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Abstract

A key assumption of Mendelian randomization (MR) analysis is that there is no

association between the genetic variants used as instruments and the outcome other

than through the exposure of interest. One way in which this assumption can be violated

is through population stratification, which can introduce confounding of the relationship

between the genetic variants and the outcome and so induce an association between

them. Negative control outcomes are increasingly used to detect unobserved

confounding in observational epidemiological studies. Here we consider the use of

negative control outcomes in MR studies to detect confounding of the genetic variants

and the exposure or outcome. As a negative control outcome in an MR study, we

propose the use of phenotypes which are determined before the exposure and outcome

but which are likely to be subject to the same confounding as the exposure or outcome

of interest. We illustrate our method with a two-sample MR analysis of a preselected set

of exposures on self-reported tanning ability and hair colour. Our results show that, of

the 33 exposures considered, genome-wide association studies (GWAS) of adiposity and

education-related traits are likely to be subject to population stratification that is not

controlled for through adjustment, and so any MR study including these traits may be

subject to bias that cannot be identified through standard pleiotropy robust methods.

Negative control outcomes should therefore be used regularly in MR studies to detect

potential population stratification in the data used.
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Introduction

When the observed association between an exposure, X,

and an outcome, Y, is confounded by an unobserved

variable, conventional regression analysis will produce

misleading estimates of the effect of the exposure on the

outcome. If genetic variants—usually single nucleotide

polymorphisms (SNPs)—are available which reliably pre-

dict the exposure variable but do not have an effect on the
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outcome through any other pathway, then they are valid in-

strumental variables (IVs) and can be used in a Mendelian

randomization (MR) analysis to obtain unconfounded evi-

dence of the effect of the exposure on the outcome.1,2 A key

assumption for MR to give consistent estimates of the causal

effect of an exposure on the outcome is that the SNPs used

as instruments are not associated with the outcome other

than through the exposure.3 One way in which this assump-

tion may be violated is through population stratification,

where structure in the population studied causes a correla-

tion at the population level between the distribution of the

genetic variants and the distribution of the exposure and/or

outcome.4,5 Population stratification and its implications for

genome-wide association studies (GWAS) are described in

more detail in Box 1. MR analyses are often conducted by

comparing summary data estimates of SNP-exposure and

SNP-outcome associations gleaned from two independent

but homogeneous study populations. This is referred to as

two-sample summary data MR.6 For the MR estimate of

the causal effect of the exposure on the outcome to be a

consistent estimate of the effect of the exposure on the

outcome, the genetic variants must satisfy the following

assumptions.

IV1: the variants must be associated with the exposure

X (the ‘relevance’ assumption).

IV2: the variants must be independent of all (observed or

unobserved) confounders of X and Y, as represented by

U (the ‘exchangeability’ assumption).

IV3: the variants must be independent of the outcome Y

given the exposure X, (the ‘exclusion restriction’).

These assumptions are illustrated in Figure 1 and are

explained in detail elsewhere.3,6,7

Population stratification causes confounding of the in-

strument and outcome in MR, violating IV2, illustrated in

Figure 1. Any MR analyses based on the results from a

GWAS will potentially be biased if that GWAS does not

fully account for any ancestral population structure that

could lead to population stratification.5,8 This bias is likely

to be largest when the outcome phenotype in an MR study

is subject to population stratification that has not been

fully accounted for. However, it will also bias effect

estimates in a two-sample MR analysis when the exposure

phenotype is subject to population stratification, by

causing the estimated association between the SNP and the

exposure to be mis-specified. As well as increasing or de-

creasing the size of the observed association, this bias could

generate evidence of an apparent causal effect of the

exposure on the outcome when no such effect exists, or

alternatively could mask a true effect.

A method that is often used in observational studies to

detect confounding, and help assessment of whether a

causal relationship exists between an exposure and an out-

come, is negative control outcome analysis.9–11 ‘Negative

controls’ essentially renames the ‘specificity of associa-

tions’ which Hill considered a factor that should be

weighed up in evaluating plausibility of causation in epide-

miological studies.12 Given the dismissal of this criterion in

some influential epidemiological texts, their rechristening

as ‘negative controls’ allowed their relegitimation.13

Negative control outcome studies compare the association

observed between an exposure and the outcome under in-

vestigation with the association observed between that ex-

posure and a negative control outcome. The negative

control outcome variable is chosen to be a variable that is

not expected to be associated with the exposure of interest,

but is expected to be subject to the same unobserved con-

founding as the exposure and outcome of interest. It fol-

lows that if the assumptions hold, any association

observed between the exposure and the negative control

outcome will be due to confounding in the model.

