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Abstract: In recent years, many attempts have been made to enhance the drug bioavailability and
therapeutic effectiveness of oral dosage forms. In this context, various gastroretentive drug delivery
systems (GRDDS) have been used to improve the therapeutic efficacy of drugs that have a narrow
absorption window, are unstable at alkaline pH, are soluble in acidic conditions, and are active locally
in the stomach. In this review, we discuss the physiological state of the stomach and various factors
that affect GRDDS. Recently applied gastrointestinal technologies such as expandable, superporous
hydrogel; bio/mucoadhesive, magnetic, ion-exchange resin; and low- and high-density-systems have
also been examined along with their merits and demerits. The significance of in vitro and in vivo
evaluation parameters of various GRDDS is summarized along with their applications. Moreover,
future perspectives on this technology are discussed to minimize the gastric emptying rate in both the
fasted and fed states. Overall, this review may inform and guide formulation scientists in designing
the GRDDS.

Keywords: gastroretentive drug delivery systems; gastric retention time; narrow absorption window;
bioavailability; polymer

1. Introduction

Oral drug delivery systems have dominated other drug delivery systems for human administration
due to their various advantages including ease of administration, flexibility in formulation,
cost-effectiveness, easy storage and transport, and high patient compliance. However, oral drug delivery
systems face challenges such as low bioavailability due to the heterogeneity of the gastrointestinal
system, pH of the commensal flora, gastric retention time of the dosage form, surface area, and
enzymatic activity [1]. Conventional drug delivery systems may not overcome the issues imposed by
the gastrointestinal tract (GIT) such as incomplete release of drugs, decrease in dose effectiveness, and
frequent dose requirement. Therefore, the failure of conventional drug delivery systems to retain drugs
in the stomach may lead to the development of GRDDS. These systems offer several benefits such as
prolonged gastric residence time (GRT) of dosage forms in the stomach up to several hours, increased
therapeutic efficacy of drugs by improving drug absorption, and suitability for targeted delivery in the
stomach. In addition, GRDDS can enhance the controlled delivery of drugs by continuously releasing
the drug for an extended period at the desired rate and to the desired absorption site until the drug is
completely released from the dosage form [1,2].

GRDDS are feasible for drugs that have low absorption in the lower part of the GIT, are unstable
and poorly soluble at alkaline pH, have a short half-life, and show local activity at the upper part of
the intestine for eradication of Helicobacter pylori [3–15]. Several formulation strategies have been used
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to design successful controlled release GRDDS including superporous hydrogel, bio/mucoadhesive,
raft-forming, magnetic, ion-exchange, expandable, and low- and high-density systems [3–9].

Various formulation-related factors such as polymer types (nonionic, cationic, and anionic
polymers), polymer composition in dosage form, viscosity grade, molecular weight of the polymer,
and drug solubility can affect the quality of the gastroretentive dosage form [9]. Moreover,
the physicochemical nature of excipients plays an important role in various GRDDS. For instance,
density of excipients and composition of effervescent agents are critical factors in effervescent floating
systems. In the case of superporous hydrogel systems, high swelling excipients such as crospovidone
and sodium carboxymethylcellulose are required to form a superporous hydrogel [9,16]. Likewise,
process variables can also influence the quality of the gastroretentive dosage form, as the density of a
tablet can be altered by the compression pressure during tableting [9].

The main purpose of this review is to provide information on various GRDDS that have been
developed to date, as well as the physiological state of the stomach, suitable drug candidates for
GRDDS, factors affecting GRDDS, and in vitro and in vivo characterization of GRDDS. In addition,
challenges and future perspectives on GRDDS are discussed.

2. Physiology of Stomach

In the GRDDS, the stomach has a crucial role; therefore, a good understanding of the anatomy
and physiology of the stomach is a prerequisite for successful development of the gastroretentive
dosage form. Anatomically, the stomach is divided into two parts: the proximal stomach, which
consists of the fundus and body; and the distal stomach, which consists of the antrum and the pylorus
as shown in Figure 1. The main role of the stomach is to store the food temporarily, grind it, and
then slowly release it into the duodenum [17]. The fundus and body primarily act as reservoirs for
undigested food, whereas the antrum acts as a pump to assist in gastric emptying by a propelling
action [17,18]. The mobility pattern of the stomach is termed as the migrating myoelectric complex
(MMC); the different phases of the MMC are presented in Table 1. Gastric emptying occurs in both
the fed and fasted states, but the pattern of gastric emptying drastically varies between both states.
In the fasted state, an interdigestive sequence of electrical events follows in a cyclic manner through
both the stomach and the small intestine every 90–120 min [17]. During the interdigestive phase, the
diameter of the pylorus increases up to approximately 19 mm [1,19]. As a result, particles smaller
than the diameter of pyloric sphincter can easily evacuate from the pylorus to the duodenum during
the interdigestive phase [19,20]. However, in the fed state, motor activity is generated 5–10 min after
ingestion of a meal and continues as long as the food remains in the stomach, which can delay the
gastric emptying rate.

Table 1. Four phases of the migrating myoelectric complex [17,18].

Phase Comments Duration

Phase 1 Quiescent period with rare contractions. 30–60 min

Phase 2
Intermittent action potentials and contraction that
gradually increases in intensity and frequency as the
phase progresses.

20–40 min

Phase 3

Short periods of intense, large, regular contractions.
This phase is termed as “housekeeper wave” as it
enables all undigested materials to be swept out of
the stomach and down to the small intestine.

10–20 min

Phase 4 Occurs between phase 3 and phase 1 of two
consecutive cycles in a brief transitional phase. 0–5 min
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Figure 1. Schematic view on the anatomy of stomach. 

