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Abstract
Background: The change in the characteristics of the gut microbiota is linked to gesta-
tional diabetes mellitus (GDM). However, whether and how the gut microbiota-derived 
metabolites change in GDM is uncertain. Here, we aimed to determine associations 
between the gut microbiota-derived metabolites and GDM.
Methods: Using targeted metabolomics approaches, 7 types of short-chain fatty acids 
(SCFAs), 38 types of bile acids (BAs), and 5 types of trimethylamine N-oxide (TMAO), 
and its derivatives of serum samples were obtained from pregnant women with GDM 
(n = 24), and healthy pregnant controls (HC, n = 28) were detected to identify the 
metabolic signature of GDM to investigate the potential biomarkers. Moreover, we 
assessed the associations  between gut microbiota-derived metabolites and clinical 
parameters.
Results: In our study, the gut microbiota-derived metabolites signatures were signifi-
cantly different between GDM and HC. Quantitative results showed the levels of 
isobutyric acid, isovaleric acid, valeric acid, caproic acid, GUDCA, THDCA + TUDCA, 
and LCA-3S were significantly higher in GDM, but the level of TMAO and its deriva-
tives did not change significantly. Some altered gut microbiota-derived metabolites 
were significantly correlated with glucose and lipid levels. Receiver-operating char-
acteristic (ROC) analysis of generalized linear models showed that gut microbiota-
derived metabolites may be potential biomarkers of GDM.
Conclusion: This study highlights gut microbiota-derived metabolites alterations in 
GDM and correlation of the clinical indicators, which provides a new direction for 
future studies aiming to novel serum biomarker for early detection or target of drug 
therapy of GDM.
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1  |  INTRODUC TION

Gestational diabetes mellitus (GDM) is one of the most common 
pregnancy complications, which defined as glucose intolerance 
resulting in hyperglycemia, with onset or first recognition during 
pregnancy. According to reports, the global incidence of GDM 
is 2.3%–17.5%.1  With the development of society and economy, 
changes in lifestyles and increasing emphasis on GDM screening, 
the detection rate of GDM is increasing year by year. Previous stud-
ies have indicated that GDM women were at higher risk of adverse 
perinatal outcomes, including hypertension, preeclampsia, infection, 
preterm delivery, macrosomia, increased cesarean rates, premature 
rupture of membranes (PROM), perinatal mortality, and neonatal 
metabolic complications.2 These adverse outcomes in GDM have led 
clinicians to implement various strategies including fetal monitoring 
and induction of labor, which is a major threat to maternal and fetal 
health. Several risk factors for GDM have already been identified, 
including maternal age, family history of diabetes, prepregnancy 
obesity, and multiple pregnancies.3 In recent years, the correlation 
of gut microbiota with GDM has become a research hotspot. Several 
macrogenomic studies showed that the diversity of gut microbiota 
in patients with GDM is lower than that in healthy pregnant women. 
Ruminococcaceae, Parabacteroides distasonis, Prevotella, Desulfovibrio, 
Megamonas, and Phascolarctobacterium are enriched in the gut mi-
crobiota of pregnant women with GDM. These microbiotas are re-
lated to the metabolic pathways of glucose and lipid metabolism and 
insulin signal transduction. Gut microbiotas can use the nutrients 
of the host to produce microbial metabolites, finally forming host–
microbe metabolic axis between host and gut microbes. This axis 
plays an important role in nutrition metabolism and immune homeo-
stasis and ultimately affects the overall metabolism of the host. Gut 
microbiota-derived metabolites act as information messengers be-
tween the gut microbiotas and host cells, including short-chain fatty 
acids (SCFAs), bile acids (BAs), choline, tryptophan, indole deriva-
tives, and trimethylamine N-oxide (TMAO), etc.4 Studies on rodents 
have shown potential mechanisms of interaction with the gut mi-
crobiome, including regulating glucose metabolism, increasing short-
chain fatty acids, enhancing the permeability of lipopolysaccharides 
and the interaction with bile acids.5 In addition, human studies have 
proved the evidence for these hypotheses.6 However, the interac-
tion between the imbalance of the gut microbiota of GDM patients 
and host metabolism is still unclear. Therefore, studying the changes 
in gut microbiota-derived metabolites of GDM will help to further 
understand the mechanism of gut microbiota involved in the occur-
rence and development of GDM and has important guiding value for 
the early prediction, diagnosis, and timely treatment of GDM.

Metabolomics detection can capture the metabolic changes 
associated with the disease, identify metabolic markers in the de-
velopment of the disease, and help discover new etiology and patho-
genesis. Hou et al.7 offered significant biochemical parameters and 
perinatal data changes in free fatty acids, bile acids, branched-chain 
amino acids, organic acids, lipids, and organooxygen compounds in 

131 GDM cases compared with 138 controls by fasting serum me-
tabolite analysis. In a pilot UPLC-MS study, Liu et al.8 explored and 
identified 35  metabolites in serum metabolites between women 
with GDM and healthy controls during and after pregnancy, which 
involved in important metabolic pathways such as glycine, serine, 
threonine, steroid hormone biosynthesis, tyrosine metabolism, glyc-
erophospholipid metabolism, and fatty acid metabolism that con-
tribute to GDM progression. In addition to blood (plasma or serum), 
urine, amniotic fluid, placenta, and newborn's meconium also pro-
vide a rich metabolomic profile for GDM studies. The identification 
of signature metabolites can be used for disease diagnosis, thera-
peutic response assessment, or even predicting susceptibility to the 
disease. However, highly sensitive and specific metabolic biomark-
ers for detecting GDM in early pregnancy by targeting metabolo-
mic probes of serum gut microbiota-derived metabolites levels are 
unavailable.

The aim of this study was to perform targeted gut microbiota-
derived metabolites (SCFAs, BAs, TMAO, and its derivatives) analy-
sis of serum samples from pregnant women with GDM and healthy 
pregnant controls, to identify serum biomarkers and their metabolic 
pathways, and correlation with clinical indicators, laying the foun-
dation for early diagnosis, early warning, and even reversal of preg-
nancy outcomes in GDM.