Negative control outcome studies have previously also

been proposed to detect selection bias in observational

studies.11 We advance the use of negative control outcomes

to identify when exposure and outcome phenotypes in an

MR analysis may be subject to population stratification or

selection bias that has not been fully accounted for in the

GWAS, and so may induce instrument-outcome confound-

ing or mis-estimation of the SNP exposure relationship,

and consequently may bias the results obtained.

Negative control outcome methods applied to an MR

analysis have been used in a limited number of studies

Key Messages

• Two-sample Mendelian randomization (MR) is biased if the genome-wide association studies (GWAS) used to obtain

the single nucleotide polymorphism (SNP)-exposure or SNP-outcome associations are affected by population

stratification.

• Negative control outcomes in MR analyses can be used to detect population stratification in GWAS results.

• Negative control outcomes to detect population stratification should be selected that are likely to be influenced by

population stratification.
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previously to detect potential pleiotropy and provide addi-

tional evidence on the validity of the MR study.14–16 These

negative controls were, however, not used in the detection

of potential population stratification. We illustrate this

method through estimation of the potential for population

stratification in 33 preselected exposure-indexing GWAS

included in MR Base.17 We detect potential population

stratification by estimating the effect of each phenotype

on self-reported tanning ability and self-reported natural

hair colour, variables that are likely to be highly af-

fected by population stratification but that are largely

determined at birth and are not expected to be truly

affected by any of the phenotypes considered. Our

results from this study show that the GWAS of

adiposity-related phenotypes and education are likely

to be affected by population stratification. Any MR

involving these phenotypes is therefore potentially sub-

ject to bias. These results show that negative control

outcomes should be routinely used in MR studies to

detect population stratification.

Methods

The GWAS of natural hair colour was conducted using

data from UK Biobank [https://www.ukbiobank.ac.uk/]

under application number 15825. UK Biobank has re-

ceived ethical approval from the UK National Health

Service’s National Research Ethics Service (ref 11/NW/

0382). All other analyses were conducted using publicly

Box 1. Population Stratification and the effects on results from GWAS

Population stratification occurs where different sub-populations within a population being studied have

different distributions of both allele frequencies and the phenotype being considered. Phenotypes, particular social phe-

notypes, have different distributions geographically, even over relatively small geographical areas. Primarily due to ge-

netic drift, allele frequencies will also differ geographically. Even if this distribution of allele frequencies occurs due to

chance, it can lead to an apparent association between those alleles and the phenotype, even when none exists. This

will confound the results from the GWAS and lead to potentially spurious or inflated association between SNPs and the

phenotype, which are due to the structure of the population and not due to a direct effect of the SNP on the pheno-

type.2,18 Additionally it means that even for SNPs that do have a direct effect on the phenotype, the estimated size of

that association will be biased.19

Within GWAS studies, population stratification is often controlled for by adjusting for the top principal components

from a principal components analysis of the genetic variants,20 or by using linear mixed models which allows them to

account for genetic confounding of common variants more accurately, and improve power, by jointly modelling the

contribution of all measured variants.21–23 However, a number of recent papers have examined the effect of population

stratification in datasets such as UK Biobank and have shown that population stratification is likely to present chal-

lenges for causal inference and that such adjustment may not be sufficient.5 Haworth and colleagues show in UK

Biobank that genetic variants are associated with a number of variables including location of birth, and this association

cannot be fully accounted for by standard principal components analysis.4 Abdellaoui and colleagues show that many

traits in UK Biobank are subject to genetically driven clustering after controlling for ancestry.24 They propose that this

clustering is likely to reflect socioeconomic differences in migration patterns, and that these results suggest that social

stratification affects the geographical pattern of allele frequencies. The implication of this is that even very recent pat-

terns of movement within the UK will lead to population stratification for more ‘social’ phenotypes.