3. Application of GRDDS 

Suitable drug candidates for GRDDS are introduced in Table 2. Even though various types of 
GRDDS are reported in the literature, floating and mucoadhesive systems are the most popular 
gastroretentive dosage forms in pharmaceutical companies and contribute the most to the market. 
Table 3 presents the commercially available gastroretentive dosage forms.  

Table 2. Suitable drug candidates for gastroretentive drug delivery systems (GRDDS). 

Bioavailability 
challenges 

Drug Therapeutic indications References 

Local activity 

Ranitidine, 
Amoxicillin, 

Levofloxacin, 
Metronidazole 

Peptic ulcer and reflux esophagitis, eradication of 
H. pylori 

[1,13,21–24] 

Plasma fluctuations 
Ciprofloxacin, 
Clarithromycin 

Urinary tract, respiratory, and GI infections [1,25–28] 

Low solubility at 
alkaline pH 

Ofloxacin Urinary tract, respiratory, and GI infections [1,10] 
Cinnarizine Nausea, vertigo, and motion sickness [15] 

Narrow absorption 
window 

Riboflavin Essential nutrients, mouth ulcer and sore throat [29,30] 
Cilostazol Inhibits platelet aggregation [4] 

Pregabalin 
Fibromyalgia, diabetic peripheral neuropathy, 

post-herpetic neuralgia, and adjunctive therapy 
for partial onset seizures 

[5,31] 

Short half-life, 
narrow absorption 

window 

Levodopa Parkinson’s disease [32] 

Metformin Type II diabetes mellitus [7,9,33,34] 

Poor absorption from 
lower GIT 

Atenolol Hypertension [1] 
Lafutidine Gastric and duodenal ulcers [35] 

Unstable at alkaline 
pH 

Verapamil, 
Captopril 

Hypertension [1,11,14] 

  

Figure 1. Schematic view on the anatomy of stomach.

3. Application of GRDDS

Suitable drug candidates for GRDDS are introduced in Table 2. Even though various types
of GRDDS are reported in the literature, floating and mucoadhesive systems are the most popular
gastroretentive dosage forms in pharmaceutical companies and contribute the most to the market.
Table 3 presents the commercially available gastroretentive dosage forms.

Table 2. Suitable drug candidates for gastroretentive drug delivery systems (GRDDS).

Bioavailability
Challenges Drug Therapeutic Indications References

Local activity
Ranitidine, Amoxicillin,

Levofloxacin,
Metronidazole

Peptic ulcer and reflux esophagitis,
eradication of H. pylori [1,13,21–24]

Plasma fluctuations Ciprofloxacin,
Clarithromycin

Urinary tract, respiratory, and
GI infections [1,25–28]

Low solubility at
alkaline pH

Ofloxacin Urinary tract, respiratory, and
GI infections [1,10]

Cinnarizine Nausea, vertigo, and motion
sickness [15]

Narrow absorption
window

Riboflavin Essential nutrients, mouth ulcer
and sore throat [29,30]

Cilostazol Inhibits platelet aggregation [4]

Pregabalin

Fibromyalgia, diabetic peripheral
neuropathy, post-herpetic

neuralgia, and adjunctive therapy
for partial onset seizures

[5,31]

Short half-life, narrow
absorption window

Levodopa Parkinson’s disease [32]

Metformin Type II diabetes mellitus [7,9,33,34]

Poor absorption from
lower GIT

Atenolol Hypertension [1]

Lafutidine Gastric and duodenal ulcers [35]

Unstable at alkaline pH Verapamil, Captopril Hypertension [1,11,14]
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Table 3. Various gastroretentive products available in the market [1,18,19,36,37].

Delivery Systems Brand Name Active Ingredient Manufacturing Company

Bioadhesive tablets Xifaxan® Rifampicin Lupin, India

Bilayer floating capsule Cytotec® Misoprostol Pfizer, UK

Coated multi-layer &
swelling system Baclofen GRS® Baclofen Sun Pharma, India

Colloidal gel forming
floating system Conviron® Ferrous sulphate Ranbaxy, India

Effervescent floating system

Zanocin OD® Ofloxacin Ranbaxy, India

Riomet OD® Metformin hydrochloride Ranbaxy, India

Cifran OD® Ciprofloxacin Ranbaxy, India

Effervescent floating liquid
alginate preparation Liquid Gaviscon®

Alginic acid and sodium
bicarbonate

Reckitt Benckiser
Healthcare, UK

Effervescent and swelling
based floating system Prazopress XL® Prazosin hydrochloride Sun Pharma, Japan

Erodible matrix based
system Cipro XR®

Ciprofloxacin hydrochloride
and betaine Bayer, USA

Expandable system
(unfolding) Accordion Pill® Carbidopa/levodopa Intec Pharma, Israel

Raft forming system

Topalkan® Aluminum magnesium Pierre Fabre Medicament,
France

Almagate FlatCoat®
Aluminium-magnesium

antacid
Pierre Fabre Medicament,

France

Floating system—controlled
release capsule

Madopar HBS® Levodopa and benserzide Roche, UK

Prolopa HBS®
Levodopa and benserzide

hydrochloride Roche, UK

Valrelease® Diazepam Roche, UK

Foam based floating system Inon Ace Tables® Simethicone Sato Pharma, Japan

Gastroretention with
osmotic system Coreg CR® Carvedilol GlaxoSmithKline, UK

Minextab
Floating®—floating and

swelling system

Metformin HCl Metformin hydrochloride Galanix, France

Cafeclor LP Cefaclor Galanix, France

Tramadol LP Tramadol Galanix, France

Polymer based swelling
technology: AcuFormTM

Gabapentin GR Gabapentin Depomed, USA

proQuin XR Ciprofloxacin Depomed, USA

Glumetza Metformin hydrochloride Depomed, USA

Metfromin GRTM Metformin hydrochloride Depomed, USA

4. Critical Factors Affecting GRDDS Efficacy

There are various factors that affect the performance of gastroretentive dosage forms. These factors
are mainly categorized into pharmaceutical factors, physiological factors, and patient-related factors.