2  |  MATERIAL S AND METHODS

2.1  |  Study population and sample collection

This was a cross-sectional study in 52 pregnant women (24 preg-
nant women with GDM and 28 healthy pregnant women) in the third 
trimester of pregnancy who gave birth in the Affiliated Hospital 
of Medical School of Ningbo University between November 2020 
and February 2021. The inclusion criteria were as follows: (1) sin-
gle birth, (2) no history of hypertension, diabetes, cardiovascular 
and cerebrovascular diseases, and metabolic diseases before preg-
nancy, and (3) no other complications of pregnancy. The exclusion 
criteria were someone who took antibiotics, probiotics, and prebi-
otics within 1 month prior to sampling, or who had diarrhea and 
other gastrointestinal symptoms. GDM was diagnosed using an 
Oral Glucose Tolerance Test (OGTT) performed between 24 and 
28 gestational weeks using the International Association of Diabetes 
and Pregnancy Study Group (IADPSG) criteria [FBG ≥ 5.1 mmol/L 
(92 mg/dl), 1-h post-OGTT ≥ 10.0 mmol/L (180 mg/dl) or 2-h post-
OGTT  ≥  8.5  mmol/L (153  mg/dl)].9  The pregnant women whose 
glucose levels were normal in OGTT were designated as healthy con-
trols (HC). All participants had signed a written informed consent, 
which had been approved by the Institutional Review Board (IRB) of 
the Affiliated Hospital of Medical School of Ningbo University with 
the code KY20201124.

We collected the clinical information of the two groups including 
age, vital signs, height, weight, prepregnancy BMI, gravidity, parity, 
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and pregnancy outcomes. Results of biochemistry tests including tri-
glycerides (TG), total cholesterol (TC), low-density lipoprotein (LDL) 
cholesterol, high-density lipoprotein (HDL) cholesterol, white blood 
cell count (WBC), hemoglobin (Hb), neutrophil percentage (NEU%), 
C-reactive protein (CRP), alanine aminotransferase (ALT), aspartate 
aminotransferase (AST), albumin, total bile acid (TBA), blood urea 
nitrogen (BUN), creatinine (Cr), BUN/Cr, and uric acid (UA) were also 
collected. Participants’ blood samples were collected after 8–10 h 
of fasting. Sample transfer centrifugation (1000 g for 10 min at 4°C) 
and separation of serum were completed within 1 hour. Final serum 
samples were stored at −80°C until retrieval for targeted metabolo-
mics analysis.

2.2  |  Biochemical analysis

The complete blood count analysis was performed using a hematol-
ogy system (Mindray BC 6800), which was based on a combination 
of light scatter, electrical impedance, fluorescence, light absorption, 
and electrical conductivity methods to produce complete blood cell 
analyses. TG, TC, LDL, HDL, ALT, AST, albumin, TBA, BUN, Cr, BUN/
Cr, and UA concentrations were determined by the enzymatic colori-
metric method (Beckman Coulter AU5800).

2.3  |  Quality control

Equal volume of samples from each experimental sample was mixed 
as a quality control (QC) sample. The blank samples were the blank 
matrix of the experimental samples with the same pretreatment pro-
cess as for the experimental samples.

2.4  |  Targeted GC-MS analysis of SCFAs

Targeted analysis of 7 types of short-chain fatty acids (acetic 
acid, propanoic acid, butyric acid, isobutyric acid, valeric acid, is-
ovaleric acid, and caproic acid) in serum samples using the gas 
chromatography-mass spectrometry (GC-MS) method. Briefly, 20 μl 
of serum sample mixed with 15% phosphoric acid (50 μl), 75 μg/ml 
of internal standard solution (isocaproic acid, 10 μl), and ether (140 
μl) were precisely pipetted for pretreatment, derivatization, and ex-
traction of target analytes. Samples were centrifuged at 13000g at 
4°C for 10 min and 150 µl of the upper organic layer was collected 
for analysis. Samples were analyzed by Thermo TRACE 1310-ISQ LT 
GC-MS (Thermo). The sample was injected in split mode(10:1), and 
helium (1 ml/min) was used as carrier gas. SCFAs were performed 
using an HP-INNOWAX column (30 m × 0.25 mm, 0.25 μm; Agilent) 
with an electrospray ionization (ESI) source in positive ionization 
mode, and small molecules were measured by gas chromatography-
mass spectrometer (GC-MS). The temperatures of chromatographic 
inlet, ion source, transfer line, and quadrupole mass spectrometer 

were maintained at 250, 230, 250, and 150°C. The starting tempera-
ture of the programmed temperature rise is 90°C, then increased to 
120°C at 10°C/min and then to 150°C at 5°C/min. Finally, the tem-
perature is increased to 250°C at 25°C/min for 2 min. The obtained 
extracts were assayed for analytes by GC-MS.

2.5  |  Targeted UPLC-MS analysis of BAs

Targeted analysis of 38 kinds of BAs (alloLCA, LCA, isoLCA, NorDCA, 
6-ketoLCA, 12-ketoLCA, 7-ketoLCA, beta-UDCA, DCA, CDCA, 
UDCA, HDCA, NorCA, DHCA, 7,12-diketoLCA, 6,7-diketoLCA, 
alpha-MCA, UCA, beta-MCA, CA, ACA, beta-CA, GLCA, GHDCA, 
GCDCA, GUDCA, GDCA, LCA-3S, GCA, TLCA, THDCA + TUDCA, 
TDCA, TCDCA, TCA, T-alpha-MCA, THCA, T-beta-MCA, and 
CDCA-G) in serum samples using the ultra-performance liquid 
chromatography-mass spectrometry (UPLC-MS) method. Measure 
a proper amount of sample into a 2-ml EP tube, accurately add 
methanol (300 μl, −20°C) to precipitate the protein, vortex for 60 s, 
centrifuge at 12,000 rpm at 4°C for 10 min, take the supernatant, 
and concentrate it with a vacuum concentrator at room temperature 
until completely dry. Pipette accurately reconstitute the sample with 
methanol (100 μl, −20°C), vortex and shake for 30 s, take 90 μl of 
the supernatant, and add it to the detection bottle. The sample was 
injected in 5 μl. BAs were performed using an ACQUITY UPLC BEH 
C18 column (2.1 × 100 mm, 1.7 μm; Waters) with an ESI source in 
negative ionization mode. The ion source temperature was 500°C, 
the ion source voltage was −4500 V, the collision gas is 6 psi, the 
curtain gas was 30  psi, and the atomization gas and auxiliary gas 
were both 50 psi. Multiple reaction monitoring (MRM) was used for 
scanning. Column temperature was at 40℃, eluent A was 0.01% for-
mic acid water, and eluent B was acetonitrile. The solvent gradient 
was set as follows: 0–4 min, 25% B; 4–9 min, 25%–30% B; 9–14 min, 
30%–36% B; 14–18  min, 36%–38% B; 18–24  min, 38%–50% B; 
24–32 min, 50%–75% B; 32–35 min, 75%–100% B; and 35–38 min, 
100%–25% B. The flow rate was 0.25 ml/min.