Many GWAS are conducted using multiple independent cohorts, each assumed to have independent ancestral patterns

that are likely to be cancelled out when meta-analysed. A recent study has brought this assumption into question, illustrat-

ing that within-cohort correction for population stratification tends to be under-powered to fully account for deep ancestral

history that is common across all cohorts.25

Two recent papers show that a polygenic signal for height, observed in European GWAS such as GIANT, is weak or ab-

sent in UK Biobank and that the signal observed in the European GWAS is due to population stratification.26,27 Barton

and colleagues highlight why this matters. When multiple genetic variants are used to predict a phenotype, as is the

case in an MR study, the association between each variant and the phenotype needs to be unbiased for reliable infer-

ence. Population stratification will bias these associations and therefore potentially any inference that is based on

them.19
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available summary data generated using the relevant ethics

approval for that study.

Two-sample summary data MR compares the associa-

tion of a set of SNPs with the exposure and outcome to de-

termine the effect of the exposure on the outcome. It is

explained in detail elsewhere.6,7 We propose running two

additional MR sensitivity analyses for any MR study

where population stratification is thought to potentially af-

fect the result:

i. an MR analysis to estimate the effect of the exposure of

interest on the negative control outcome;

ii. an MR analysis to estimate the effect of the outcome of

interest on the negative control outcome (i.e. the out-

come of interest becomes the exposure in this analysis).

Any effects detected in these analyses would indicate the

potential presence of population stratification in the GWAS

of the phenotype of interest and therefore possible bias in an

MR analysis including that phenotype. The negative control

outcomes should be selected based on the same criteria that

have been traditionally used in epidemiological studies; i.e.

they should not be expected to be dependent on the

phenotypes of interest in the analysis but should be affected

by the same confounding. In order to satisfy the assumption

that the negative control outcome is not actually caused by

the exposure, we propose using phenotypes that are deter-

mined before the exposure and the outcome in the negative

control MR study. The phenotype for the negative control

outcome should also be selected to be thought to be affected

by the population stratification. For bias caused by popula-

tion stratification, such variables could include hair colour,

eye colour or skin tone. If there is no instrument-outcome

confounding, this analysis will give a null result. As the neg-

ative control outcomes are largely predetermined relative to

the exposure and outcome and so cannot depend on either,

any association of the SNPs with the negative control out-

come must be driven by some other mechanism. This could

take the form of pleiotropy due to the SNPs having an effect

either directly on the negative control outcome or on an-

other phenotype that then affected the negative control out-

come, illustrated in Figure 1. However, conventional

pleiotropy robust estimation methods will give results that

are robust to this pleiotropy if it only affects some of the

SNPs included in the estimation.28–30 Alternatively, the

Figure 1 Instrumental variable assumptions, and violation of these assumptions through population stratification or pleiotropy. (a) Instrumental vari-

able assumptions. (b) Confounding of the genetic instrument and outcome introduced by population stratification. (c) Mechanisms through which

pleiotropy can cause bias in Mendelian randomization estimates. X is the exposure of interest, Y is the outcome of interest, Gx are the genetic variants

associated with X used as instruments, GY are genetic variants associated with Y, C is a confounder of the exposure outcome relationship. In (a): as-

sumption IV1 is illustrated by the bold line from GX to X. Violations of assumptions IV2 and IV3 are given by the dashed lines from C to GX and from

GX to Y, respectively. In (b): the presence of population stratification creates an association between GX and Y that does not go through X, violating

one of the IV assumptions. In (c): pleiotropy will cause bias in MR estimates if either both edges marked a, or the edge marked b, are present.

Pleiotropy in MR studies is explained in detail elsewhere3

International Journal of Epidemiology, 2021, Vol. 50, No. 4 1353



observed effect of the phenotype on the negative control

outcome could be due to instrument -outcome confounding.

In this case, conventional pleiotropy robust methods would

not give results that are robust to this bias as the confound-

ing would affect all of the SNPs included in the estimation.

Evidence of an effect of the exposure and outcome on the

negative control outcome indicates that an MR study of the

exposure on the outcome is also likely to be biased. An illus-

tration of how negative control outcomes could be applied

to an MR estimation of body mass index on coronary heart

disease is given in Supplementary Figure S1, available as

Supplementary data at IJE online.