4.1. Pharmacutical Factors

For the successful design of GRDDS, it is important to understand the role of excipients and
polymers on various types of GRDDS [9]. For instance, in the mucoadhesive system, polymers with
high mucoadhesion strength, such as carbopol and hydroxypropyl methylcellulose (HPMC) may be
required for successful design of the mucoadhesive dosage form. Likewise, with the expandable
system, polymers with high swelling properties are more desirable. Moreover, the molecular weight,
viscosity, and physiochemical properties of polymers can also affect the dosage form. Other formulation
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components such as gas generating agents in an effervescent floating tablet, high swelling excipients of
sodium croscarmellose, and crospovidone for superporous hydrogels may be required.

Moreover, the shape and size of the dosage unit is also important [38]. Garg and Sharma reported
that ring shape and tetrahedron-shape dosage forms have a longer GRT compared to other shapes [39].
In most cases, the GRT of the dosage form is proportionately dependent on the size. An increase in the
size of the dosage form could prevent its passage through the pyloric antrum in the intestine due to
the size of the dosage form being larger than the pyloric sphincter diameter (mean, 12.8 ± 7 mm) [40].
Similarly, the density of the dosage form is also an important factor for low- and high-density systems.
In low-density systems, the density of the dosage forms should be lower than that of the gastric fluid
(1.004 g/cm3) in order to float in the gastric environment [41,42]. Increasing the floating capacity can
improve the GRT of the low-density system; however, this effect is decreased in the presence of food.
Moreover, the floating force of the dosage form decreases as a function of time, which could be due
to the hydrodynamic equilibrium [43]. On the other hand, in high-density systems, the density of
the dosage form should be greater than that of the gastric fluid so that it can sink in the bottom of
the stomach and prevent gastric emptying. An increase in density of the dosage form greater than
2.500 g/cm3 enhances the GRT [44].

4.2. Physiological Factors

Several studies have reported that various extrinsic factors including the nature of meal, caloric
content (caloric density and nature of the calories), frequency of ingestion, posture, sleep, and physical
activity can affect the GRTs of drugs in the stomach [1,38,45,46]. In fasting states, gastrointestinal
motility is represented by the MMC that occurs every 90–120 min [17]. During this period, motor
activity sweeps undigested material from the stomach. If the timing of formulation administration
coincides with that of the MMC, the GRT of the unit is very short. However, in the presence of food in
the stomach, the MMC is interrupted and housekeeper waves are not generated leading to a prolonged
GRT [17,47]. Likewise, the gastric emptying rate is also affected by the caloric density and nature of the
calories of the ingested food [45]. In general, an increase in the caloric density significantly increases
the GRT whereas the nature of calories only have a minor effect in the GRT [48]. In addition, high food
viscosity may also increase the GRT [49,50]. Furthermore, the GRT is influenced by posture, and the
effect is different for floating and non-floating dosage forms [1]. In the upright position, the floating
system floats in the gastric fluid for a prolonged amount of time which can eventually increase the GRT.
However, in similar conditions, the non-floating system remains in the lower part of the stomach and
the gastric emptying rate is faster as a result of peristaltic contractions [1]. In contrast, in the supine
position, the non-floating system has a longer GRT compared to the floating system [51,52].

4.3. Patient-Related Factors

Patient-related factors such as gender, age, illness, and emotional state can influence GRDDS.
A recent study reported that gender affected the gastric emptying time and intraluminal pH [53].
The authors demonstrated that females had slower gastric emptying times than males [53]. Hormonal
influences could explain the longer GRT in females than in males. Another study showed that males
secreted more gastric acid compared to females [54]. Likewise, the age of the patient also affects the
GRT. Elderly patients have a longer GRT compared to younger patients [55]. The nature of a patient’s
illness may also affect the GRT of the dosage form. For instance, patients with Parkinson’s disease have
a prolonged GRT that is frequently accompanied by constipation [56]. Likewise, in diabetic patients,
gastric emptying is decreased by 30–50% [57]. The emotional condition of a patient may also influence
GRDDS. It was reported that a decrease in gastric emptying rate was observed in patients suffering
from depression, whereas an increased rate was observed in patients experiencing anxiety [38,47].
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5. Current Pharmaceutical Technologies of GRDDS

In this section, we describe currently used gastroretentive drug delivery approaches. The main
mechanism of GRDDS includes floating, sinking, swelling, effervescence, mucoadhesion, and magnetic
properties. A brief description for each system is summarized in Table 4.

5.1. Low-Density Systems

Low-density/floating systems are the most practical and extensively studied gastroretentive
dosage forms [1,17,58,59]. The floating system was first introduced by Davis in 1968. In this system,
the bulk density of the dosage form is lower than that of the gastric fluid (1.004 g/cm3). This property
allows the system to remain buoyant in the stomach for a prolonged period of time while the drug is
released at the desired rate from the system during the GRT [1,17,60]. Figure 2a illustrates the concept
of low-density systems. These systems are classified into two subtypes based on the mechanism of
buoyancy: non-effervescent floating and effervescent floating systems.
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Table 4. Summarized mechanisms of the various GRDDS.