2.6  |  Targeted UPLC-MS analysis of TMAO and its 
derivatives

Targeted analysis of TMAO and its derivatives (choline, betaine, 
TMAO, creatinine, and L-carnitine) in serum samples using the 
UPLC-MS method. 20 μl of serum sample mixed with add 10 μl of 
internal standard solution, and then add 750 μl of 1% formic acid-
acetonitrile solution, vortex for 30 s, centrifuge at 12,000 rpm for 
5 min at 4°C, take 500  μl of supernatant, filter through 0.22  μm 
of membrane, and filter add the liquid to the test bottle. Samples 
were performed using an ACQUITY UPLC BEH HILIC column 
(2.1 × 100 m, 1.7 μm; Waters) with an ESI source in positive ioni-
zation mode, injection volume 5 μl, column temperature 40℃, mo-
bile phase A-acetonitrile, B-water (containing 0.1% formic acid), and 
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10 mM of ammonium formate at a flow rate of 0.4 ml/min. The sol-
vent gradient was set as follows: 0–1 min, 80% A; 1–2 min, 80%–70% 
A; 2–2.5 min, 70% A; 2.5–3 min, 70%–50% A; 3–3.5 min, 50% A; 
3.5–4 min, 50%–80% A; and 4–6 min, 80% A. The ion source tem-
perature was 500℃, the ion source voltage was 5000 V, the collision 
gas was 6 psi, the curtain gas was 30 psi, and the atomization gas and 
auxiliary gas were both 50 psi. Multiple reaction monitoring (MRM) 
was used for scanning.

2.7  |  Metabolomics data analysis

Univariate and multivariate analysis methods, which is partial least-
square discriminant analysis (PLS-DA) and agglomerate hierarchical 
clustering were conducted to examine the potential differential me-
tabolites and was plotted by the Pheatmap package in R language 
(version 3.3.2). A univariate analysis (t test) was applied to calculate 
the statistical significance, and p-value < 0.05 were considered dif-
ferential metabolites. Statistically significant values of correlation 
between differential metabolites were calculated by cor.mtest in R 
language. Additionally, the receiver–operator characteristics (ROC) 
analysis was performed, and area under the curve (AUC) was used 
to evaluate metabolites diagnostic capabilities. Spearman's cor-
relation was used to assess the significance correlations between 
metabolites and clinical parameters. Correlation coefficients (r) and 
p-value were calculated. The metabolic pathways were studied using 
the Kyoto Encyclopedia of Genes and Genomes (KEGG; Kanehisa 
Laboratories) database.

2.8  |  Statistical analysis

SPSS 26.0 (SPSS Inc.) was used for statistical analysis. The Student's 
t test or Mann–Whitney U test were performed to evaluate the dif-
ference among groups for continuous variables, and non-normally 
distributed data were tested by the Wilcoxon's rank-sum test. The 
continuous variables were presented as mean ± standard error (SD) 
unless otherwise. The chi-squared test or Fisher's exact test was 
conducted for categorical variables to compare the difference. A 
two-sided p-value < 0.05 was considered statistically significant.

3  |  RESULTS

3.1  |  Characteristics of the study population

A total of 52 participants (24 GDM and 28 HC) were enrolled. The 
maternal and fetal general characteristics of subjects were listed in 
Table 1, and the clinical characteristics were summarized in Table 2. 
Compared with the HC, the GDM group showed glucose and lipid 
metabolism disturbance. Fasting OGTT glucose level, and 1-  and 
2-h post-OGTT glucose levels at 24–28 weeks’ gestation were sig-
nificantly elevated in GDM (all p-value < 0.05). Meanwhile, the lev-
els of TG, TC, and LDL in the GDM group were remarkably higher 
than those in HC, which were opposite to the level of HDL (all p-
value < 0.05). There were no statistical group differences for other 
variables, such as prepregnancy BMI, parity, fetal birth weight, blood 
pressure, and inflammation indicators (all p-value < 0.05).

Characteristic GDM (n = 24) HC (n = 28) p-Value

Baseline characteristics of the subjects

Age (years) 30.54 ± 4.67 28.61 ± 2.81 0.096b

Gestational weeks (weeks) 39.27 ± 0.75 39.22 ± 0.79 0.265b

Height (cm) 161.17 ± 6.54 163.25 ± 5.14 0.204a

Weight (kg) 57.79 ± 9.44 59.17 ± 8.64 0.762b

Prepregnancy BMI (kg/m2) 22.23 ± 3.38 22.16 ± 2.62 0.985b

Maternal weight gain (kg) 13.67 ± 4.26 14.20 ± 5.01 0.682a

Gravidity 1.92 ± 1.25 1.96 ± 1.17 0.715b

Parity, n (%)

Primiparous (1 birth) 16 (0.67) 15 (0.54) 0.403c

Multiparous (≥2 births) 8 (0.33) 13 (0.46)

Pregnancy outcomes

Delivery week (weeks) 39.42 ± 0.80 39.36 ± 0.86 0.298a

Fetal birth weight (kg) 3.43 ± 0.38 3.50 ± 0.44 0.512a

Mode of delivery, n (%)

Vaginal 17 (0.71) 21 (0.75) 0.764c

Caesarean section 7 (0.29) 7 (0.25)

aDerived from the Student's t test.
bDerived from the Mann–Whitney U test.
cDerived from the chi-squared test or Fisher's exact test.