Applied example

To illustrate the use of negative control outcomes in MR

studies, we investigated the effect of a range of exposures

on self-reported tanning ability and natural hair colour

from UK Biobank, as a negative control outcome in two-

sample summary data MR to detect population stratifica-

tion in these exposures. Between 2006 to 2010, the UK

Biobank study enrolled 500 000 individuals aged between

40 and 69 at baseline across 22 assessments centres in the

UK.31 Data were collected based on clinical examinations,

assays of biological samples, detailed information regard-

ing self-reported health characteristics and genome-wide

genotyping.32 In total, 12 370 749 genetic variants in up to

463 005 individuals were available for analysis, as de-

scribed previously.33 UK Biobank received ethical approval

from the Research Ethics Committee (REC reference for

UK Biobank is 11/NW/0382).

For their tanning response to sun exposures, individuals

were asked ‘What would happen to your skin if it was re-

peatedly exposed to bright sunlight without any protec-

tion?,’ with four potential responses which ranged from

get very tanned (given a score of 1) to never tan and always

burn (given a score of 4). A higher score is therefore associ-

ated with fairer skin that is less prone to tanning. A GWAS

of this question was conducted by the MRC IEU33 and in-

cluded in MR Base.17 For natural hair colour, individuals

were asked ‘What best describes your natural hair colour?

(If your hair colour is grey, the colour before you went

grey)?’, with five valid potential responses; blonde, red,

light brown, dark brown or black. We categorized these

responses as 1: blonde, 2: red, 3: light brown, 4: dark

brown and 5: black, in accordance with a previous GWAS

of hair colour which included UK Biobank.34 The associa-

tion between genetic variants and outcomes in the UK

Biobank study were assessed using the software BOLT-

LMM.21,33 This approach applies a Bayesian linear mixed

model to evaluate the association between each genetic

variant across the human genome in turn, with the

analysed outcome accounting for both relatedness and

population stratification.22 Age at baseline, sex and type of

genotyping array were added as covariates in the model.

As tanning ability and hair colour are largely determined

at birth and are highly dependent on variations in an indi-

vidual’s ancestral background, they should not depend on

exposures experienced during an individual’s lifetime.

We preselected 50 characteristics or risk factors with

GWAS data available in MR base as our example pheno-

types. These phenotypes were all selected to have male and

female participants from a mixed or European population

that did not include UK Biobank. Where multiple GWAS

for the same phenotype were available, we chose only the

most recent relevant one available in MR base at the time

of analysis; however, we retained in the analysis similar

(but not exactly equivalent) phenotypes such as body mass

index (BMI) and waist-to-hip ratio. We excluded GWAS

that included UK Biobank to avoid the potential for win-

ner’s curse from selecting the exposure and the outcome

from the same sample. A full list of the phenotypes in-

cluded in the analysis is given in Supplementary Table S1,

available as Supplementary data at IJE online. From these

preselected phenotypes, we excluded one GWAS due to the

information available in MR base not matching that given

in the paper, and 16 with fewer than five genome-wide sig-

nificant SNPs available as instruments, leaving us with 33

phenotypes for analysis.

For each of our 33 exposures, we calculated the inverse

variance weighted (IVW) effect for that exposure on tan-

ning ability and hair colour. For those exposures which

showed evidence of an effect on each negative control out-

come, we also report the MR Egger,30 weighted mode29

and weighted median28 effects as sensitivity analyses.

Weighted mode and median estimates give robust estima-

tion results if the association observed is driven by outlying

SNPs. However, if population stratification is driving the

results seen, this would not be expected to be due to an ef-

fect of a small number of outlying SNPs but due to an ef-

fect across all of the SNPs used as instruments. We would

therefore still expect to estimate an effect of the trait on the

negative control outcome in each case. MR Egger accounts

for violation of IV assumptions 2 and 3 that satisfy the

InSIDE assumption. This assumption states that the bias

on the outcome is independent of the strength of the SNP

on the exposure. Bias due to population stratification may

satisfy this assumption if it applies equally across the

SNPs. However, MR Egger has low power to detect effect

estimates, and so it is often not possible to determine

whether the lack of an association in an MR Egger estima-

tion that was observed in an IVW analysis is due to bias in

the IVW estimation or low power in the MR Egger esti-

mates. In each case we included all SNPs that are genome-
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wide significant for the exposure as our genetic instru-

ments, as these are the SNPs that are usually used for MR

analyses with multiple SNPs.35 All analyses were con-

ducted using the package ‘TwoSampleMR’ in R.17

Estimated effects of the genetic liability towards each ex-

posure on tanning ability from our IVW analysis are given in

Figure 2, with full details given in Supplementary Table S1.

