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Abstract
Background: The change in the characteristics of the gut microbiota is linked to gesta-
tional	diabetes	mellitus	(GDM).	However,	whether	and	how	the	gut	microbiota-	derived	
metabolites	change	in	GDM	is	uncertain.	Here,	we	aimed	to	determine	associations	
between the gut microbiota- derived metabolites and GDM.
Methods: Using	targeted	metabolomics	approaches,	7	types	of	short-	chain	fatty	acids	
(SCFAs),	38	types	of	bile	acids	(BAs),	and	5	types	of	trimethylamine	N-	oxide	(TMAO),	
and its derivatives of serum samples were obtained from pregnant women with GDM 
(n =	24),	and	healthy	pregnant	controls	 (HC,	n =	28)	were	detected	to	 identify	 the	
metabolic	signature	of	GDM	to	 investigate	the	potential	biomarkers.	Moreover,	we	
assessed the associations between gut microbiota- derived metabolites and clinical 
parameters.
Results: In	our	study,	the	gut	microbiota-	derived	metabolites	signatures	were	signifi-
cantly	 different	 between	GDM	and	HC.	Quantitative	 results	 showed	 the	 levels	 of	
isobutyric	acid,	isovaleric	acid,	valeric	acid,	caproic	acid,	GUDCA,	THDCA	+	TUDCA,	
and	LCA-	3S	were	significantly	higher	in	GDM,	but	the	level	of	TMAO	and	its	deriva-
tives did not change significantly. Some altered gut microbiota- derived metabolites 
were significantly correlated with glucose and lipid levels. Receiver- operating char-
acteristic (ROC) analysis of generalized linear models showed that gut microbiota- 
derived metabolites may be potential biomarkers of GDM.
Conclusion: This study highlights gut microbiota- derived metabolites alterations in 
GDM	and	correlation	of	 the	 clinical	 indicators,	which	provides	a	new	direction	 for	
future studies aiming to novel serum biomarker for early detection or target of drug 
therapy of GDM.
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1  |  INTRODUC TION

Gestational diabetes mellitus (GDM) is one of the most common 
pregnancy	 complications,	 which	 defined	 as	 glucose	 intolerance	
resulting	 in	 hyperglycemia,	 with	 onset	 or	 first	 recognition	 during	
pregnancy.	 According	 to	 reports,	 the	 global	 incidence	 of	 GDM	
is	 2.3%–	17.5%.1	 With	 the	 development	 of	 society	 and	 economy,	
changes	 in	 lifestyles	 and	 increasing	 emphasis	 on	GDM	 screening,	
the detection rate of GDM is increasing year by year. Previous stud-
ies have indicated that GDM women were at higher risk of adverse 
perinatal	outcomes,	including	hypertension,	preeclampsia,	infection,	
preterm	delivery,	macrosomia,	increased	cesarean	rates,	premature	
rupture	 of	 membranes	 (PROM),	 perinatal	 mortality,	 and	 neonatal	
metabolic complications.2 These adverse outcomes in GDM have led 
clinicians to implement various strategies including fetal monitoring 
and	induction	of	labor,	which	is	a	major	threat	to	maternal	and	fetal	
health.	Several	 risk	 factors	 for	GDM	have	already	been	 identified,	
including	 maternal	 age,	 family	 history	 of	 diabetes,	 prepregnancy	
obesity,	and	multiple	pregnancies.3	 In	recent	years,	the	correlation	
of gut microbiota with GDM has become a research hotspot. Several 
macrogenomic studies showed that the diversity of gut microbiota 
in patients with GDM is lower than that in healthy pregnant women. 
Ruminococcaceae,	Parabacteroides distasonis,	Prevotella,	Desulfovibrio,	
Megamonas,	and	Phascolarctobacterium are enriched in the gut mi-
crobiota of pregnant women with GDM. These microbiotas are re-
lated to the metabolic pathways of glucose and lipid metabolism and 
insulin signal transduction. Gut microbiotas can use the nutrients 
of	the	host	to	produce	microbial	metabolites,	finally	forming	host–	
microbe metabolic axis between host and gut microbes. This axis 
plays an important role in nutrition metabolism and immune homeo-
stasis and ultimately affects the overall metabolism of the host. Gut 
microbiota- derived metabolites act as information messengers be-
tween	the	gut	microbiotas	and	host	cells,	including	short-	chain	fatty	
acids	 (SCFAs),	 bile	 acids	 (BAs),	 choline,	 tryptophan,	 indole	 deriva-
tives,	and	trimethylamine	N-	oxide	(TMAO),	etc.4 Studies on rodents 
have shown potential mechanisms of interaction with the gut mi-
crobiome,	including	regulating	glucose	metabolism,	increasing	short-	
chain	fatty	acids,	enhancing	the	permeability	of	lipopolysaccharides	
and the interaction with bile acids.5	In	addition,	human	studies	have	
proved the evidence for these hypotheses.6	However,	 the	 interac-
tion between the imbalance of the gut microbiota of GDM patients 
and	host	metabolism	is	still	unclear.	Therefore,	studying	the	changes	
in gut microbiota- derived metabolites of GDM will help to further 
understand the mechanism of gut microbiota involved in the occur-
rence and development of GDM and has important guiding value for 
the	early	prediction,	diagnosis,	and	timely	treatment	of	GDM.

Metabolomics detection can capture the metabolic changes 
associated	with	 the	disease,	 identify	metabolic	markers	 in	 the	de-
velopment	of	the	disease,	and	help	discover	new	etiology	and	patho-
genesis.	Hou	et	al.7 offered significant biochemical parameters and 
perinatal	data	changes	in	free	fatty	acids,	bile	acids,	branched-	chain	
amino	acids,	organic	acids,	lipids,	and	organooxygen	compounds	in	

131	GDM	cases	compared	with	138	controls	by	fasting	serum	me-
tabolite	analysis.	In	a	pilot	UPLC-	MS	study,	Liu	et	al.8 explored and 
identified	 35	 metabolites	 in	 serum	 metabolites	 between	 women	
with	GDM	and	healthy	controls	during	and	after	pregnancy,	which	
involved	 in	 important	metabolic	 pathways	 such	 as	 glycine,	 serine,	
threonine,	steroid	hormone	biosynthesis,	tyrosine	metabolism,	glyc-
erophospholipid	metabolism,	 and	 fatty	 acid	metabolism	 that	 con-
tribute	to	GDM	progression.	In	addition	to	blood	(plasma	or	serum),	
urine,	 amniotic	 fluid,	placenta,	 and	newborn's	meconium	also	pro-
vide a rich metabolomic profile for GDM studies. The identification 
of	 signature	metabolites	 can	be	used	 for	disease	diagnosis,	 thera-
peutic	response	assessment,	or	even	predicting	susceptibility	to	the	
disease.	However,	highly	sensitive	and	specific	metabolic	biomark-
ers for detecting GDM in early pregnancy by targeting metabolo-
mic probes of serum gut microbiota- derived metabolites levels are 
unavailable.

The aim of this study was to perform targeted gut microbiota- 
derived	metabolites	(SCFAs,	BAs,	TMAO,	and	its	derivatives)	analy-
sis of serum samples from pregnant women with GDM and healthy 
pregnant	controls,	to	identify	serum	biomarkers	and	their	metabolic	
pathways,	 and	correlation	with	clinical	 indicators,	 laying	 the	 foun-
dation	for	early	diagnosis,	early	warning,	and	even	reversal	of	preg-
nancy outcomes in GDM.