TA B L E  1 General characteristics of 
study population
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3.2  |  The gut microbiota-derived metabolites 
signature in GDM were altered

Recent years, accumulating evidences supported that SCFAs might 
affect glucose metabolism. In this study, GC-MS platform was used 
for metabolite measurement, 7 types of SCFAs were quantified. 
PLS-DA was used as a supervised method to get an overview of the 
data and to detect trends of metabolome alteration between the 
two groups. Based on the PLS-DA scores scatterplot (Figure  1A), 
we observed a clear separation between GDM and HC. In order to 
define the relationship between the samples more intuitively and 
comprehensively, and to evaluate the differences in the expression 
patterns of metabolites in different samples, we use hierarchical 
clustering analysis on each group of samples to accurately screen 
marker metabolites and explore changes in related metabolic pro-
cesses. Therefore, we generated a metabolite heatmap, which re-
vealed considerable differences between GDM and HC (Figure 1B). 
Quantitative analysis results showed 4 types of SCFAs were sig-
nificantly elevated in the GDM group, including isobutyric acid, is-
ovaleric acid, valeric acid, and caproic acid (Figure 1C). Among them, 

isobutyric acid showed the most significant change, which was 
19.363 times higher than HC. However, there were no statistical dif-
ferences on levels of acetic acid, propanoic acid, and butyric acid in 
serum between the GDM and HC groups.

Bile acids are now considered to be signaling molecules that 
coordinate glucose and energy metabolism. We used UPLC-MS 
platforms to analysis of 38 types of BAs in serum samples. PLS-DA 
scores scatterplot showed a discriminative trend of BAs between 
the GDM and HC groups (Figure 2A). However, heatmap showed no 
obvious difference in the BAs level (Figure 2B). Quantitative analysis 
results showed GUDCA, THDCA +  TUDCA (taurohyodeoxycholic 
acid  +  tauroursodeoxycholic acid), and LCA-3S were significantly 
increased in the GDM group (Figure 2C). However, there was no sta-
tistical difference of other BAs between the GDM and HC groups 
(Figure S1).

Although there was a large amount of evidence supporting the 
involvement of TMAO in glucose metabolism, there were few ex-
isting literatures on TMAO and GDM. In this study, there were no 
significant differences in serum TMAO and its derivatives’ concen-
trations between the GDM and HC groups (Figure 3A–C).

Characteristic GDM (n = 24) HC (n = 28) p-Value

Systolic blood pressure (mm Hg) 119.38 ± 11.49 120.25 ± 9.43 0.521a

Diastolic blood pressure (mm Hg) 73.46 ± 6.81 74.86 ± 7.27 0.480a

Fasting glucose, OGTT (mmol/L) 4.72 ± 0.58 4.32 ± 0.32 0.005a

1 h glucose, OGTT (mmol/L) 9.29 ± 1.61 7.71 ± 1.72 0.002a

2 h glucose, OGTT (mmol/L) 8.60 ± 1.09 6.62 ± 1.10 <0.001a

TG (mmol/L) 3.88 ± 1.23 3.09 ± 0.98 0.026a

TC (mmol/L) 7.01 ± 1.08 6.20 ± 1.40 0.045a

LDL (mmol/L) 3.80 ± 0.81 3.22 ± 0.82 0.025a

HDL (mmol/L) 1.89 ± 0.36 2.21 ± 0.47 0.021a

WBC (×109/L) 9.49 ± 2.27 10.15 ± 2.47 0.313b

Hb (g/L) 128.42 ± 9.96 126.96 ± 12.49 0.649a

NEU (%) 75.27 ± 6.01 78.05 ± 6.92 0.131a

CRP (mg/L) 7.62 ± 10.84 5.51 ± 5.77 0.797b

ALT (U/L) 10.22 ± 4.26 9.39 ± 3.24 0.567b

AST (U/L) 18.91 ± 4.43 19.75 ± 3.44 0.148b

Albumin (g/L) 37.29 ± 7.86 37.9 ± 6.49 0.208b

TBA (μmol/L) 3.33 ± 1.65 2.71 ± 1.37 0.145b

BUN (mmol/L) 3.74 ± 1.11 3.30 ± 0.74 0.098a

Cr (μmol/L) 47.49 ± 8.63 46.49 ± 6.20 0.663a

BUN/Cr 0.08 ± 0.16 0.07 ± 0.16 0.139a

UA (μmol/L) 325.09 ± 71.18 327.18 ± 77.49 0.921a

Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotransferase; BUN, blood 
urea nitrogen; Cr, creatinine; CRP, C-reactive protein; GDM, gestational diabetes mellitus; Hb, 
hemoglobin; HDL, high-density lipoprotein; LDL, low-density lipoprotein; NEU%, neutrophil 
percentage; OGTT, oral glucose tolerance test; TBA, total bile acid; TC, total cholesterol; TG, 
triacylglycerides; UA, uric acid; WBC, white blood cell count. Bold-faced values means p<0.05.
aDerived from the Student's t test.
bDerived from the Mann–Whitney U test.

TA B L E  2 Clinical characteristics of 
study population
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3.3  |  Maternal glucose values and blood lipids level 
was correlated with altered gut microbiota-derived 
metabolites

To further explore potential correlations of key clinical indexes with 
altered gut microbiota-derived metabolites in GDM, random forest 

analysis was performed in Figure 4. At 24–28 weeks’ gestation, 1- 
and 2-h post-OGTT blood glucose values all showed substantial 
positive correlations with isobutyric acid, isovaleric acid, valeric 
acid, caproic acid, THDCA + TUDCA, GUDCA, and LCA-3S. Among 
them, valeric acid was also positively correlated with fasting OGTT 
blood glucose values. These results were consistent with the results 