These results show that a number of the exposures consid-

ered appear to have a causal effect of genetic liability to-

wards that exposure on tanning ability. Table 1 gives the

estimated effect sizes for all results with a P-value of less

than 0.05 in the IVW analyses. Although we have conducted

multiple tests in this analysis as many of the phenotypes we

consider are related, these tests are not independent. We

therefore suggest here that this gives a potential indication of

whether results warrant further investigation for potential

bias rather than a hard cut-off for whether these results are

of interest. The traits with an effect on tanning fall into three

categories; adiposity-related traits, bowel disease and years

of schooling. The majority of the GWAS studies included

adjusted for population stratification (using principal

components or alternative methods), suggesting that this

adjustment alone is not sufficient to remove all structural

bias in the data. The MR Egger results suffer from high levels

of uncertainty due to low power but estimated the same

direction of effect in all but three of these exposures. The

weighted mode and weighted median estimates supported

the overall results with all of the results showing the same

direction of effect as the IVW results and only three of the

12 results not replicating in at least one of the weighted

mode or weighted median estimates.

Estimated effects of the genetic liability towards each

exposure on hair colour from our IVW analysis are given

in Figure 3, with full details given in Supplementary Table

S1. Results from the IVW analyses and sensitivity analyses

for exposures with a P-value <0.05 (as a heuristic for

Figure 2 Inverse variance weight (IVW) estimates from Mendelian randomization (MR) analyses on self-reported tanning ability. IVW results from MR

analyses of 33 preselected traits on tanning ability. A higher score indicates less being less likely to tan and more likely to burn when exposed to

strong sunlight. Full results from these analyses are given in Supplementary Table S1
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presentation) in the IVW analysis are given in Table 2.

These results show a very similar pattern to the results for

tanning ability with adiposity- and education-related traits,

showing a potential effect on hair colour. Additionally,

coeliac disease showed an association with hair colour.

Three traits (triglycerides, years of schooling and obesity

class 2) showed evidence of an effect on both tanning

ability and hair colour.

These results illustrate the use of negative control

outcomes to detect potential population stratification, and

Table 1 Full Mendelian randomization (MR) results for exposures which show potential association with tanning ability

Exposure No. SNPs Est. method Effect Std error P-value 95% confidence interval

Years of

schooling

68 IVW 0.072 0.029 0.012 [0.016 0.104]

MR Egger 0.056 0.149 0.710 [-0.237 -0.409]

Weighted median 0.092 0.026 <0.001 [0.040 0.171]

Weighted mode 0.103 0.049 0.038 [0.007 0.118]

Childhood obesity 5 IVW 0.028 0.014 0.040 [0.001 0.031]

MR Egger �0.088 0.100 0.444 [-0.285 �0.646]

Weighted median 0.018 0.007 0.009 [0.004 0.026]

Weighted mode 0.015 0.008 0.109 [0.001 0.017]

Body mass index 78 IVW 0.049 0.016 0.002 [0.018 0.083]

MR Egger 0.055 0.039 0.165 [-0.022 0.012]

Weighted median 0.047 0.018 0.008 [0.012 0.071]

Weighted mode 0.038 0.019 0.050 [0.001 0.039]

HDL cholesterol 84 IVW �0.034 0.016 0.036 [-0.065 �0.162]

MR Egger �0.006 0.030 0.848 [-0.064 �0.131]

Weighted median �0.020 0.010 0.046 [-0.040 �0.100]

Weighted mode �0.019 0.009 0.030 [-0.037 �0.091]

Triglycerides 55 IVW 0.040 0.012 0.001 [0.016 0.072]

MR Egger 0.024 0.019 0.226 [-0.014 �0.004]

Weighted median 0.014 0.011 0.226 [-0.008 �0.003]

Weighted mode 0.010 0.012 0.406 [-0.014 �0.017]

Inflammatory

bowel disease

62 IVW 0.009 0.003 0.002 [0.003 0.015]

MR Egger 0.008 0.007 0.273 [-0.006 �0.004]

Weighted median 0.004 0.003 0.185 [-0.002 0.000]

Weighted mode 0.003 0.004 0.459 [-0.005 �0.007]

Waist

circumference

45 IVW 0.050 0.023 0.033 [0.004 0.057]

MR Egger 0.098 0.062 0.121 [-0.023 0.052]

Weighted median 0.052 0.022 0.017 [0.009 0.070]