2  |  MATERIAL S AND METHODS

2.1  |  Study population and sample collection

This	was	 a	 cross-	sectional	 study	 in	 52	pregnant	women	 (24	preg-
nant	women	with	GDM	and	28	healthy	pregnant	women)	in	the	third	
trimester	 of	 pregnancy	 who	 gave	 birth	 in	 the	 Affiliated	 Hospital	
of Medical School of Ningbo University between November 2020 
and	February	2021.	The	 inclusion	criteria	were	as	 follows:	 (1)	 sin-
gle	 birth,	 (2)	 no	 history	 of	 hypertension,	 diabetes,	 cardiovascular	
and	cerebrovascular	diseases,	and	metabolic	diseases	before	preg-
nancy,	and	 (3)	no	other	complications	of	pregnancy.	The	exclusion	
criteria	were	someone	who	took	antibiotics,	probiotics,	and	prebi-
otics	 within	 1	month	 prior	 to	 sampling,	 or	 who	 had	 diarrhea	 and	
other gastrointestinal symptoms. GDM was diagnosed using an 
Oral Glucose Tolerance Test (OGTT) performed between 24 and 
28	gestational	weeks	using	the	International	Association	of	Diabetes	
and	Pregnancy	Study	Group	 (IADPSG)	 criteria	 [FBG	≥	5.1	mmol/L	
(92	mg/dl),	1-	h	post-	OGTT	≥	10.0	mmol/L	(180	mg/dl)	or	2-	h	post-	
OGTT	 ≥	 8.5	 mmol/L	 (153	 mg/dl)].9 The pregnant women whose 
glucose levels were normal in OGTT were designated as healthy con-
trols	 (HC).	All	participants	had	signed	a	written	 informed	consent,	
which had been approved by the Institutional Review Board (IRB) of 
the	Affiliated	Hospital	of	Medical	School	of	Ningbo	University	with	
the code KY20201124.

We collected the clinical information of the two groups including 
age,	vital	signs,	height,	weight,	prepregnancy	BMI,	gravidity,	parity,	
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and pregnancy outcomes. Results of biochemistry tests including tri-
glycerides	(TG),	total	cholesterol	(TC),	low-	density	lipoprotein	(LDL)	
cholesterol,	high-	density	lipoprotein	(HDL)	cholesterol,	white	blood	
cell	count	(WBC),	hemoglobin	(Hb),	neutrophil	percentage	(NEU%),	
C-	reactive	protein	(CRP),	alanine	aminotransferase	(ALT),	aspartate	
aminotransferase	 (AST),	 albumin,	 total	 bile	 acid	 (TBA),	 blood	 urea	
nitrogen	(BUN),	creatinine	(Cr),	BUN/Cr,	and	uric	acid	(UA)	were	also	
collected.	Participants’	blood	samples	were	collected	after	8–	10	h	
of fasting. Sample transfer centrifugation (1000 g for 10 min at 4°C) 
and	separation	of	serum	were	completed	within	1	hour.	Final	serum	
samples	were	stored	at	−80°C	until	retrieval	for	targeted	metabolo-
mics analysis.

2.2  |  Biochemical analysis

The complete blood count analysis was performed using a hematol-
ogy	system	(Mindray	BC	6800),	which	was	based	on	a	combination	
of	light	scatter,	electrical	impedance,	fluorescence,	light	absorption,	
and electrical conductivity methods to produce complete blood cell 
analyses.	TG,	TC,	LDL,	HDL,	ALT,	AST,	albumin,	TBA,	BUN,	Cr,	BUN/
Cr,	and	UA	concentrations	were	determined	by	the	enzymatic	colori-
metric	method	(Beckman	Coulter	AU5800).

2.3  |  Quality control

Equal volume of samples from each experimental sample was mixed 
as	a	quality	control	(QC)	sample.	The	blank	samples	were	the	blank	
matrix of the experimental samples with the same pretreatment pro-
cess as for the experimental samples.

2.4  |  Targeted GC- MS analysis of SCFAs

Targeted analysis of 7 types of short- chain fatty acids (acetic 
acid,	 propanoic	 acid,	 butyric	 acid,	 isobutyric	 acid,	 valeric	 acid,	 is-
ovaleric	 acid,	 and	 caproic	 acid)	 in	 serum	 samples	 using	 the	 gas	
chromatography-	mass	spectrometry	(GC-	MS)	method.	Briefly,	20	μl 
of	serum	sample	mixed	with	15%	phosphoric	acid	(50	μl),	75	μg/ml 
of	internal	standard	solution	(isocaproic	acid,	10	μl),	and	ether	(140	
μl)	were	precisely	pipetted	for	pretreatment,	derivatization,	and	ex-
traction of target analytes. Samples were centrifuged at 13000g at 
4°C	for	10	min	and	150	µl of the upper organic layer was collected 
for	analysis.	Samples	were	analyzed	by	Thermo	TRACE	1310-	ISQ	LT	
GC-	MS	(Thermo).	The	sample	was	injected	in	split	mode(10:1),	and	
helium	 (1	ml/min)	was	used	as	carrier	gas.	SCFAs	were	performed	
using	an	HP-	INNOWAX	column	(30	m	×	0.25	mm,	0.25	μm;	Agilent)	
with an electrospray ionization (ESI) source in positive ionization 
mode,	and	small	molecules	were	measured	by	gas	chromatography-	
mass spectrometer (GC- MS). The temperatures of chromatographic 
inlet,	 ion	 source,	 transfer	 line,	 and	quadrupole	mass	 spectrometer	

were	maintained	at	250,	230,	250,	and	150°C.	The	starting	tempera-
ture	of	the	programmed	temperature	rise	is	90°C,	then	increased	to	
120°C	at	10°C/min	and	then	to	150°C	at	5°C/min.	Finally,	the	tem-
perature	is	increased	to	250°C	at	25°C/min	for	2	min.	The	obtained	
extracts were assayed for analytes by GC- MS.

2.5  |  Targeted UPLC- MS analysis of BAs

Targeted	analysis	of	38	kinds	of	BAs	(alloLCA,	LCA,	isoLCA,	NorDCA,	
6-	ketoLCA,	 12-	ketoLCA,	 7-	ketoLCA,	 beta-	UDCA,	 DCA,	 CDCA,	
UDCA,	 HDCA,	 NorCA,	 DHCA,	 7,12-	diketoLCA,	 6,7-	diketoLCA,	
alpha-	MCA,	UCA,	beta-	MCA,	CA,	ACA,	beta-	CA,	GLCA,	GHDCA,	
GCDCA,	GUDCA,	GDCA,	LCA-	3S,	GCA,	TLCA,	THDCA	+	TUDCA,	
TDCA,	 TCDCA,	 TCA,	 T-	alpha-	MCA,	 THCA,	 T-	beta-	MCA,	 and	
CDCA-	G)	 in	 serum	 samples	 using	 the	 ultra-	performance	 liquid	
chromatography-	mass	 spectrometry	 (UPLC-	MS)	method.	Measure	
a	 proper	 amount	 of	 sample	 into	 a	 2-	ml	 EP	 tube,	 accurately	 add	
methanol (300 μl,	−20°C)	to	precipitate	the	protein,	vortex	for	60	s,	
centrifuge	at	12,000	rpm	at	4°C	for	10	min,	take	the	supernatant,	
and concentrate it with a vacuum concentrator at room temperature 
until completely dry. Pipette accurately reconstitute the sample with 
methanol (100 μl,	−20°C),	vortex	and	shake	for	30	s,	 take	90	μl of 
the	supernatant,	and	add	it	to	the	detection	bottle.	The	sample	was	
injected	in	5	μl.	BAs	were	performed	using	an	ACQUITY	UPLC	BEH	
C18	column	(2.1	×	100	mm,	1.7	μm; Waters) with an ESI source in 
negative	ionization	mode.	The	ion	source	temperature	was	500°C,	
the	 ion	source	voltage	was	−4500	V,	 the	collision	gas	 is	6	psi,	 the	
curtain	 gas	was	 30	 psi,	 and	 the	 atomization	 gas	 and	 auxiliary	 gas	
were	both	50	psi.	Multiple	reaction	monitoring	(MRM)	was	used	for	
scanning. Column temperature was at 40℃,	eluent	A	was	0.01%	for-
mic	acid	water,	and	eluent	B	was	acetonitrile.	The	solvent	gradient	
was	set	as	follows:	0–	4	min,	25%	B;	4–	9	min,	25%–	30%	B;	9–	14	min,	
30%–	36%	 B;	 14–	18	 min,	 36%–	38%	 B;	 18–	24	 min,	 38%–	50%	 B;	
24–	32	min,	50%–	75%	B;	32–	35	min,	75%–	100%	B;	and	35–	38	min,	
100%–	25%	B.	The	flow	rate	was	0.25	ml/min.