Gastroretentive Approach Mechanism References

Low-density systems/ floating systems System causes buoyancy in gastric fluid. Density of pellets/tablets is lower than
the density of stomach fluid. [1,17,20,47]

High density systems
Uses the density of dosage form as a strategy to produce the retention
mechanism. Sinking system remains at the bottom of the stomach, where the
density of the dosage form is greater than the gastric fluid.

[1]

Expandable systems
Expansion of the dosage form occurs by swelling or unfolding in the stomach.
Swelling usually occurs because of diffusion. Unfolding takes place due to
mechanical shape memory.

[6,12,61]

Bioadhesive systems

A very complex process with several mechanisms, including electrical theory,
adsorption, wetting, diffusion, and fracture theories. The interaction between
the negatively charged mucosal surface and positively charged polymers might
facilitate the bioadhesive process.

[12,45]

Raft forming systems The polymer in presence of mono or di valent cations, absorbs water, swells and
forms in situ gel layers, which float above gastric fluid and termed as raft. [62,63]

Super-porous hydrogel systems Swells up to 100 times due to water update by capillary wetting through
numerous pores. [12,64]

Magnetic systems Consists of the small internal magnet mixed with the drug. Its position inside
the stomach is controlled by an extracorporeal magnet. [16]

Ion-exchange resin systems Drug is loaded into the resin to form the resin loaded drug complex, which can
be combined with floating delivery or bioadhesive systems. [16]
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5.1.1. Non-Effervescent Floating Systems

In non-effervescent systems, highly swellable cellulose derivatives or gel-forming polymers are
used [5]. The formulation technique of non-effervescent systems involves mixing the drug with a
gel-forming polymer. Various non-effervescent systems include the hydrodynamically balanced system
(HBS), single- and double-layer floating tablets, and microballoons/hollow microspheres.

The HBS system was first designed by Sheth and Tossounian in 1984 [65]. It is a single unit dosage
form composed of one or more gel-forming hydrophilic polymers. HPMC, hydroxy propyl cellulose
(HPC), hydroxyethylcellulose, sodium carboxymethylcellulose, carrageenan, agar, and alginic acid are
some of the polymers that are used to design the HBS system [17,66]. In this system, the drug is mixed
with the polymer and filled in the gelatin capsule.

The floating tablet can be designed by uniform mixing of the drug and gel-forming hydrophilic
polymer, which hydrates and swells upon contact with the gastric fluid and maintains the bulk density
of the tablet at <1 g/cm3 [17,67]. Thus, the low-density systems float on the gastric fluid and prolong
the GRT. The commonly used hydrophilic polymers in floating tablet include HPMC, polyethylene
oxide, HPC, and cellulose acetate phthalate. Wei et al. [34] studied the bilayer floating tablet containing
an immediate-release layer and sustained-release layer of the drug. The immediate-release layer
contained a disintegrating agent, which aided the prompt release of drug, whereas the sustained
release layer contained a hydrophilic polymer to control the drug release rate and also provided the
tablet buoyancy. Drug-loaded microballoons/hollow microspheres are formulated by simple solvent
evaporation or solvent diffusion techniques [68], and are multiple-unit floating systems. Polycarbonate,
cellulose acetate, calcium alginate, Eudragit S, agar, and low-methoxylated pectin are commonly used
polymers to design microballons. Various formulation variables such as the amount of polymer, ratio
of plasticizer and polymer, and solvent can affect the floating behavior and drug release of these kinds
of dosage forms [69]. One drawback of the HBS is that this system, being a matrix formulation, consists
of a blend of drug and low-density polymers. The release kinetics of the drug cannot be changed
without changing the floating properties of the dosage form and vice versa.

5.1.2. Effervescent Floating Systems

Effervescent floating systems include a gas-generating agent and volatile liquids. This approach
has been applied for single- and multiple-unit systems. In the gas-generating floating system,
effervescent agents such as sodium bicarbonate, calcium carbonate, tartaric acid, and citric acid are
used in combination with hydrophilic polymers [9,70]. When this system comes into contact with
gastric fluid, CO2 is liberated due to the reaction of the effervescent agent with gastric fluid. The
liberated CO2 gas is entrapped in the hydrocolloid matrix, which provides the tablet buoyancy and
influences the drug release properties [71]. In volatile liquid systems, volatile liquids such as ether and
cyclopentane are introduced into an inflatable chamber, which volatilize at body temperature allowing
inflation of the chamber in the stomach [38]. Hydrophilic polymers are often used to control the drug
release rate in this system.

Effervescent floating systems can be categorized into single- and double-layer effervescent floating
tablets and multiple-unit effervescent floating systems [14,17]. Single-layer effervescent tablets are
formulated by intimately mixing effervescent agent, polymer, drug, and excipients. However, in bilayer
effervescent floating tablets, one layer comprises the drug, polymer, and CO2 gas-generating agent,
whereas the other layer constitutes an immediate-release drug and excipients without CO2 and polymer.
In a recent study, sodium bicarbonate in HPMC matrix formulation was used to improve the GRT by
increasing the hydration volume of dosage form and increasing the surface area of drug diffusion [14].
In addition, an increase in the amount of sodium bicarbonate decreased the drug release rate from the
matrix, which could be due to obstruction of the diffusion path by CO2 gas bubbles [14]. Another study
also utilized this approach to evaluate the in vitro and in vivo behaviors of ciprofloxacin hydrochloride
effervescent floating tablets [72]. The optimized formulation was selected based on the GRT in humans
(i.e., 5.50 ± 0.77 h). Multiple-unit effervescent floating systems consist of sustained-release pills as
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seeds surrounded by double layers. The inner layer contains effervescent agents such as sodium
bicarbonate, calcium carbonate, and tartaric acid whereas the outer layer consists of polymers with
swelling properties [17]. A low density system may be associated with problems such as sticking
together or being obstructed in the GIT, which could produce gastric irritation. This system requires
high fluid levels in the stomach to float and work effectively. Therefore, drugs with irritant effects on
the gastric mucosa are not suitable candidates for low-density systems [1,17,20,47].