Weighted mode 0.035 0.022 0.128 [-0.009 0.017]

Extreme height 44 IVW �0.013 0.006 0.031 [-0.024 �0.061]

MR Egger �0.044 0.027 0.115 [-0.097 �0.234]

Weighted median �0.003 0.003 0.257 [-0.009 �0.021]

Weighted mode 0.000 0.006 0.932 [-0.011 �0.023]

Obesity class 1 17 IVW 0.020 0.010 0.038 [0.001 0.022]

MR Egger �0.009 0.027 0.735 [-0.063 �0.133]

Weighted median 0.014 0.007 0.042 [0.001 0.015]

Weighted mode 0.013 0.007 0.100 [-0.002 0.010]

Obesity class 2 11 IVW 0.011 0.005 0.030 [0.001 0.014]

MR Egger 0.002 0.016 0.927 [-0.030 �0.058]

Weighted median 0.012 0.006 0.026 [0.001 0.015]

Weighted mode 0.011 0.006 0.099 [-0.001 0.009]

Overweight 14 IVW 0.036 0.015 0.018 [0.006 0.048]

MR Egger �0.025 0.050 0.630 [-0.124 �0.267]

Weighted median 0.028 0.011 0.011 [0.006 0.040]

Weighted mode 0.029 0.012 0.033 [0.005 0.039]

Results from inverse variance weight (IVW), MR Egger, weighted mode and weighted median analyses for those phenotypes which indicated a potential effect

on tanning ability from an MR analysis of 33 preselected phenotypes on tanning ability.

SNPs, single nucleotide polymorphisms; Est., estimation; Std, standard; HDL, high-density lipoprotein.
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show that the GWAS results for many of the phenotypes

we consider, particularly those related to education and

adiposity, are likely to be affected by population

stratification.

Discussion

In this paper we describe the use of variables that are

predetermined relative to the phenotypes of interest, but

are likely to be subject to population stratification as

negative control outcomes within an MR analysis to de-

tect population stratification. The method we describe

is easy to implement with currently available software

and data. Our results suggest that negative control out-

comes could be routinely used as part of any MR study,

to detect population stratification in GWAS data that

could bias the results from the MR estimation.

We propose using this method to examine the poten-

tial for population stratification in both the exposure

and outcome in any MR study. Population stratification

in the outcome can create confounding between the ge-

netic variants and the outcome, which can lead to an

apparent association between an exposure and outcome

in any MR estimation when no causal effect exists.

Population stratification in the exposure will create con-

founding of the genetic variants and exposure which

can bias the causal estimate obtained from the MR esti-

mation, including making a true association appear to

be null. Therefore, for reliable interpretation of the

results from the MR estimation, including a reliable as-

sessment of whether or not a causal effect exists as well

as estimation of the size of that effect, it is important

that population stratification does not affect either the

exposure or outcome. For this reason, negative control

Figure 3 Inverse variance weight (IVW) estimates from Mendelian randomization (MR) analyses on self-reported natural hair colour. IVW results from

MR analyses of 33 preselected traits on hair colour. A higher score indicates darker hair colour. Full results from these analyses are given in

Supplementary Table S1
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outcomes should be applied as described here to both

the exposure and the outcome in the MR estimation of

interest.

Our applied analysis conducts a negative control out-

come MR analysis of 33 preselected phenotypes on tanning

ability and natural hair colour, to detect the potential for

population stratification in the GWAS of these phenotypes.

We find a range of phenotypes are potentially affected by

population stratification, particularly a number of pheno-

types related to BMI, height and educational attainment.

Any association between these variables shown by an MR

analysis could be due to population stratification introduc-

ing the apparent association. This result is supported by a

recent study using within-family MR analyses, which

showed the observed associations from MR analyses be-

tween height and education and BMI and education atten-

uated once family effects were controlled for.8 One key

advantage of within-family MR over our method is that is

can provide MR causal estimates adjusted for the bias due

to population stratification. However, within-family MR

requires a large sample of related individuals and cannot

be conducted with standard GWAS results. The method

we propose can detect potential population stratification

in samples that do not contain related individuals and us-

ing existing summary data.

Genetic liability for coeliac disease was associated with

hair colour; however, this GWAS did not account for pop-

ulation stratification, suggesting that the adjustments for

population stratification included in GWAS studies do mit-

igate the effects of population stratification to some degree.