F I G U R E  1 Changes in serum short-chain fatty acids (SCFAs) of GDM and HC. (A) The PLS-DA scores plot of SCFAs in serum samples of 
the GDM group (red) and HC group (blue). The horizontal axis represents the predicted score of the first component, which explained 50.4% 
of the between-group variations. The vertical axis represents the orthogonal principal component score, which explained 34.8 of the within-
group variations. R2X = 0.853, R2Y = 0.301, Q2 = 0.245. (B) Heatmap analysis of SCFAs between the GDM and HC groups. Hierarchical 
clustering analysis was performed on each group, different color regions represent different clustering group information. Red indicates 
relatively high kurtosis values, and blue indicates relatively low kurtosis values. (C) Quantitative comparison of serum SCFAs between the 
GDM and HC groups. **p < 0.01, ***p < 0.001
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34
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F I G U R E  2 Changes in serum bile acids (BAs) of GDM and HC. (A) The PLS-DA scores plot of BAs in serum samples of the GDM 
group (red) and HC group (blue). The horizontal axis represents the predicted score of the first component, which explained 19% of the 
between-group variations. The vertical axis represents the orthogonal principal component score, which explained 9.6% of the within-
group variations. R2X = 0.294, R2Y = 0.289, Q2 = −0.17. (B) Heatmap analysis of BAs between the GDM and HC groups. (C) Quantitative 
comparison of serum BAs between the GDM and HC groups. *p < 0.05, ****p < 0.0001
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of quantitative analysis. In addition, betaine, CDCA-G, and GHDCA 
were also positive correlations with 1- and 2-h post-OGTT blood 
glucose values, although their concentrations were not observed 
and changed in this study, while 7,12-diketoLCA and 6-ketoLCA 
were negatively correlated with 2-h post-OGTT blood glucose val-
ues and fasting OGTT, respectively. Significantly, we found that gut 
microbiota-derived metabolites were correlated with blood lipid 
levels. Such as, valeric acid and GUDCA were positively correlated 
with TG level, contrary to T-alpha-MCA and NorDCA. Isovaleric 
acid, TDCA, DCA, and GDCA were positively correlated with the 
LDL level. Isobutyric acid, TCA, and GCA were negatively correlated 
with HDL level, contrary to GLCA. These findings suggest changes 
in blood glucose and blood lipids in patients with GDM are related to 
altered gut microbiota-derived metabolites.

The metabolite correlation heatmap showed that there were 
also correlations between each metabolites (Figure 5A–C). Through 
correlation analysis, we observed that isobutyric acid was signifi-
cantly negatively correlated with acetic acid. Propanoic acid, bu-
tyric acid, and isobutyric acid were significantly positive correlated 
with caproic acid, isovaleric acid, and valeric acid. Besides, circulat-
ing THDCA +  TUDCA was positively associated with beta-UDCA, 

GHDCA, and GUDCA. GUDCA was positively associated with beta-
UDCA, DCA, CDCA, UDCA, beta-CA, GHDCA, and GCDCA. LCA-3S 
was positively associated with 6-ketoLCA, DCA, NorCA, CA, GLDCA, 
GHDCA, GCDCA, GUDCA, and GDCA. The possible reason is that 
the gut microbiota-derived metabolites can be transformed into each 
other under certain conditions. For example, primary bile acids (CA, 
CDCA) are transformed into secondary bile acids under the action of 
intestinal bacteria. Although there had no changes in TMAO and its 
derivatives were observed in this study, the metabolites correlation 
heatmap showed there may be some correlation between TMAO and 
its derivatives, such as TMAO is positively correlated with choline, 
and carnitine is positively correlated with L-carnitine.

3.4  |  Gut microbiota-derived metabolites related 
to lipid metabolism, amino acid metabolism, and 
glucose metabolism

KEGG pathway enrichment prediction of differential metabolites 
was then performed, and a map of the gut microbiota-derived 
metabolites metabolic pathways was constructed (Figure  6). The 

F I G U R E  3 Changes in serum trimethylamine N-oxide (TMAO) and its derivatives of GDM and HC. (A) The PLS-DA scores plot of TMAO 
and its derivatives in serum samples of the GDM group (red) and HC group (blue). The horizontal axis represents the predicted score of the 
first component, which explained 20.9% of the between-group variations. The vertical axis represents the orthogonal principal component 
score, which explained 18.5% of the within-group variations. R2X = 0.442, R2Y = 0.0898, Q2 = −0.36. (B) Heatmap analysis of TMAO and 
its derivatives between the GDM and HC groups. (C) Quantitative comparison of serum TMAO and its derivatives between the GDM and 
HC groups
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biosynthesis of acetyl-CoA, leucine metabolism, biosynthesis of 
pentanamide, and biosynthesis of N-methylhexanamide were all 
found to be statistically different between GDM and HC. In addi-
tion, bile acids can modulate cholesterol synthesis. These modifica-
tions to the host metabolism represented the influence of the gut 
microbiota-derived metabolites on lipid metabolism, amino acid me-
tabolism, and glucose metabolism.10

3.5  |  Gut microbiota-derived metabolites markers 
can discriminate GDM

Random forest analysis was used to explore whether gut microbiota-
derived metabolites markers can be used to discriminate subjects 

with GDM from HC. Based on the differential metabolites (isobu-
tyric acid, isovaleric acid, valeric acid, caproic acid, GUDCA, 
THDCA +  TUDCA, and LCA-3S), binary logistic regression analy-
sis was performed on the GDM and HC groups. In the ROC graph, 
the AUC indicates the diagnostic potentials of the metabolites as 
unique biomarkers for identification of GDM and control, as shown 
in Figure  7A. Summary of ROC curve parameters was shown in 
Table  3. ROC analysis of generalized linear model showed that 
isobutyric acid, isovaleric acid, valeric acid, caproic acid, GUDCA, 
THDCA  +  TUDCA, and LCA-3S may be potential biomarkers of 
GDM. We could accurately distinguish GDM patients from healthy 
controls, as indicated by the area under the receiver-operating curve 
(AUC), which had a value up from 0.661 to 0.831. Among the strong-
est discriminatory features, valeric acid (VA) had the greatest impact 

F I G U R E  4 Associations among glucose values, blood lipids level, and altered gut microbiota-derived metabolites. *p < 0.05, **p < 0.01, 
***p < 0.001
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(AUC  =  0.831, 95%CI: 0.723–0.939). These results highlight the 
early diagnosis potential of these gut microbiota-derived metabo-
lites markers. Moreover, we created a combinatorial marker panel 
composed of these 7 biomarkers, which AUC ranging from 0.726 to 
0.890 (Figure 7B), and these results highlight the early diagnosis po-
tential of the new combination markers.