2.6  |  Targeted UPLC- MS analysis of TMAO and its 
derivatives

Targeted	 analysis	 of	 TMAO	 and	 its	 derivatives	 (choline,	 betaine,	
TMAO,	 creatinine,	 and	 L-	carnitine)	 in	 serum	 samples	 using	 the	
UPLC-	MS	method.	20	μl of serum sample mixed with add 10 μl of 
internal	standard	solution,	and	then	add	750	μl of 1% formic acid- 
acetonitrile	solution,	vortex	for	30	s,	centrifuge	at	12,000	rpm	for	
5	min	 at	 4°C,	 take	 500	 μl	 of	 supernatant,	 filter	 through	 0.22	 μm 
of	membrane,	 and	 filter	 add	 the	 liquid	 to	 the	 test	bottle.	 Samples	
were	 performed	 using	 an	 ACQUITY	 UPLC	 BEH	 HILIC	 column	
(2.1 ×	100	m,	1.7	μm; Waters) with an ESI source in positive ioni-
zation	mode,	injection	volume	5	μl,	column	temperature	40℃,	mo-
bile	phase	A-	acetonitrile,	B-	water	(containing	0.1%	formic	acid),	and	
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10 mM of ammonium formate at a flow rate of 0.4 ml/min. The sol-
vent	gradient	was	set	as	follows:	0–	1	min,	80%	A;	1–	2	min,	80%–	70%	
A;	2–	2.5	min,	 70%	A;	2.5–	3	min,	 70%–	50%	A;	3–	3.5	min,	 50%	A;	
3.5–	4	min,	50%–	80%	A;	and	4–	6	min,	80%	A.	The	ion	source	tem-
perature	was	500℃,	the	ion	source	voltage	was	5000	V,	the	collision	
gas	was	6	psi,	the	curtain	gas	was	30	psi,	and	the	atomization	gas	and	
auxiliary	gas	were	both	50	psi.	Multiple	reaction	monitoring	(MRM)	
was used for scanning.

2.7  |  Metabolomics data analysis

Univariate	and	multivariate	analysis	methods,	which	is	partial	least-	
square	discriminant	analysis	(PLS-	DA)	and	agglomerate	hierarchical	
clustering were conducted to examine the potential differential me-
tabolites and was plotted by the Pheatmap package in R language 
(version	3.3.2).	A	univariate	analysis	(t test) was applied to calculate 
the	statistical	significance,	and	p- value <	0.05	were	considered	dif-
ferential metabolites. Statistically significant values of correlation 
between differential metabolites were calculated by cor.mtest in R 
language.	Additionally,	 the	receiver–	operator	characteristics	 (ROC)	
analysis	was	performed,	and	area	under	the	curve	(AUC)	was	used	
to	 evaluate	 metabolites	 diagnostic	 capabilities.	 Spearman's	 cor-
relation was used to assess the significance correlations between 
metabolites and clinical parameters. Correlation coefficients (r) and 
p- value were calculated. The metabolic pathways were studied using 
the Kyoto Encyclopedia of Genes and Genomes (KEGG; Kanehisa 
Laboratories)	database.

2.8  |  Statistical analysis

SPSS	26.0	(SPSS	Inc.)	was	used	for	statistical	analysis.	The	Student's	
t test or Mann– Whitney U test were performed to evaluate the dif-
ference	among	groups	 for	 continuous	variables,	 and	non-	normally	
distributed	data	were	tested	by	the	Wilcoxon's	rank-	sum	test.	The	
continuous variables were presented as mean ± standard error (SD) 
unless	 otherwise.	 The	 chi-	squared	 test	 or	 Fisher's	 exact	 test	 was	
conducted	 for	 categorical	 variables	 to	 compare	 the	 difference.	 A	
two- sided p- value <	0.05	was	considered	statistically	significant.

3  |  RESULTS

3.1  |  Characteristics of the study population

A	total	of	52	participants	(24	GDM	and	28	HC)	were	enrolled.	The	
maternal and fetal general characteristics of subjects were listed in 
Table	1,	and	the	clinical	characteristics	were	summarized	in	Table	2.	
Compared	with	the	HC,	the	GDM	group	showed	glucose	and	 lipid	
metabolism	 disturbance.	 Fasting	 OGTT	 glucose	 level,	 and	 1-		 and	
2-	h	post-	OGTT	glucose	levels	at	24–	28	weeks’	gestation	were	sig-
nificantly elevated in GDM (all p- value <	0.05).	Meanwhile,	the	lev-
els	of	TG,	TC,	and	LDL	in	the	GDM	group	were	remarkably	higher	
than	 those	 in	HC,	which	were	opposite	 to	 the	 level	of	HDL	 (all	p- 
value <	0.05).	There	were	no	statistical	group	differences	for	other	
variables,	such	as	prepregnancy	BMI,	parity,	fetal	birth	weight,	blood	
pressure,	and	inflammation	indicators	(all	p- value <	0.05).

Characteristic GDM (n = 24) HC (n = 28) p- Value

Baseline characteristics of the subjects

Age	(years) 30.54	± 4.67 28.61	±	2.81 0.096b

Gestational weeks (weeks) 39.27 ±	0.75 39.22 ± 0.79 0.265b

Height	(cm) 161.17 ±	6.54 163.25	±	5.14 0.204a

Weight (kg) 57.79	± 9.44 59.17	±	8.64 0.762b

Prepregnancy BMI (kg/m2) 22.23 ±	3.38 22.16 ± 2.62 0.985b

Maternal weight gain (kg) 13.67 ± 4.26 14.20 ±	5.01 0.682a

Gravidity 1.92 ±	1.25 1.96 ± 1.17 0.715b

Parity,	n (%)

Primiparous (1 birth) 16 (0.67) 15	(0.54) 0.403c

Multiparous	(≥2	births) 8	(0.33) 13 (0.46)

Pregnancy outcomes

Delivery week (weeks) 39.42 ±	0.80 39.36 ±	0.86 0.298a

Fetal	birth	weight	(kg) 3.43 ±	0.38 3.50	± 0.44 0.512a

Mode	of	delivery,	n (%)

Vaginal 17 (0.71) 21	(0.75) 0.764c

Caesarean section 7 (0.29) 7	(0.25)

aDerived	from	the	Student's	t test.
bDerived from the Mann– Whitney U test.
cDerived	from	the	chi-	squared	test	or	Fisher's	exact	test.

TA B L E  1 General	characteristics	of	
study population
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3.2  |  The gut microbiota- derived metabolites 
signature in GDM were altered

Recent	years,	accumulating	evidences	supported	that	SCFAs	might	
affect	glucose	metabolism.	In	this	study,	GC-	MS	platform	was	used	
for	 metabolite	 measurement,	 7	 types	 of	 SCFAs	 were	 quantified.	
PLS-	DA	was	used	as	a	supervised	method	to	get	an	overview	of	the	
data and to detect trends of metabolome alteration between the 
two	 groups.	 Based	 on	 the	 PLS-	DA	 scores	 scatterplot	 (Figure	 1A),	
we	observed	a	clear	separation	between	GDM	and	HC.	In	order	to	
define the relationship between the samples more intuitively and 
comprehensively,	and	to	evaluate	the	differences	in	the	expression	
patterns	 of	 metabolites	 in	 different	 samples,	 we	 use	 hierarchical	
clustering analysis on each group of samples to accurately screen 
marker metabolites and explore changes in related metabolic pro-
cesses.	 Therefore,	we	 generated	 a	metabolite	 heatmap,	which	 re-
vealed	considerable	differences	between	GDM	and	HC	(Figure	1B).	
Quantitative	 analysis	 results	 showed	 4	 types	 of	 SCFAs	 were	 sig-
nificantly	elevated	in	the	GDM	group,	 including	isobutyric	acid,	 is-
ovaleric	acid,	valeric	acid,	and	caproic	acid	(Figure	1C).	Among	them,	

isobutyric	 acid	 showed	 the	 most	 significant	 change,	 which	 was	
19.363	times	higher	than	HC.	However,	there	were	no	statistical	dif-
ferences	on	levels	of	acetic	acid,	propanoic	acid,	and	butyric	acid	in	
serum	between	the	GDM	and	HC	groups.