5.2. High-Density Systems

High-density systems have a density greater than that of gastric fluid (Figure 2b). Commonly used
excipients of these systems include barium sulfate, zinc oxide, iron powder, and titanium dioxide [17].
In 1930, Hoelzel first discovered the effects of dosage form density on the GRT of several animal species.
The densities of the tested dosage forms ranged from 0.9 to 10.5 g/cm3. The author concluded that
high-density materials had slower GRTs than light-density materials. Thereafter, the impact of dosage
form density on GRT has been studied. Garg and Gupta [51] reported that small high-density pellets
are able to resist gastric peristaltic movements due to their retention in the antrum rugae or folds,
increasing the gastrointestinal tract time from 5.8 to 25 h. Even though this system has the potential to
improve the GRT, it is difficult to design high-density pellets containing high-dose drugs. Moreover,
only a few clinical studies on high-density pellet formulations have been reported in the literature; as a
result, the clinical significance of these systems is still questionable [73]. Therefore, future directions
need to be focused on animal studies to investigate the clinical significance of such dosage forms.

5.3. Expandable Systems

Expandable drug delivery systems are designed to have a longer GRT through an increase in their
volume or shape (Figure 3a). Initially, they were used for veterinary purposes and, subsequently, their
applications were extended to humans [51]. Three general configurations need to be considered for the
proper functioning of the system: small size for easy oral intake, expanded form in the stomach to
prevent passage through the pyloric sphincter, and size reduction of the system after complete drug
release to enable evacuation [1,6,12]. This system is also termed as a “plug type system” because it has
the ability to block the pyloric sphincter. Expansion of the system occurs by two methods, swelling and
unfolding, which allow for volume and shape modification, respectively [6,18]. The main mechanism
for swelling and drug release from the system is diffusion. These systems utilize hydrophilic polymers
(e.g., HPMC, polyethylene oxide, and carbopol) that can absorb water from the gastric fluids and
increase the volume of the system. Likewise, in unfolding systems, the polymer and drug are in a
folded/compressed state inside the gelatin capsule. When they come into contact with the gastric
fluid, gelatin is dissolved and releases the mechanically preferred expanded configuration. Different
geometrical forms of biodegradable polymer can be prepared and compressed within a capsule [12].
It is crucial to select a suitable biodegradable polymer with an appropriate molecular weight, viscosity
grade, and swelling properties to maintain the sustained release profile of the dosage form [12,74].
Various novel polymers have the ability to swell promptly in contact with the GI fluid. Sivaneswari et al.
developed and characterized a novel expandable GRDDS of levetiracetam based on an unfolding
mechanism. In their study, the drug was loaded onto a polymeric patch made of HPMC, carbopol 934 P,
and xanthum gum, which was designed to adhere to the gastric mucosa, where the drug was released
in a sustained manner. Chen et al. [61] formulated GRDDS tablets of Losartan using an equivalent ratio
of hydroxyethylcellulose and chitosan, and sodium bicarbonate was added as a gas-generating agent.
The optimized formulation showed a sustained release profile of more than 16 h with good swelling
and floating behavior. Their results suggested that the addition of sodium bicarbonate could improve
the floating ability of the dosage form but might reduce the swelling ability of the low viscosity grade
of chitosan. Therefore, the optimum ratio of the polymer and gas-generating agent is necessary to
obtain the preferred GRDDS. However, expandable systems have a few limitations such as difficulty
in storing easily hydrolysable, biodegradable polymers; being difficult to manufacture and may not
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be cost-effective; difficulty in maintaining the structural integrity; and may cause bowel obstruction,
intestinal adhesion, and gastropathy [6,12,61].
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5.4. Superporous Hydrogel Systems

In 1998, the superporous hydrogel was presented as a different category of water-absorbent
polymer system. This system has gained popularity in the controlled-release formulation due to its high
mechanical strength and elastic properties [75]. It has a pore size greater than 100 µm, and as a result,
it swells rapidly to an equilibrium size due to water uptake by capillary wetting through numerous
pores. Figure 3b depicts the schematic concept of the superporous hydrogel system. The conventional
hydrogel system is a slow process and takes several hours to reach equilibrium; thus, the dosage form
can be easily evacuated from the stomach. On the contrary, the superporous hydrogel systems swell up
to 100 times or more, and gain enough mechanical strength to withstand pressure by gastric contraction,
thereby increasing the GRT. Highly swellable polymers, such as croscarmellose sodium and sodium
alginate are used in these systems [12,64]. However, these systems can be highly sensitive to pH, and
swelling can be reversible due to changes in pH and poor mechanical strength of the structure [12,64].

5.5. Bioadhesive/Mucoadhesive Systems

The mucoadhesive/bioadhesive system was first introduced by Park and Robinson in 1984 [76].
It was designed to adhere to the gastric epithelial cell surface and prolong the GRT of drug
compounds [8,17]. Figure 4a illustrates the concept of this system. In this approach, drugs are
incorporated in a mucoadhesive agent, which can be either natural or synthetic polymers. Bonding
established between the polymer and mucosal surface facilitates the mucoadhesion process [77],
which generally involves two steps: the contact stage and the consolidation stage (Figure 4b) [78].
The mechanism of mucoadhesion is highly complex and is not fully understood; however, different
theories have been postulated, as summarized in Table 5. Various gastrointestinal mucoadhesive
dosage forms such as beads, microspheres, films, capsules, and tablets have been prepared and reported
in the literature [79]. Commonly used mucoadhesive polymers include carbopol, chitosan, sodium
alginate, HPMC, polyethylene glycol, and poly(acrylic acid) [12,17]. Mucoadhesive polymers assist
in binding drug substances to the mucosal surfaces and prolonging the drug residence time at the
application site. An ideal mucoadhesive polymer is inert, non-irritating, nontoxic, adheres to the
mucosal surface, and possesses site specificity; and interacts with the mucin through electrostatic,
disulfide, hydrogen, and hydrophobic bonding. The mucoadhesive properties and interaction strength
of the polymer depend on the molecular weight, structure, flexibility of the polymeric chains, hydrogen
bonding capacity, cross-linking density, charge, concentration, or hydration degree of the polymer [80].
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Table 5. Suggested mechanisms of mucoadhesion [1,81].