4  |  DISCUSSION

In patients with GDM, the secretion of pancreatic islets is restricted 
or the function of islet is impaired, so the balance of glucose me-
tabolism cannot be maintained, resulting in increased blood glucose 
levels. At present, GDM can use the OGTT method for early screen-
ing and diagnosis, which is currently recognized as the "gold stand-
ard," but this method is time-consuming and can cause discomfort 
for pregnant women. Moreover, the current screening and diagnos-
tic criteria for GDM are not uniform around the world, which may 
lead to insufficient diagnosis and poor management of the disease. 
Therefore, searching for early GDM diagnosis and effective inter-
vention means are very important. Thanks to the rapid development 
of metabolomic research technology, the metabolite research may 
become a breakthrough point of GDM diagnosis and effective inter-
vention. Several studies have reported that GDM exist metabolites’ 
alteration disorders of glucose metabolism, lipid metabolism, and 

amino acid metabolism.11 The intestine affects the absorption and 
utilization of glucose and also affects the metabolism and absorption 
of fat, which is closely related to the occurrence of GDM. Therefore, 
in this study, we identified several different gut microbiota-derived 
metabolites in the serum, including short-chain fatty acids, bile acids, 
and TMAO, which are closely related to the disease process of GDM.

Short-chain fatty acids (SCFAs) are organic fatty acids with 1–6 
carbon atoms, which are mainly produced by fermentation of indi-
gestible carbohydrates (dietary fiber) and intestinal flora through 
different metabolic pathways. SCFAs can be present in a small 
amount in the circulation and provide energy to peripheral tissues 
as substrates for hepatic glyconeogenesis or adipocyte adipogene-
sis. Among SCFAs, acetic acid, propionic acid, and butyric acid have 
the highest content, accounting for more than 85%. In organisms, 
SCFAs have a variety of biological functions such as providing en-
ergy, maintaining water and electrolyte balance, improving intestinal 
blood circulation, immune regulation, gene expression regulation, 
and affecting the metabolic function of the offspring.12  The total 
concentration of SCFAs depends on the diet, type, and number 
of the host microbiotas, and the time spent in the gastrointesti-
nal tract. Generally, Firmicutes, especially Faeculus, Rossella, and 
Bifidobacterium produce butyrate, while Bacteroides produces ace-
tate and propionate. Depending on the diet, the total concentrations 
of SCFAs decreased from 70 to 140 mM in the proximal colon to 20 
to 70 mM in the distal colon, which is associated with the increased 

F I G U R E  5 Associated heatmap of gut 
microbiota-derived metabolites. (A–C) 
When the linear relationship of the two 
metabolites is enhanced, the correlation 
coefficient tends to 1 or −1. The 
correlation is a maximum of 1, a complete 
positive correlation (red), a correlation of 
−1, and a complete negative correlation 
(blue)
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availability of carbohydrate and water in the proximal colon.13 In the 
colon and rectum, 95% of the produced SCFAs are rapidly absorbed 
by the colon cells, while the remaining 5% are secreted in the feces. 
Thus, fecal SCFAs excretion provides little information about the 
actual gut SCFA metabolism. Therefore, we detected the levels of 
SCFAs in the serum of pregnant. SCFAs appear to have a beneficial 
influence glucose metabolism by normalizing blood glucose levels 
and increasing glucose treatment. SCFAs regulate host lipid and glu-
cose metabolism through the G protein-associated receptors (GPR41 
and GPR43).14 In addition, SCFAs also activates enteroendocrine L 
cells and stimulates glucagon-like peptide-1 (GLP-1) and intestinal 
hormone peptide YY (PYY). GLP-1 promotes insulin secretion and 
inhibits the release of glucagon from the pancreas. In animal mod-
els, elevation at body PYY levels was observed after SCFA injection 
within the colon.15 Therefore, altered levels of SCFAs can lead to dis-
turbed host metabolism, leading to obesity and diabetes. In recent 
years, multiple clinical cohort studies have shown that SCFAs levels 
are closely related to type 2 diabetes (T2DM). GDM, as a metabolic 
disease during pregnancy, often combined with maternal overweight 
or obesity, leading to changes in gut microbial composition, diversity, 
and SCFAs ratio. A high-fat, low-fiber diet in GDM women may alter 
normal gut microbiota composition, leading to elevated Firmicutes 
and Faecalibacterium, resulting in excessive production of SCFAs. In 
addition, SCFAs may increase the glycolysis/glyconeogenesis path-
way and inhibit insulin signaling in peripheral tissues, leading to hy-
perglycemia in GDM.

Our research results showed valeric acid, caproic acid, isobutyric 
acid, and isovaleric acid were significantly higher in the GDM group. 

However, there were no statistical differences on levels of acetic 
acid, propanoic acid, and butyric acid in serum between the GDM 
and HC groups. Valeric acid is a short-chain fatty acid with 5 carbon 
atoms. It is produced by the microbial metabolism of aminoproline 
and hydroxyproline and lactic acid and propionic acid.16 Intestinal 
flora is the most likely source of valeric acid. Previous studies have 
determined that valeric acid is a ligand for G protein-coupled recep-
tors (GPCRs), which has certain effects on metabolism, immunity, and 
blood pressure regulation.17 However, studies have also shown that 
the increase in valeric acid concentration is correlated with the lev-
els of inflammation markers (C-reactive protein and white blood cell 
count).18 Inflammatory response mediates insulin resistance, which 
plays an important role in the occurrence and development of GDM. 
Therefore, we speculate that the increase in serum valeric acid levels 
in GDM patients may be related to the inflammatory state of the 
gut microbiota. Caproic acid is directly generated by some bacteria 
that form the microbiota, especially Prevotella. Studies have shown 
that these bacteria increased in GDM patients, leading to increased 
caproic acid production.19 In addition, we also observed some 
branched-chain amino acids that can be used to distinguish GDM 
from the control group using targeted metabolomics. Isobutyric acid 
and isovaleric acid are branched-chain fatty acids (BCFAs), which are 
mainly produced during the fermentation of branched-chain amino 
acids (valine, leucine, and isoleucine) by the intestinal flora mainly. 
Bacteroides and Clostridium are mainly responsible for the fermenta-
tion process of BCFAs.20 In vitro intestinal models, high-protein and 
low-complex carbohydrate diets (such as Western diets) can lead to 
higher BCFAs levels, which has been further confirmed in certain 

F I G U R E  6 Differential metabolite KEGG pathway enrichment map
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dietary interventions.21 In vitro experiments on rat and human ad-
ipocytes have shown that BCFAs inhibit cAMP-mediated lipolysis 
and insulin-stimulated lipogenesis, and isobutyric acid can also en-
hance insulin-stimulated glucose uptake.22 In this study, the levels 
of BCFAs in the serum of GDM patients increased. The possible rea-
sons are that the reduced utilization of fermentable carbohydrates 
in the intestinal flora may have facilitated the shift to more protein 
fermentation, leading to increase in BCFA production.