Bile acids are now considered to be signaling molecules that 
coordinate	 glucose	 and	 energy	 metabolism.	 We	 used	 UPLC-	MS	
platforms	to	analysis	of	38	types	of	BAs	in	serum	samples.	PLS-	DA	
scores	 scatterplot	 showed	 a	 discriminative	 trend	 of	 BAs	 between	
the	GDM	and	HC	groups	(Figure	2A).	However,	heatmap	showed	no	
obvious	difference	in	the	BAs	level	(Figure	2B).	Quantitative	analysis	
results	 showed	GUDCA,	 THDCA	+	 TUDCA	 (taurohyodeoxycholic	
acid +	 tauroursodeoxycholic	 acid),	 and	 LCA-	3S	 were	 significantly	
increased	in	the	GDM	group	(Figure	2C).	However,	there	was	no	sta-
tistical	difference	of	other	BAs	between	the	GDM	and	HC	groups	
(Figure	S1).

Although	there	was	a	large	amount	of	evidence	supporting	the	
involvement	of	TMAO	 in	 glucose	metabolism,	 there	were	 few	ex-
isting	 literatures	on	TMAO	and	GDM.	In	this	study,	there	were	no	
significant	differences	in	serum	TMAO	and	its	derivatives’	concen-
trations	between	the	GDM	and	HC	groups	(Figure	3A–	C).

Characteristic GDM (n = 24) HC (n = 28) p- Value

Systolic	blood	pressure	(mm	Hg) 119.38	± 11.49 120.25	± 9.43 0.521a

Diastolic	blood	pressure	(mm	Hg) 73.46 ±	6.81 74.86	± 7.27 0.480a

Fasting	glucose,	OGTT	(mmol/L) 4.72 ±	0.58 4.32 ± 0.32 0.005a

1	h	glucose,	OGTT	(mmol/L) 9.29 ± 1.61 7.71 ± 1.72 0.002a

2	h	glucose,	OGTT	(mmol/L) 8.60	± 1.09 6.62 ± 1.10 <0.001a

TG	(mmol/L) 3.88	± 1.23 3.09 ±	0.98 0.026a

TC	(mmol/L) 7.01 ±	1.08 6.20 ± 1.40 0.045a

LDL	(mmol/L) 3.80	±	0.81 3.22 ±	0.82 0.025a

HDL	(mmol/L) 1.89	± 0.36 2.21 ± 0.47 0.021a

WBC (×109/L) 9.49 ± 2.27 10.15	± 2.47 0.313b

Hb	(g/L) 128.42	± 9.96 126.96 ± 12.49 0.649a

NEU (%) 75.27	± 6.01 78.05	± 6.92 0.131a

CRP	(mg/L) 7.62 ±	10.84 5.51	±	5.77 0.797b

ALT	(U/L) 10.22 ± 4.26 9.39 ± 3.24 0.567b

AST	(U/L) 18.91	± 4.43 19.75	± 3.44 0.148b

Albumin	(g/L) 37.29 ±	7.86 37.9 ± 6.49 0.208b

TBA	(μmol/L) 3.33 ±	1.65 2.71 ± 1.37 0.145b

BUN	(mmol/L) 3.74 ± 1.11 3.30 ± 0.74 0.098a

Cr (μmol/L) 47.49 ±	8.63 46.49 ± 6.20 0.663a

BUN/Cr 0.08	± 0.16 0.07 ± 0.16 0.139a

UA	(μmol/L) 325.09	±	71.18 327.18	± 77.49 0.921a

Abbreviations:	ALT,	alanine	aminotransferase;	AST,	aspartate	aminotransferase;	BUN,	blood	
urea	nitrogen;	Cr,	creatinine;	CRP,	C-	reactive	protein;	GDM,	gestational	diabetes	mellitus;	Hb,	
hemoglobin;	HDL,	high-	density	lipoprotein;	LDL,	low-	density	lipoprotein;	NEU%,	neutrophil	
percentage;	OGTT,	oral	glucose	tolerance	test;	TBA,	total	bile	acid;	TC,	total	cholesterol;	TG,	
triacylglycerides;	UA,	uric	acid;	WBC,	white	blood	cell	count.	Bold-	faced	values	means	p<0.05.
aDerived	from	the	Student's	t test.
bDerived from the Mann– Whitney U test.

TA B L E  2 Clinical	characteristics	of	
study population
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3.3  |  Maternal glucose values and blood lipids level 
was correlated with altered gut microbiota- derived 
metabolites

To further explore potential correlations of key clinical indexes with 
altered	gut	microbiota-	derived	metabolites	in	GDM,	random	forest	

analysis	was	performed	 in	Figure	4.	At	24–	28	weeks’	gestation,	1-		
and 2- h post- OGTT blood glucose values all showed substantial 
positive	 correlations	 with	 isobutyric	 acid,	 isovaleric	 acid,	 valeric	
acid,	caproic	acid,	THDCA	+	TUDCA,	GUDCA,	and	LCA-	3S.	Among	
them,	valeric	acid	was	also	positively	correlated	with	fasting	OGTT	
blood glucose values. These results were consistent with the results 

F I G U R E  1 Changes	in	serum	short-	chain	fatty	acids	(SCFAs)	of	GDM	and	HC.	(A)	The	PLS-	DA	scores	plot	of	SCFAs	in	serum	samples	of	
the	GDM	group	(red)	and	HC	group	(blue).	The	horizontal	axis	represents	the	predicted	score	of	the	first	component,	which	explained	50.4%	
of	the	between-	group	variations.	The	vertical	axis	represents	the	orthogonal	principal	component	score,	which	explained	34.8	of	the	within-	
group variations. R2X =	0.853,	R2Y	=	0.301,	Q2	=	0.245.	(B)	Heatmap	analysis	of	SCFAs	between	the	GDM	and	HC	groups.	Hierarchical	
clustering	analysis	was	performed	on	each	group,	different	color	regions	represent	different	clustering	group	information.	Red	indicates	
relatively	high	kurtosis	values,	and	blue	indicates	relatively	low	kurtosis	values.	(C)	Quantitative	comparison	of	serum	SCFAs	between	the	
GDM	and	HC	groups.	**p <	0.01,	***p < 0.001
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F I G U R E  2 Changes	in	serum	bile	acids	(BAs)	of	GDM	and	HC.	(A)	The	PLS-	DA	scores	plot	of	BAs	in	serum	samples	of	the	GDM	
group	(red)	and	HC	group	(blue).	The	horizontal	axis	represents	the	predicted	score	of	the	first	component,	which	explained	19%	of	the	
between-	group	variations.	The	vertical	axis	represents	the	orthogonal	principal	component	score,	which	explained	9.6%	of	the	within-	
group variations. R2X =	0.294,	R2Y	=	0.289,	Q2	=	−0.17.	(B)	Heatmap	analysis	of	BAs	between	the	GDM	and	HC	groups.	(C)	Quantitative	
comparison	of	serum	BAs	between	the	GDM	and	HC	groups.	*p <	0.05,	****p < 0.0001
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of	quantitative	analysis.	In	addition,	betaine,	CDCA-	G,	and	GHDCA	
were also positive correlations with 1-  and 2- h post- OGTT blood 
glucose	 values,	 although	 their	 concentrations	 were	 not	 observed	
and	 changed	 in	 this	 study,	 while	 7,12-	diketoLCA	 and	 6-	ketoLCA	
were negatively correlated with 2- h post- OGTT blood glucose val-
ues	and	fasting	OGTT,	respectively.	Significantly,	we	found	that	gut	
microbiota- derived metabolites were correlated with blood lipid 
levels.	Such	as,	valeric	acid	and	GUDCA	were	positively	correlated	
with	 TG	 level,	 contrary	 to	 T-	alpha-	MCA	 and	 NorDCA.	 Isovaleric	
acid,	 TDCA,	DCA,	 and	GDCA	were	 positively	 correlated	with	 the	
LDL	level.	Isobutyric	acid,	TCA,	and	GCA	were	negatively	correlated	
with	HDL	level,	contrary	to	GLCA.	These	findings	suggest	changes	
in blood glucose and blood lipids in patients with GDM are related to 
altered gut microbiota- derived metabolites.