Theories Mechanisms of Mucoadhesion

Wettability Bioadhesive polymers penetrate and develop intimate contact with the mucous layers.

Diffusion
Physical entanglement of mucin strands and flexible polymer chains. Influenced by
molecular weight, cross-linking density, chain flexibility, and expansion capacity of
both networks.

Adsorption Bioadhesion is due to primary forces (ionic, covalent, and metallic) and secondary
forces (van der Waals, hydrophobic and hydrogen bonds) between surfaces.

Electronic Attractive electrostatic forces between the glycoprotein mucin network and the
bioadhesive material.

Fracture Detachment force needed to separate the mucus and polymer reflects the force of the
adhesive binding.

Various studies have focused on the combination of floating and mucoadhesive properties in
order to improve the GRT of the dosage form by forming mucoadhesive floating drug delivery
systems (MFDDS) [61,80,82–84]. Liu et al. developed a hollow-bioadhesive microsphere of psoralen
using glycerol monooleate as a bioadhesive polymer. The prepared microspheres showed strong
mucoadhesive properties with good buoyancy both in vitro and in vivo. Moreover, the pharmacokinetic
analysis of the drug in the microsphere showed the prolonged elimination half-life time and reduction in
elimination rate. Recently, a novel gastroretentive oil entrapped alginate beads containing resperidone
was prepared by using ionotropic emulsion gelation technique. The alginate beads were coated
with the cross-linked alginate sterculia gum gel membrane. The dosage form demonstrated good
floating and ex vivo mucoadhesion behavior and sustained drug release characteristics [84]. Generally,
different types of ex vivo mucosal tissues are used to evaluate the mucoadhesive properties (total
work of mucoadhesion, force of system detachment, percentage of mucoadhesion) of the dosage
form [85–87]. However, mucosal tissues taken from laboratory animals can be difficult to obtain and
are not considered good from an ethical point of view. In such cases, synthetic hydrogels that can mimic
biological mucosa could be a good synthetic substitute for animal tissues. The hydrophilic structure of
the hydrogels renders them capable of imbibing large amounts of water in their three-dimensional
networks and resembling the properties of biological tissues [88]. In this system, specific targeting
might be difficult because composition of the mucus is different according to the region of the mucous
membrane. In addition, the constant turnover of the mucus, and high stomach hydration might
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decrease the bioadhesion of polymers. Moreover, there is high risk of adhesion to the esophagus which
may lead to collateral lesions [12,45].

5.6. Raft-Forming Systems

Raft-forming systems are another type of GRDDS, formulated with effervescent excipients and
gel forming polymers in order to achieve the sustained drug delivery. Figure 5 illustrates the concept
of these systems, which mainly focuses on achieving localized effects because floating rafts act as
blockades between esophagus and stomach. Thus, they can be used for the effective management of
gastric esophageal reflux disease. When raft-forming systems come into contact with gastric fluid,
they swell and form a viscous cohesive gel leading to the formation of a continuous layer termed
as rafts [17,62]. Fabregas et al. [89] explained the antacid raft-forming floating system. The authors
used sodium alginate as a gel-forming polymer, and sodium bicarbonate and acid neutralizer as
gas-generating agents. Thus, CO2 gas is generated that lowers the bulk density of the system, and as a
result, the raft floats on the gastric fluid. Nabarawi et al. [62] developed a controlled release floating
raft system of mebeverine hydrochloride, and evaluated different excipients for their floating behavior
and in vitro controlled-release. It forms a viscous and cohesive gel when it swells and entraps CO2

bubbles produced by the reaction of carbonates and gastric fluid [12]. The formed raft can remain
intact in the stomach for several hours, promoting the sustained release of the drug. Such rafts are
particularly useful for delivering antacid drugs such as aluminum hydroxide, calcium carbonate, and
simethicone [90]. However, the mechanical strength of the systems is weak and can be easily disrupted
by the MMC [62,63].
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5.7. Magnetic Systems

In magnetic systems, a dosage form consists of active pharmaceutical ingredient, excipients and
also a small amount of internal magnet. An extracorporeal magnet is placed over the stomach to control
the position of the dosage form containing internal magnet as presented in Figure 6 [17]. The position
and the magnetic field intensity of the extracorporeal magnet can affect the GRT [16]. Previous studies
have reported that the GRT and bioavailability are improved by magnetic tablets [3,91]. Groning et al.
performed a study in human volunteers using magnetic acyclovir tablets with and without an external
magnetic field. The authors observed that the GRT and plasma drug concentration were increased in the
presence of an extracorporeal magnet. Ito et al. formulated bioadhesive granules containing ultra-fine
ferrite and performed in vivo experiment in rabbits [92]. They found that an external magnetic field
intensity of 1700 G retained all granules in the stomach for more than 2 h. However, specific positioning
of the magnet might be difficult and results in low patient compliance [16]. Only a few studies have
been conducted on magnetic systems and their clinical significance has yet to be explored. Therefore,
future research studies on these systems need to focus more on their clinical significance.
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5.8. Ion-Exchange Resin Systems