Bile acids (BAs) are small molecules synthesized by cholesterol 
in liver cells, which are now thought to be signaling molecules 
that coordinate blood glucose, lipid, and energy metabolism. The 
changes of BAs are closely related to metabolic abnormalities, 
such as T2DM, insulin resistance, and obesity. BAs alter metabo-
lism by activating certain receptors, including the farnesian class X 
receptor (FXR), pregnant class X receptors, and G protein-coupled 
receptors (GPCRs). Large cohorts from China evaluated the associ-
ation between total BAs levels and GDM in early pregnancy, where 

elevated total BAs content may be associated with an increased 
risk of GDM.23  The association between BAs and GDM is rare, 
and careful analysis of the effects of specific BAs on GDM is more 
rare. In this study, GUDCA, THDCA + TUDCA, and LCA-3S were 
significantly increased in the GDM group. TUDCA has been shown 
to reduce the ER stress associated with elevated blood glucose 
levels in diabetic patients by inhibiting caspase activation, upreg-
ulation of UPR, and inhibition of reactive oxygen species, exhibits 
antidiabetic activity.24 These results are contrary to our findings. 
Glycoursodeoxycholic acid (GUDCA) is a glycine-conjugated form 
of UDCA. A recent study reported that GUDCA can act as an intes-
tinal farnesol X receptor antagonist, significantly reducing weight 
gain and restoring glucose intolerance and insulin resistance in a 
diet-induced obesity mouse model.25 In addition, increased serum 
GUDCA levels are associated with decreased hemoglobin A1c and 
waist circumference in patients with T2DM.26 The above evidence 
indicates that GUDCA has potential metabolic beneficial effects. 

F I G U R E  7 Area under the curves of differential metabolites between the GDM and HC groups. (A) ROC curves were prepared for 
different metabolites. The ordinate is the sensitivity, which represents the true positive rate, and the abscissa is the specificity, which 
represents the false positive rate. (B) Random forest analysis was used to quantify diagnostic performance of biomarker panels. Individual 
marker panels could distinguish patients with the GDM and HC groups with an area under the curve (AUC) ranging from 0.726 to 0.890. 
AUC, area under the curve; ROC, receiver-operating characteristic

Sensitivity (%) Specificity (%) AUC 95% CI

Valeric acid 71.4 79.2 0.831 0.723–0.939

THDCA + TUDCA 78.6 66.7 0.814 0.700–0.928

Isobutyric acid 85.7 70.8 0.806 0.693–0.919

Isovaleric acid 71.4 75.0 0.797 0.673–0.920

Caproic acid 71.4 75.0 0.754 0.618–0.891

GUDCA 67.9 62.5 0.663 0.510–0.816

LCA-3S 71.4 54.2 0.661 0.525–0.797

TA B L E  3 ROC analysis parameters 
of differential metabolites between the 
GDM and HC groups
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However, in our study, GUDCA level in the GDM group was in-
creased and positively correlated with blood glucose and triglycer-
ide levels. LCA is the most toxic bile acid because of its strong 
hydrophobicity. Under normal circumstances, the amount of LCA 
in the body is very tiny. Sulfation of BAs reduces the cholestasis 
of DCA, CA, and CDCA. After sulfation of LCA, hydrophilicity in-
creases and toxicity decreases. Sulfated BAs have a low level of 
serum, but the content of sulfated BAs in urine is 40%–70% of the 
total urine bile acids and is not affected by diet. Therefore, the 
conclusions of this study need to be validated using a larger group 
of participants and other types of samples.

Trimethylamine N-oxide (TMAO) is one of the most important 
gut microbiota-derived metabolites. Gut microbiota can use choline-
rich substances to produce trimethylamine (TMA), and then, TMA 
activated by hepaflavin monooxygenase generates TMAO. The 
amount of TMAO production is related to the type of human gut 
microbiota. This fully illustrates the high relevance of TMAO to the 
development of GDM. In recent years, several clinical cohort stud-
ies have shown that the body TMAO levels are closely related to 
T2DM, and animal studies have found that TMAO can aggravate im-
paired glucose tolerance and hyperglycemia by blocking liver insulin 
signaling and promoting an adipose tissue inflammatory response.27 
Consistently, reducing plasma TMAO could improve glucose and 
lipid homeostasis in mice by using FMO3 inhibition.28 Further stud-
ies found that mice with FMO3 deletion were protected from obe-
sity caused by a high-fat diet.29 However, to date, the role of choline 
and its metabolites in the pathogenesis of GDM had not been exten-
sively studied. An exploratory NMR metabolomic study of 54 sam-
ples explored the relationship between TMAO and GDM, suggesting 
lower plasma TMAO concentrations in GDM subjects.30 However, 
an observational study of 866 pregnant women (433 cases of GSM 
and 4331:1 matched controls by age, gestational week, and birth) 
showed a significantly positive association between plasma TMAO 
concentrations and the risk of GDM.31 A recent review suggests that 
circulating TMAO levels are affected by multiple factors, including 
gut microbiota composition and activity, liver function and excre-
tion, gut blood-barrier function, and diet.32 However, there was no 
significant changes in the TMAO level of GDM in our study. This 
may be attributed to differences in the composition and function 
of the gut microbiota. Some bacterial families from Firmicutes and 
Proteobacteria are powerful choline and carnitine consumers capa-
ble of TMA synthesis by expressing specialized enzymes. In addition, 
the expression and activity of other biochemical factors such as liver 
FMO3 can also affect TMAO levels. Thus, highly variable plasma lev-
els in both disease and nondisease states are caused by differences 
in intestinal bacterial composition, and it is not necessarily a marker 
in the disease process. Therefore, further assessment of TMAO sta-
tus is needed in future studies, which should include collecting dupli-
cate samples and determining averages at different times, and needs 
to be verified by more different populations, while thinking about 
exactly how it correlates with GDM.