The metabolite correlation heatmap showed that there were 
also	correlations	between	each	metabolites	(Figure	5A–	C).	Through	
correlation	 analysis,	 we	 observed	 that	 isobutyric	 acid	 was	 signifi-
cantly	 negatively	 correlated	 with	 acetic	 acid.	 Propanoic	 acid,	 bu-
tyric	acid,	and	 isobutyric	acid	were	significantly	positive	correlated	
with	caproic	acid,	 isovaleric	acid,	and	valeric	acid.	Besides,	circulat-
ing	 THDCA	+	 TUDCA	was	 positively	 associated	with	 beta-	UDCA,	

GHDCA,	and	GUDCA.	GUDCA	was	positively	associated	with	beta-	
UDCA,	DCA,	CDCA,	UDCA,	beta-	CA,	GHDCA,	and	GCDCA.	LCA-	3S	
was	positively	associated	with	6-	ketoLCA,	DCA,	NorCA,	CA,	GLDCA,	
GHDCA,	GCDCA,	GUDCA,	and	GDCA.	The	possible	reason	is	that	
the gut microbiota- derived metabolites can be transformed into each 
other	under	certain	conditions.	For	example,	primary	bile	acids	(CA,	
CDCA)	are	transformed	into	secondary	bile	acids	under	the	action	of	
intestinal	bacteria.	Although	there	had	no	changes	in	TMAO	and	its	
derivatives	were	observed	in	this	study,	the	metabolites	correlation	
heatmap	showed	there	may	be	some	correlation	between	TMAO	and	
its	derivatives,	 such	as	TMAO	 is	positively	correlated	with	choline,	
and	carnitine	is	positively	correlated	with	L-	carnitine.

3.4  |  Gut microbiota- derived metabolites related 
to lipid metabolism, amino acid metabolism, and 
glucose metabolism

KEGG pathway enrichment prediction of differential metabolites 
was	 then	 performed,	 and	 a	 map	 of	 the	 gut	 microbiota-	derived	
metabolites	 metabolic	 pathways	 was	 constructed	 (Figure	 6).	 The	

F I G U R E  3 Changes	in	serum	trimethylamine	N-	oxide	(TMAO)	and	its	derivatives	of	GDM	and	HC.	(A)	The	PLS-	DA	scores	plot	of	TMAO	
and	its	derivatives	in	serum	samples	of	the	GDM	group	(red)	and	HC	group	(blue).	The	horizontal	axis	represents	the	predicted	score	of	the	
first	component,	which	explained	20.9%	of	the	between-	group	variations.	The	vertical	axis	represents	the	orthogonal	principal	component	
score,	which	explained	18.5%	of	the	within-	group	variations.	R2X	=	0.442,	R2Y	=	0.0898,	Q2	=	−0.36.	(B)	Heatmap	analysis	of	TMAO	and	
its	derivatives	between	the	GDM	and	HC	groups.	(C)	Quantitative	comparison	of	serum	TMAO	and	its	derivatives	between	the	GDM	and	
HC	groups
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biosynthesis	 of	 acetyl-	CoA,	 leucine	 metabolism,	 biosynthesis	 of	
pentanamide,	 and	 biosynthesis	 of	 N-	methylhexanamide	 were	 all	
found	 to	be	statistically	different	between	GDM	and	HC.	 In	addi-
tion,	bile	acids	can	modulate	cholesterol	synthesis.	These	modifica-
tions to the host metabolism represented the influence of the gut 
microbiota-	derived	metabolites	on	lipid	metabolism,	amino	acid	me-
tabolism,	and	glucose	metabolism.10

3.5  |  Gut microbiota- derived metabolites markers 
can discriminate GDM

Random forest analysis was used to explore whether gut microbiota- 
derived metabolites markers can be used to discriminate subjects 

with	GDM	from	HC.	Based	on	 the	differential	metabolites	 (isobu-
tyric	 acid,	 isovaleric	 acid,	 valeric	 acid,	 caproic	 acid,	 GUDCA,	
THDCA	+	 TUDCA,	 and	 LCA-	3S),	 binary	 logistic	 regression	 analy-
sis	was	performed	on	the	GDM	and	HC	groups.	In	the	ROC	graph,	
the	AUC	 indicates	 the	 diagnostic	 potentials	 of	 the	metabolites	 as	
unique	biomarkers	for	identification	of	GDM	and	control,	as	shown	
in	 Figure	 7A.	 Summary	 of	 ROC	 curve	 parameters	 was	 shown	 in	
Table 3. ROC analysis of generalized linear model showed that 
isobutyric	 acid,	 isovaleric	 acid,	 valeric	 acid,	 caproic	 acid,	GUDCA,	
THDCA	 +	 TUDCA,	 and	 LCA-	3S	 may	 be	 potential	 biomarkers	 of	
GDM. We could accurately distinguish GDM patients from healthy 
controls,	as	indicated	by	the	area	under	the	receiver-	operating	curve	
(AUC),	which	had	a	value	up	from	0.661	to	0.831.	Among	the	strong-
est	discriminatory	features,	valeric	acid	(VA)	had	the	greatest	impact	

F I G U R E  4 Associations	among	glucose	values,	blood	lipids	level,	and	altered	gut	microbiota-	derived	metabolites.	*p <	0.05,	**p <	0.01,	
***p < 0.001
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(AUC	 =	 0.831,	 95%CI:	 0.723–	0.939).	 These	 results	 highlight	 the	
early diagnosis potential of these gut microbiota- derived metabo-
lites	markers.	Moreover,	we	 created	 a	 combinatorial	marker	panel	
composed	of	these	7	biomarkers,	which	AUC	ranging	from	0.726	to	
0.890	(Figure	7B),	and	these	results	highlight	the	early	diagnosis	po-
tential of the new combination markers.

4  |  DISCUSSION

In	patients	with	GDM,	the	secretion	of	pancreatic	islets	is	restricted	
or	 the	 function	of	 islet	 is	 impaired,	 so	 the	balance	of	glucose	me-
tabolism	cannot	be	maintained,	resulting	in	increased	blood	glucose	
levels.	At	present,	GDM	can	use	the	OGTT	method	for	early	screen-
ing	and	diagnosis,	which	is	currently	recognized	as	the	"gold	stand-
ard,"	but	this	method	is	time-	consuming	and	can	cause	discomfort	
for	pregnant	women.	Moreover,	the	current	screening	and	diagnos-
tic	criteria	for	GDM	are	not	uniform	around	the	world,	which	may	
lead to insufficient diagnosis and poor management of the disease. 
Therefore,	 searching	 for	 early	GDM	diagnosis	 and	 effective	 inter-
vention means are very important. Thanks to the rapid development 
of	metabolomic	research	technology,	 the	metabolite	research	may	
become a breakthrough point of GDM diagnosis and effective inter-
vention. Several studies have reported that GDM exist metabolites’ 
alteration	 disorders	 of	 glucose	 metabolism,	 lipid	 metabolism,	 and	

amino acid metabolism.11 The intestine affects the absorption and 
utilization of glucose and also affects the metabolism and absorption 
of	fat,	which	is	closely	related	to	the	occurrence	of	GDM.	Therefore,	
in	this	study,	we	identified	several	different	gut	microbiota-	derived	
metabolites	in	the	serum,	including	short-	chain	fatty	acids,	bile	acids,	
and	TMAO,	which	are	closely	related	to	the	disease	process	of	GDM.