The ion-exchange resin system consists of the water insoluble cross-linked polymer (resin) that
can be either cationic or anionic. In general, it is designed to release the drug in a controlled manner.
The suitable resins can be chosen according to the drug properties. In case of GRDDS, drugs should
be released in the stomach and hence this system is applicable to cationic drugs. Therefore, cationic
resin can be selected. A specific amount of resin is poured on a known drug concentration and mixed
homogeneously for a certain period. The drug ions from the solution get adsorbed onto the resin
matrix and displace cations from the resin. Such loaded drug resin complexes are called resinates.
When the resinates come into contact with the hydrogen ions in the acidic environment of the stomach,
hydrogen ions are exchanged with the drug ions present in the resinates matrix. As a consequence,
the drug ions are released into the gastric fluid while the resin particles are eliminated through the
large intestine [93]. The release rate of the drug from resins depends on inherent properties of the resins
such as the particle size, cross-linking density, type of ionogenic group. Moreover, it also depends on
the nature of the drugs, ionic environment and test solution [93]. When an ion exchange resin is highly
cross-linked, the drug loading efficiency gets decreased [94,95]. The degree of drug resin complexation
can be calculated by dry weight resin capacity measurement methods. It is determined by weighing a
dry resin, rewetting it in drug solution, and displacing completely from the resin. The displaced ions
can be assayed giving the degree of drug resin complexation. Even though this system alone may not
be suitable to increase the GRT, the ion exchange resin can be combined with floating delivery systems
or bioadhesive systems to prolong the GRT [96]. Some of its limitations may be difficulty in estimating
the amount of bound resin with drug, and safety issues concerning its ingestion.

6. Evaluation Parameters of GRDDS

6.1. In Vitro Evaluation Parameters

In vitro assessments of GRDDS can be used to predict the in vivo performance. The routine
evaluation methods of gastroretentive tablets include measurement of tablet tensile strength, weight
variation, friability, drug content, content uniformity, and in vitro drug release. Floating behaviors
such as floating lag time and total floating duration have been used for the assessment of floating
behavior of low-density systems. Furthermore, floating force is also used to measure the floating
capacity of the floating tablet. In addition, swelling rate, water uptake capacity, and gel strength of the
polymeric dosage form can be evaluated using dissolution medium and tested for at least 8 h to ensure
the floating mechanism, drug release, and gel strength. Table 6 summarizes various in vitro evaluation
parameters of different GRDDS.
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Table 6. In vitro evaluation parameters of various GRDDS.

GRDDS Evaluation Comment References

Low-density system,
raft-forming system

Floating Lag Time (FLT), total floating
time (TFT), floating strength

The test is carried out in a simulated gastric fluid (SGF) at 37 ◦C.
The time between introduction of dosage form and its buoyancy on
the SGF (FLT) and the time during which the dosage form remains
buoyant (TFT) were measured. The floating strength is measured
using specifically designed basket holder connected with analytical
balance. The reduction of weight on the analytical balance over time
determines the floating strength.

[9,17,19,31,97,98]

Superporous hydrogel system,
expandable system Swelling studies

The test is carried out by placing the weighed amount of dosage form
into the swelling medium (0.01 N HCl) and weight, diameter, and
length of swollen samples are measured at predetermined time point.

[61,99]

Raft-forming and
Mucoadhesion systems Viscosity and Rheology

Viscosity of polymer affects the consistency of the dosage form upon
contact with the gastric fluid. Brookfield/Ostwald’s viscometer and
texture analyzer are commonly used.

[100]

Expandable system In vitro unfolding study
The test is carried out by placing the folded dosage form into the
dissolution medium and examining its unfolding behavior in
different time interval.

[101]

Ion-exchange resin system Particle size, ion exchange capacity,
moisture content

Particle size analysis is carried out using a sieve shaker, laser
diffraction, and coulter counter analyzer. The ion exchange capacity
depends upon the functional group available for crosslinking.
Moisture content can be measured with Karl Fischer.

[96,102–104]

Applicable for all GRDDS

In vitro drug release
The test is carried out in SGF at a predefined time interval (generally
0 to 12 h) using USP type-II apparatus at 50 rpm and maintained at
37 ◦C.

[9,27,72,80]

Gel strength The high gel strength is desirable for better mechanical integrity. [9,105]

Drug-excipient interaction study It can be studied by using FT-IR spectroscopy, Differential scanning
calorimetry, and High Performance Liquid Chromatography.

[17,106]
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6.2. In Vivo Evaluation Parameters

In order to provide the evidence of in vivo efficacy of GRDDS, a well-designated in vivo study
in an animal model or humans is required. In vivo studies provide information about the GRT and
bioavailability of the drug. Selection of a suitable animal model is the first requirement for a successful
in vivo study. For example, in small animals such as mouse, rat, guinea pig, and rabbit, there might be
an issue of animal handling especially for large dosage forms [18,107]. As a result, measurements of
the GRT and bioavailability are still difficult. Table 6 summarizes the in vivo evaluation parameters of
different GRDDS.

Various diagnostic imaging techniques including gamma scintigraphy, radiology, gastroscopy,
ultrasonography, and magnetic resonance imaging (MRI) can be applied for in vivo evaluations of
GRDDS [6,18,36,108]. Gamma scintigraphy studies have been conducted to determine the location
and extent of GRDDS and their transit through the GIT. In this technique, small amounts of stable
isotope are added to the dosage form during its preparation [18]. Then, this isotope is converted into
γ-emitting material by irradiating the dosage form in a neutron source. Gamma rays are released
and captured as an image after processing by a computer. This method can also be used for the
identification of dissolution and disintegration properties of the dosage form. A good safety profile
and relatively low doses of radiation are the major advantages of the technique [6,18].

