch wrote a landmark essay that can
further illustrate our point [201]. It was entitled “The Logic of Monsters” and presented
compelling evidence that, even within the domain of teratologies, it is possible to perceive
an underlying organization: far from a completely arbitrary universe of possibilities (Since
failed embryos are not the subject of selection pressures, it can be argued that all kinds of
arbitrary morphological “solutions” could be observed), there is a deep order that allows
to define a taxonomy of “anomalies”. Within our context, it would mean that the universe
of alien minds might be also deeply limited.
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