Short-	chain	fatty	acids	(SCFAs)	are	organic	fatty	acids	with	1–	6	
carbon	atoms,	which	are	mainly	produced	by	fermentation	of	indi-
gestible carbohydrates (dietary fiber) and intestinal flora through 
different	 metabolic	 pathways.	 SCFAs	 can	 be	 present	 in	 a	 small	
amount in the circulation and provide energy to peripheral tissues 
as substrates for hepatic glyconeogenesis or adipocyte adipogene-
sis.	Among	SCFAs,	acetic	acid,	propionic	acid,	and	butyric	acid	have	
the	highest	 content,	 accounting	 for	more	 than	85%.	 In	organisms,	
SCFAs	have	a	variety	of	biological	 functions	such	as	providing	en-
ergy,	maintaining	water	and	electrolyte	balance,	improving	intestinal	
blood	 circulation,	 immune	 regulation,	 gene	 expression	 regulation,	
and affecting the metabolic function of the offspring.12 The total 
concentration	 of	 SCFAs	 depends	 on	 the	 diet,	 type,	 and	 number	
of	 the	 host	 microbiotas,	 and	 the	 time	 spent	 in	 the	 gastrointesti-
nal	 tract.	 Generally,	 Firmicutes,	 especially	 Faeculus,	 Rossella,	 and	
Bifidobacterium	produce	butyrate,	while	Bacteroides produces ace-
tate	and	propionate.	Depending	on	the	diet,	the	total	concentrations	
of	SCFAs	decreased	from	70	to	140	mM	in	the	proximal	colon	to	20	
to	70	mM	in	the	distal	colon,	which	is	associated	with	the	increased	

F I G U R E  5 Associated	heatmap	of	gut	
microbiota-	derived	metabolites.	(A–	C)	
When the linear relationship of the two 
metabolites	is	enhanced,	the	correlation	
coefficient	tends	to	1	or	−1.	The	
correlation	is	a	maximum	of	1,	a	complete	
positive	correlation	(red),	a	correlation	of	
−1,	and	a	complete	negative	correlation	
(blue)
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availability of carbohydrate and water in the proximal colon.13 In the 
colon	and	rectum,	95%	of	the	produced	SCFAs	are	rapidly	absorbed	
by	the	colon	cells,	while	the	remaining	5%	are	secreted	in	the	feces.	
Thus,	 fecal	 SCFAs	 excretion	 provides	 little	 information	 about	 the	
actual	gut	SCFA	metabolism.	Therefore,	we	detected	the	 levels	of	
SCFAs	in	the	serum	of	pregnant.	SCFAs	appear	to	have	a	beneficial	
influence glucose metabolism by normalizing blood glucose levels 
and	increasing	glucose	treatment.	SCFAs	regulate	host	lipid	and	glu-
cose metabolism through the G protein- associated receptors (GPR41 
and GPR43).14	 In	addition,	SCFAs	also	activates	enteroendocrine	L	
cells	 and	 stimulates	 glucagon-	like	 peptide-	1	 (GLP-	1)	 and	 intestinal	
hormone	peptide	YY	 (PYY).	GLP-	1	promotes	 insulin	 secretion	and	
inhibits the release of glucagon from the pancreas. In animal mod-
els,	elevation	at	body	PYY	levels	was	observed	after	SCFA	injection	
within the colon.15	Therefore,	altered	levels	of	SCFAs	can	lead	to	dis-
turbed	host	metabolism,	leading	to	obesity	and	diabetes.	In	recent	
years,	multiple	clinical	cohort	studies	have	shown	that	SCFAs	levels	
are	closely	related	to	type	2	diabetes	(T2DM).	GDM,	as	a	metabolic	
disease	during	pregnancy,	often	combined	with	maternal	overweight	
or	obesity,	leading	to	changes	in	gut	microbial	composition,	diversity,	
and	SCFAs	ratio.	A	high-	fat,	low-	fiber	diet	in	GDM	women	may	alter	
normal	gut	microbiota	composition,	 leading	to	elevated	Firmicutes	
and	Faecalibacterium,	resulting	in	excessive	production	of	SCFAs.	In	
addition,	SCFAs	may	increase	the	glycolysis/glyconeogenesis	path-
way	and	inhibit	insulin	signaling	in	peripheral	tissues,	leading	to	hy-
perglycemia in GDM.

Our	research	results	showed	valeric	acid,	caproic	acid,	isobutyric	
acid,	and	isovaleric	acid	were	significantly	higher	in	the	GDM	group.	

However,	 there	were	 no	 statistical	 differences	 on	 levels	 of	 acetic	
acid,	propanoic	acid,	and	butyric	acid	 in	serum	between	the	GDM	
and	HC	groups.	Valeric	acid	is	a	short-	chain	fatty	acid	with	5	carbon	
atoms. It is produced by the microbial metabolism of aminoproline 
and hydroxyproline and lactic acid and propionic acid.16 Intestinal 
flora is the most likely source of valeric acid. Previous studies have 
determined that valeric acid is a ligand for G protein- coupled recep-
tors	(GPCRs),	which	has	certain	effects	on	metabolism,	immunity,	and	
blood pressure regulation.17	However,	studies	have	also	shown	that	
the increase in valeric acid concentration is correlated with the lev-
els of inflammation markers (C- reactive protein and white blood cell 
count).18	Inflammatory	response	mediates	insulin	resistance,	which	
plays an important role in the occurrence and development of GDM. 
Therefore,	we	speculate	that	the	increase	in	serum	valeric	acid	levels	
in GDM patients may be related to the inflammatory state of the 
gut microbiota. Caproic acid is directly generated by some bacteria 
that	form	the	microbiota,	especially	Prevotella. Studies have shown 
that	these	bacteria	increased	in	GDM	patients,	leading	to	increased	
caproic acid production.19	 In	 addition,	 we	 also	 observed	 some	
branched- chain amino acids that can be used to distinguish GDM 
from the control group using targeted metabolomics. Isobutyric acid 
and	isovaleric	acid	are	branched-	chain	fatty	acids	(BCFAs),	which	are	
mainly produced during the fermentation of branched- chain amino 
acids	 (valine,	 leucine,	and	 isoleucine)	by	the	 intestinal	 flora	mainly.	
Bacteroides and Clostridium are mainly responsible for the fermenta-
tion	process	of	BCFAs.20	In	vitro	intestinal	models,	high-	protein	and	
low- complex carbohydrate diets (such as Western diets) can lead to 
higher	BCFAs	 levels,	which	 has	 been	 further	 confirmed	 in	 certain	

F I G U R E  6 Differential	metabolite	KEGG	pathway	enrichment	map
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dietary interventions.21 In vitro experiments on rat and human ad-
ipocytes	 have	 shown	 that	 BCFAs	 inhibit	 cAMP-	mediated	 lipolysis	
and	insulin-	stimulated	lipogenesis,	and	isobutyric	acid	can	also	en-
hance insulin- stimulated glucose uptake.22	 In	 this	study,	 the	 levels	
of	BCFAs	in	the	serum	of	GDM	patients	increased.	The	possible	rea-
sons are that the reduced utilization of fermentable carbohydrates 
in the intestinal flora may have facilitated the shift to more protein 
fermentation,	leading	to	increase	in	BCFA	production.