Likewise, the radiology/X-ray technique is used for the preclinical evaluation of GRT, disintegration
rate, dimensions of the dosage form, and esophageal transit of GRDDS [18,36]. In this technique,
a radio-opaque material such as barium sulphate is incorporated with the dosage form, and radiographs
taken after ingestion of the dosage form help in locating the dosage forms at various periodic time
intervals. Its major advantages compared to γ-scintigraphy are simplicity and cost. Even though this
technique has been successfully used in human volunteers, dogs, and rabbits, safety issues still need to
be considered because repetitive exposure to x-rays may lead to various health hazards.

Gastroscopy is a type of per-oral endoscopy used for the diagnosis and monitoring of GRDDS [18].
This technique composed of optical fibers and a video camera to determine the location of the dosage
form. This method is applicable for all types of GRDDS; however, it is less convenient and might
require minor or complete anesthesia to assess gastric retention of GRDDS. Similarly, ultrasonography
is an alternative technique used in GRDDS. Ultrasonic waves are generated that enable the imaging of
some abdominal organs and determine the intragastric location of the hydrogels, solvent penetration
into the gel, and interactions between the dosage form and gastric mucosa during peristalsis [6]. MRI
is another technique for determining the in vivo gastric retention of GRDDS. This technique uses
magnetic fields and radiowaves to view the complete anatomical structure as well as location of the
ingested dosage form [6,36]. The compounds with super paramagnetic properties (e.g., ferrous oxide)
are incorporated for visualization purposes. Steingoetter et al. used this technique to report the in vivo
gastric retention of gadolinium chelates floating tablets containing Fe3O4 as a super paramagnetic
agent and succeeded in analyzing intra-gastric tablet position and residence time in human volunteers.

7. Future Perspectives of GRDDS

The GRT of the conventional dosage form is one of the main challenges in the pharmaceutical
industry, especially for drugs that are absorbed from the upper part of the intestine. Developing
GRDDS will help to overcome the drawbacks associated with conventional dosage form, although
further work is needed on its shortcomings. To date, many studies have been performed on GRDDS
utilizing the single system approach such as floating, expandable, and mucoadhesive systems.

Even though various GRDDS technologies have been extensively explored to achieve successful
gastroretentive systems, most have their own limitations (Table 4). The variation in GRT, especially in the
fed and fasted states, is still one of the main challenges faced by many formulation scientists. No single
approach might be the best for resolving the problems. Therefore, it is desirable to explore suitable
GRDDS that can overcome the limitations of a single approach. Using combination approaches such
as expandable and effervescent floating systems, mucoadhesive and floating systems, swellable and
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floating systems, and mucoadhesive and high-density system may be useful strategies for minimizing
the variability of GRT. Moreover, dual-working systems are less affected by the physiological condition
of the stomach such as the fasting and fed states and these systems can ensure delayed gastric emptying.
Therefore, future works on GRDDS should be focused on combinations of different mechanisms in
order to prolong gastric retention of dosage forms even in the fasted state.

It is essential to assess gastroretentive dosage forms on a case-by-case basis because the
physiochemical nature of drug and excipients, types and composition of polymers, drug dose,
and manufacturability may depend on product specification [19]. Another important aspect for
improving GRDDS is to understand the effects of formulation and process variables on the critical
quality attributes of GRDDS. The critical quality attributes of GRDDS include floating behavior,
floating force, gel strength, mucoadhesive strength, mucoadhesive time, in vitro drug release, swelling
capacity, porosity of hydrogel, tablet tensile strength, and friability. From formulation viewpoints,
understanding polymer behavior and its role in formulation is crucial for the rational development of
the gastroretentive dosage form. Furthermore, selection of an appropriate concentration of polymer
is equally important for designing such dosage forms. In this regard, the quality by design (QbD)
approach can be a useful tool for investigating the influence of formulation and process variables on
the critical quality attributes of GRDDS. With implementation of the QbD approach in pharmaceutical
fields, there has been a significant transformation in the understanding and control of the manufacturing
process, which notably minimizes the risk of product failure [9].

Some gastroretentive approaches such as magnetic systems have not been extensively studied.
The clinical studies of these systems have not yet been reported in detail. Therefore, future works on
magnetic systems need to be focused on clinical candidates to specify their practical applications in
humans. Moreover, incorporating magnetic systems into the superporous hydrogel system can help
extracorporeal magnets precisely locate the ingested dosage form since it swells and occupies larger
volume. The advancement of technologies offers efficient measurement tools that can help to predict
and correlate the gastric emptying time and passage of drug into the GIT. For example radiology
and scintigraphy can be used for the in vivo evaluation of gastric emptying of dosage forms from the
stomach [17]. Moreover, magnetic marker monitoring techniques can also be utilized to capture images
of dosage forms in the stomach [109].

8. Conclusions

GRDDS have great potential to improve the therapeutic efficacy of drugs with narrow absorption
windows, high solubility at acidic pH, and instability at alkaline pH. A thorough understanding of
the anatomy and physiological state of the stomach, investigations into the impact of formulation
and process variables on dosage form quality is a prerequisite for the successful design of GRDDS.
Even though various GRDDS such as bio/mucoadhesive, magnetic, low-, and high-density systems
have been reported in the literature, their clinical significance still needs to be studied. From the
pharmaceutical aspect, future directions of GRDDS may need to focus on a combination approach of
GRDDS to achieve better product quality. Moreover, a QbD approach can be used to better understand
the effects of formulation and process variable on product performance.
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