Moreover, we carefully examined the relationship between dif-
ferential metabolites and the clinical information of the samples, 

including blood glucose and lipid levels. Maternal blood glucose val-
ues and blood lipid levels were found to be correlated with altered 
gut microbiota-derived metabolites in the GDM. Lipid metabolism 
is essential for healthy pregnancy and development. Dyslipidemia 
is a common phenomenon during pregnancy, and it is considered to 
be a physiological mechanism to provide fuel and nutrition for the 
fetus. During normal pregnancy, plasma lipid mass spectra includ-
ing TG, TC, HDL, and LDL levels change significantly due to insulin 
resistance, lipoprotein synthesis, and increased lipolysis in adipose 
tissue, which is called dyslipidemia during pregnancy (DLP). The 
regulation of dietary type, gut microbiota, and lipid metabolism may 
be linked by affecting the levels of metabolic hormones. A high-fat 
diet in GDM women disrupts the gut microbiota, resulting in the 
growth of butyrate-producing bacteria (mainly Firmicutes and the 
Bacterium faecalis), and increases SCFA production. SCFAs overac-
tivate glycolysis and glyconeogenesis pathways and suppress the in-
sulin response in peripheral tissues, leading to diabetes. In our study, 
the random forest analysis results of blood lipid levels and SCFAs 
suggested a positive correlation between valeric acid and TG levels, 
isovaleric acid and LDL levels, and isobutyric acid and HDL levels. 
These findings suggest that SCFAs are highly correlated with ma-
ternal blood lipid levels. Several studies point to an important role 
of SCFAs in cholesterol levels. Acetate, the most abundant SCFAs 
in peripheral circulation, is a substrate for cholesterol and promotes 
cholesterol synthesis. The reduced ratio of acetate to propionate 
may lead to a decrease in serum lipids.33,34 However, their mecha-
nism of action has conflicts with results. This study showed no sig-
nificant difference in the levels of acetate and propionate between 
the GDM and HC groups; further studies suggest that conclusive 
evidence was critical for entry into human studies.

Meanwhile, bile acids are closely related to lipid metabolism. 
In this study, we observed GUDCA, TDCA, DCA, and GDCA were 
positively correlated with serum lipid level, contrary to T-alpha-
MCA and NorDCA. Moreover, TCA and GCA were negatively cor-
related with HDL level, contrary to GLCA. There is a key receptor 
in BAs metabolism, farnesol X receptor (FXR), which is the liver-
intestinal bridge of BAs metabolism and can regulate the synthesis 
and reabsorption of BAs. FXR is distributed in a variety of tissues, 
especially as the liver and gut are the most distributed and more 
active. Zhang et al.35 found that Gly-MCA acts as an antagonist 
to inhibit intestinal FXR, thereby tearing host liver lipid metabo-
lism and improving obesity-associated metabolic disorders. Oral 
cannabinoids inhibits intestinal bacterial BSH activity, resulting 
in the accumulation of bound bile acids, inhibiting intestinal FXR-
FGF15 signaling, and thus ultimately reducing cholesterol level.36 
An 8-week parallel randomized controlled trial demonstrated that 
Mediterranean dietary intervention in overweight and obese sub-
jects reduced plasma cholesterol and altered the gut microbiota 
and fecal bile acids, significantly reducing fecal total bile acids, in-
cluding primary and secondary bile acids. In particular, DCA and 
LCA in the stool significantly decreased at 4 and 8 weeks after the 
intervention.37 In addition, common buckwheat protects against 
high-fat diet-induced nonalcoholic fatty liver disease (NAFLD) 
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associated with dyslipidemia in mice. The addition of common 
buckwheat significantly regulated the biosynthesis of primary BAs 
and altered the structure of the gut microbiota, thus improving 
lipid metabolism.

To evaluate the diagnostic ability of gut microbiota-derived me-
tabolites, we used random forest analysis to find that separate met-
abolic markers could effectively discriminate the GDM patient from 
HC. The result revealed gut microbiota-derived metabolites may 
be used as potential serum biomarkers for predicting GDM. Among 
them, valeric acid has the largest AUC, suggesting it has the best 
predictive ability. In addition, a combinatorial marker panel could 
distinguish GDM patient from HC (AUC =  0.890). These findings 
suggest that the combinatorial biomarker panels have diagnostic po-
tential for GDM. Therefore, being based on our identified biomark-
ers for GDM may be a new screen method for GDM.

Overall, our study had several limitations. First, the number of 
samples was not of a substantial amount and could have affected 
the stability of statistical analysis. Therefore, the conclusions of this 
study need to be verified by more participants. Second, all GDM 
patients in this study used diet control to maintain a stable blood 
glucose level and did not use insulin treatment, so stratified analysis 
could not be performed. In addition, due to the lack of records of di-
etary habits and physical activities and the difficulty of follow-up, it 
was not possible to analyze the impact of external factors on the gut 
microbiota-derived metabolites. Furthermore, we had not detected 
the gut microbiota and gut microbiota-derived metabolites in the 
stool of GDM patients. Therefore, the levels of these compounds in 
the digestive tract and the main factors production cannot be fully 
understood. Third, we had not conducted large-scale clinical sam-
ples verification and further molecular mechanism research. Further 
research is needed to clarify the relationship and interaction be-
tween these altered gut microbiota-derived metabolites and GDM.

Taken together, using targeted metabolomics approaches, we 
identified 7  gut microbiota metabolites that could be novel po-
tential biomarkers or drug treatment target for GDM, including 
isobutyric acid, isovaleric acid, valeric acid, caproic acid, GUDCA, 
THDCA  +  TUDCA, and LCA-3S. The KEGG metabolic pathway 
had revealed that these gut microbiota-derived metabolites were 
primarily involved in lipid metabolism, amino acid metabolism, and 
glucose metabolism. Moreover, we also found that altered metab-
olites of the gut microbiota were associated with dysregulated ma-
ternal glucose and lipid metabolism. Therefore, we suggest that the 
future of research into biomarkers and GDM is best focused on gut 
microbiota-derived metabolites, which can be a novel and reliable 
predictor for early diagnose of GDM. However, this will require a 
larger sample size population-based cohort studies for subsequent 
validation.
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