Bile	acids	(BAs)	are	small	molecules	synthesized	by	cholesterol	
in	 liver	 cells,	 which	 are	 now	 thought	 to	 be	 signaling	 molecules	
that	coordinate	blood	glucose,	lipid,	and	energy	metabolism.	The	
changes	 of	 BAs	 are	 closely	 related	 to	 metabolic	 abnormalities,	
such	as	T2DM,	insulin	resistance,	and	obesity.	BAs	alter	metabo-
lism	by	activating	certain	receptors,	including	the	farnesian	class	X	
receptor	(FXR),	pregnant	class	X	receptors,	and	G	protein-	coupled	
receptors	(GPCRs).	Large	cohorts	from	China	evaluated	the	associ-
ation	between	total	BAs	levels	and	GDM	in	early	pregnancy,	where	

elevated	 total	BAs	content	may	be	associated	with	an	 increased	
risk of GDM.23	 The	 association	 between	 BAs	 and	 GDM	 is	 rare,	
and	careful	analysis	of	the	effects	of	specific	BAs	on	GDM	is	more	
rare.	In	this	study,	GUDCA,	THDCA	+	TUDCA,	and	LCA-	3S	were	
significantly	increased	in	the	GDM	group.	TUDCA	has	been	shown	
to reduce the ER stress associated with elevated blood glucose 
levels	in	diabetic	patients	by	inhibiting	caspase	activation,	upreg-
ulation	of	UPR,	and	inhibition	of	reactive	oxygen	species,	exhibits	
antidiabetic activity.24 These results are contrary to our findings. 
Glycoursodeoxycholic	acid	(GUDCA)	is	a	glycine-	conjugated	form	
of	UDCA.	A	recent	study	reported	that	GUDCA	can	act	as	an	intes-
tinal	farnesol	X	receptor	antagonist,	significantly	reducing	weight	
gain and restoring glucose intolerance and insulin resistance in a 
diet- induced obesity mouse model.25	In	addition,	increased	serum	
GUDCA	levels	are	associated	with	decreased	hemoglobin	A1c	and	
waist circumference in patients with T2DM.26 The above evidence 
indicates	that	GUDCA	has	potential	metabolic	beneficial	effects.	

F I G U R E  7 Area	under	the	curves	of	differential	metabolites	between	the	GDM	and	HC	groups.	(A)	ROC	curves	were	prepared	for	
different	metabolites.	The	ordinate	is	the	sensitivity,	which	represents	the	true	positive	rate,	and	the	abscissa	is	the	specificity,	which	
represents the false positive rate. (B) Random forest analysis was used to quantify diagnostic performance of biomarker panels. Individual 
marker	panels	could	distinguish	patients	with	the	GDM	and	HC	groups	with	an	area	under	the	curve	(AUC)	ranging	from	0.726	to	0.890.	
AUC,	area	under	the	curve;	ROC,	receiver-	operating	characteristic

Sensitivity (%) Specificity (%) AUC 95% CI

Valeric	acid 71.4 79.2 0.831 0.723– 0.939

THDCA	+	TUDCA 78.6 66.7 0.814 0.700–	0.928

Isobutyric acid 85.7 70.8 0.806 0.693– 0.919

Isovaleric acid 71.4 75.0 0.797 0.673– 0.920

Caproic acid 71.4 75.0 0.754 0.618–	0.891

GUDCA 67.9 62.5 0.663 0.510–	0.816

LCA-	3S 71.4 54.2 0.661 0.525–	0.797

TA B L E  3 ROC	analysis	parameters	
of differential metabolites between the 
GDM	and	HC	groups
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However,	 in	 our	 study,	GUDCA	 level	 in	 the	GDM	group	was	 in-
creased and positively correlated with blood glucose and triglycer-
ide	 levels.	 LCA	 is	 the	most	 toxic	 bile	 acid	 because	 of	 its	 strong	
hydrophobicity.	Under	normal	circumstances,	the	amount	of	LCA	
in	the	body	is	very	tiny.	Sulfation	of	BAs	reduces	the	cholestasis	
of	DCA,	CA,	and	CDCA.	After	sulfation	of	LCA,	hydrophilicity	in-
creases	and	 toxicity	decreases.	Sulfated	BAs	have	a	 low	 level	of	
serum,	but	the	content	of	sulfated	BAs	in	urine	is	40%–	70%	of	the	
total	 urine	 bile	 acids	 and	 is	 not	 affected	 by	 diet.	 Therefore,	 the	
conclusions of this study need to be validated using a larger group 
of participants and other types of samples.

Trimethylamine	N-	oxide	 (TMAO)	 is	one	of	 the	most	 important	
gut microbiota- derived metabolites. Gut microbiota can use choline- 
rich	 substances	 to	produce	 trimethylamine	 (TMA),	 and	 then,	TMA	
activated	 by	 hepaflavin	 monooxygenase	 generates	 TMAO.	 The	
amount	of	TMAO	production	 is	 related	 to	 the	 type	of	 human	gut	
microbiota.	This	fully	illustrates	the	high	relevance	of	TMAO	to	the	
development	of	GDM.	In	recent	years,	several	clinical	cohort	stud-
ies	 have	 shown	 that	 the	 body	TMAO	 levels	 are	 closely	 related	 to	
T2DM,	and	animal	studies	have	found	that	TMAO	can	aggravate	im-
paired glucose tolerance and hyperglycemia by blocking liver insulin 
signaling and promoting an adipose tissue inflammatory response.27 
Consistently,	 reducing	 plasma	 TMAO	 could	 improve	 glucose	 and	
lipid	homeostasis	in	mice	by	using	FMO3	inhibition.28	Further	stud-
ies	found	that	mice	with	FMO3	deletion	were	protected	from	obe-
sity caused by a high- fat diet.29	However,	to	date,	the	role	of	choline	
and its metabolites in the pathogenesis of GDM had not been exten-
sively	studied.	An	exploratory	NMR	metabolomic	study	of	54	sam-
ples	explored	the	relationship	between	TMAO	and	GDM,	suggesting	
lower	plasma	TMAO	concentrations	 in	GDM	subjects.30	However,	
an	observational	study	of	866	pregnant	women	(433	cases	of	GSM	
and	4331:1	matched	 controls	by	 age,	 gestational	week,	 and	birth)	
showed	a	significantly	positive	association	between	plasma	TMAO	
concentrations and the risk of GDM.31	A	recent	review	suggests	that	
circulating	TMAO	levels	are	affected	by	multiple	factors,	 including	
gut	microbiota	 composition	 and	 activity,	 liver	 function	 and	 excre-
tion,	gut	blood-	barrier	function,	and	diet.32	However,	there	was	no	
significant	 changes	 in	 the	 TMAO	 level	 of	GDM	 in	 our	 study.	 This	
may be attributed to differences in the composition and function 
of the gut microbiota. Some bacterial families from Firmicutes and 
Proteobacteria are powerful choline and carnitine consumers capa-
ble	of	TMA	synthesis	by	expressing	specialized	enzymes.	In	addition,	
the expression and activity of other biochemical factors such as liver 
FMO3	can	also	affect	TMAO	levels.	Thus,	highly	variable	plasma	lev-
els in both disease and nondisease states are caused by differences 
in	intestinal	bacterial	composition,	and	it	is	not	necessarily	a	marker	
in	the	disease	process.	Therefore,	further	assessment	of	TMAO	sta-
tus	is	needed	in	future	studies,	which	should	include	collecting	dupli-
cate	samples	and	determining	averages	at	different	times,	and	needs	
to	be	verified	by	more	different	populations,	while	 thinking	about	
exactly how it correlates with GDM.

Moreover,	we	carefully	examined	the	relationship	between	dif-
ferential	 metabolites	 and	 the	 clinical	 information	 of	 the	 samples,	

including blood glucose and lipid levels. Maternal blood glucose val-
ues and blood lipid levels were found to be correlated with altered 
gut	microbiota-	derived	metabolites	 in	 the	GDM.	Lipid	metabolism	
is essential for healthy pregnancy and development. Dyslipidemia 
is	a	common	phenomenon	during	pregnancy,	and	it	is	considered	to	
be a physiological mechanism to provide fuel and nutrition for the 
fetus.	During	normal	pregnancy,	plasma	 lipid	mass	 spectra	 includ-
ing	TG,	TC,	HDL,	and	LDL	levels	change	significantly	due	to	insulin	
resistance,	 lipoprotein	synthesis,	and	increased	lipolysis	 in	adipose	
tissue,	 which	 is	 called	 dyslipidemia	 during	 pregnancy	 (DLP).	 The	
regulation	of	dietary	type,	gut	microbiota,	and	lipid	metabolism	may	
be	linked	by	affecting	the	levels	of	metabolic	hormones.	A	high-	fat	
diet	 in	 GDM	women	 disrupts	 the	 gut	microbiota,	 resulting	 in	 the	
growth of butyrate- producing bacteria (mainly Firmicutes and the 
Bacterium faecalis),	and	 increases	SCFA	production.	SCFAs	overac-
tivate glycolysis and glyconeogenesis pathways and suppress the in-
sulin	response	in	peripheral	tissues,	leading	to	diabetes.	In	our	study,	
the	 random	forest	analysis	 results	of	blood	 lipid	 levels	and	SCFAs	
suggested	a	positive	correlation	between	valeric	acid	and	TG	levels,	
isovaleric	acid	and	LDL	 levels,	and	 isobutyric	acid	and	HDL	 levels.	
These	 findings	 suggest	 that	 SCFAs	are	highly	 correlated	with	ma-
ternal blood lipid levels. Several studies point to an important role 
of	SCFAs	 in	cholesterol	 levels.	Acetate,	 the	most	abundant	SCFAs	
in	peripheral	circulation,	is	a	substrate	for	cholesterol	and	promotes	
cholesterol synthesis. The reduced ratio of acetate to propionate 
may lead to a decrease in serum lipids.33,34	However,	their	mecha-
nism of action has conflicts with results. This study showed no sig-
nificant difference in the levels of acetate and propionate between 
the	GDM	and	HC	 groups;	 further	 studies	 suggest	 that	 conclusive	
evidence was critical for entry into human studies.

Meanwhile,	bile	acids	are	closely	 related	 to	 lipid	metabolism.	
In	this	study,	we	observed	GUDCA,	TDCA,	DCA,	and	GDCA	were	
positively	 correlated	with	 serum	 lipid	 level,	 contrary	 to	 T-	alpha-	
MCA	and	NorDCA.	Moreover,	TCA	and	GCA	were	negatively	cor-
related	with	HDL	level,	contrary	to	GLCA.	There	is	a	key	receptor	
in	BAs	metabolism,	farnesol	X	receptor	 (FXR),	which	 is	 the	 liver-	
intestinal	bridge	of	BAs	metabolism	and	can	regulate	the	synthesis	
and	reabsorption	of	BAs.	FXR	is	distributed	in	a	variety	of	tissues,	
especially as the liver and gut are the most distributed and more 
active.	Zhang	et	 al.35	 found	 that	Gly-	MCA	acts	 as	 an	antagonist	
to	 inhibit	 intestinal	FXR,	thereby	tearing	host	 liver	 lipid	metabo-
lism and improving obesity- associated metabolic disorders. Oral 
cannabinoids	 inhibits	 intestinal	 bacterial	 BSH	 activity,	 resulting	
in	the	accumulation	of	bound	bile	acids,	inhibiting	intestinal	FXR-	
FGF15	signaling,	and	thus	ultimately	reducing	cholesterol	level.36 
An	8-	week	parallel	randomized	controlled	trial	demonstrated	that	
Mediterranean dietary intervention in overweight and obese sub-
jects reduced plasma cholesterol and altered the gut microbiota 
and	fecal	bile	acids,	significantly	reducing	fecal	total	bile	acids,	in-
cluding	primary	and	secondary	bile	acids.	 In	particular,	DCA	and	
LCA	in	the	stool	significantly	decreased	at	4	and	8	weeks	after	the	
intervention.37	 In	 addition,	 common	buckwheat	protects	 against	
high-	fat	 diet-	induced	 nonalcoholic	 fatty	 liver	 disease	 (NAFLD)	
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associated with dyslipidemia in mice. The addition of common 
buckwheat	significantly	regulated	the	biosynthesis	of	primary	BAs	
and	 altered	 the	 structure	 of	 the	 gut	microbiota,	 thus	 improving	
lipid metabolism.

To evaluate the diagnostic ability of gut microbiota- derived me-
tabolites,	we	used	random	forest	analysis	to	find	that	separate	met-
abolic markers could effectively discriminate the GDM patient from 
HC.	 The	 result	 revealed	 gut	 microbiota-	derived	 metabolites	 may	
be	used	as	potential	serum	biomarkers	for	predicting	GDM.	Among	
them,	 valeric	 acid	has	 the	 largest	AUC,	 suggesting	 it	 has	 the	best	
predictive	 ability.	 In	 addition,	 a	 combinatorial	 marker	 panel	 could	
distinguish	 GDM	 patient	 from	HC	 (AUC	=	 0.890).	 These	 findings	
suggest that the combinatorial biomarker panels have diagnostic po-
tential	for	GDM.	Therefore,	being	based	on	our	identified	biomark-
ers for GDM may be a new screen method for GDM.

Overall,	our	study	had	several	 limitations.	First,	 the	number	of	
samples was not of a substantial amount and could have affected 
the	stability	of	statistical	analysis.	Therefore,	the	conclusions	of	this	
study	 need	 to	 be	 verified	 by	more	 participants.	 Second,	 all	 GDM	
patients in this study used diet control to maintain a stable blood 
glucose	level	and	did	not	use	insulin	treatment,	so	stratified	analysis	
could	not	be	performed.	In	addition,	due	to	the	lack	of	records	of	di-
etary	habits	and	physical	activities	and	the	difficulty	of	follow-	up,	it	
was not possible to analyze the impact of external factors on the gut 
microbiota-	derived	metabolites.	Furthermore,	we	had	not	detected	
the gut microbiota and gut microbiota- derived metabolites in the 
stool	of	GDM	patients.	Therefore,	the	levels	of	these	compounds	in	
the digestive tract and the main factors production cannot be fully 
understood.	Third,	we	had	not	conducted	 large-	scale	clinical	 sam-
ples	verification	and	further	molecular	mechanism	research.	Further	
research is needed to clarify the relationship and interaction be-
tween these altered gut microbiota- derived metabolites and GDM.

Taken	 together,	 using	 targeted	 metabolomics	 approaches,	 we	
identified 7 gut microbiota metabolites that could be novel po-
tential	 biomarkers	 or	 drug	 treatment	 target	 for	 GDM,	 including	
isobutyric	 acid,	 isovaleric	 acid,	 valeric	 acid,	 caproic	 acid,	GUDCA,	
THDCA	 +	 TUDCA,	 and	 LCA-	3S.	 The	 KEGG	 metabolic	 pathway	
had revealed that these gut microbiota- derived metabolites were 
primarily	 involved	 in	 lipid	metabolism,	amino	acid	metabolism,	and	
glucose	metabolism.	Moreover,	we	also	 found	that	altered	metab-
olites of the gut microbiota were associated with dysregulated ma-
ternal	glucose	and	lipid	metabolism.	Therefore,	we	suggest	that	the	
future of research into biomarkers and GDM is best focused on gut 
microbiota-	derived	metabolites,	which	can	be	a	novel	and	 reliable	
predictor	 for	 early	 diagnose	of	GDM.	However,	 this	will	 require	 a	
larger sample size population- based cohort studies for subsequent 
validation.
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