However, a number of the other exposures which were

found to be associated with our negative control outcomes

did include adjustment for population stratification in the

GWAS, suggesting that this adjustment does not fully miti-

gate the effects. Examination of the extent to which adjust-

ment for population stratification, through inclusion of

Table 2 Mendelian randomization (MR) results for exposures which show potential association with hair colour

Exposure No. SNPs Est. method Effect Std. error P-value 95% confidence interval

Years of

schooling

71 IVW 0.070 0.027 0.012 [0.017 0.123]

MR Egger 0.069 0.140 0.502 [-0.205 0.342]

Weighted median 0.074 0.024 0.002 [0.027 0.120]

Weighted mode 0.112 0.060 0.046 [-0.005 0.230]

Coeliac disease 13 IVW �0.004 0.002 0.012 [-0.008 0.000]

MR Egger �0.007 0.003 0.010 [-0.012 �0.002]

Weighted median �0.007 0.002 0.005 [-0.011 �0.002]

Weighted mode �0.005 0.002 0.002 [-0.009 �0.001]

LDL cholesterol 79 IVW �0.020 0.009 0.025 [-0.038 �0.002]

MR Egger �0.016 0.013 0.189 [-0.042 0.010]

Weighted median �0.025 0.008 0.001 [-0.040 �0.010]

Weighted mode �0.020 0.006 <0.001 [-0.031 �0.009]

Total cholesterol 87 IVW �0.028 0.010 0.005 [-0.048 �0.009]

MR Egger �0.018 0.016 0.212 [-0.050 0.014]

Weighted median �0.026 0.008 0.003 [-0.043 �0.009]

Weighted mode �0.026 0.007 <0.001 [-0.040 �0.012]

Triglycerides 54 IVW �0.053 0.015 0.001 [-0.082 �0.024]

MR Egger �0.059 0.025 0.044 [-0.107 �0.010]

Weighted median �0.032 0.012 0.008 [-0.054 �0.009]

Weighted mode �0.037 0.013 0.040 [-0.063 �0.011]

Extreme body

mass index

7 IVW 0.008 0.004 0.028 [0.001 0.015]

MR Egger �0.017 0.017 0.375 [-0.050 0.017]

Weighted median 0.006 0.005 0.173 [-0.003 0.016]

Weighted mode 0.001 0.006 0.812 [-0.010 0.013]

Obesity class 2 11 IVW 0.010 0.004 0.010 [0.002 0.018]

MR Egger �0.011 0.012 0.353 [-0.034 0.012]

Weighted median 0.004 0.005 0.427 [-0.006 0.015]

Weighted mode 0.002 0.006 0.710 [-0.009 0.014]

Results from inverse variance weight (IVW), MR Egger, weighted mode and weighted median analyses for those phenotypes which indicated a potential effect

on tanning ability from an MR analysis of 33 preselected phenotypes on self-reported natural hair colour. P-values in parentheses.

SNPs, single nucleotide polymorphisms; Est., estimation; Std, standard; LDL, low-density lipoprotein.
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principal components or alternative adjustments such as

using a BOLT-LMM model21 in GWAS, can mitigate the

problems of bias due to instrument-outcome confounding

in MR studies, is an area for future research.

Linkage disequilibrium (LD) score regression is a

method that attempts to separate out biological and con-

founded genetic signals and so can also be applied in an

MR setting to determine whether there is a causal (biologi-

cal) effect of an exposure on an outcome or if an observed

association is due to confounding.36 LD score regression

however does not give the appropriate results if the GWAS

being considered have been performed using a linear mixed

model. Our method therefore provides a complementary

approach to LD score regression whcih does not depend on

the method used to estimate GWAS associations.

Additionally, LD score regression incorporates data from

the entire genome, whereas the use of negative controls

outcomes proposed here only uses SNPs strongly associ-

ated with the phenotypes of interest. This is potentially

more relevant to bias in MR analyses which use SNPs asso-

ciated with the exposure to estimate the causal effect of the

exposure on the outcome.

The methods described here could equally be applied to de-

tect selection bias. Selection bias, where individuals select to

participate in a study or not, based on their particular pheno-

types, can also induce bias into any analyses of that study.37

Particularly, selection bias can induce bias in the associations

observed between phenotypes selected on and the genetic var-

iants associated with those phenotypes.38,39 Selection bias is a

form of collider bias which occurs when the variables of inter-

est independently affect a third variable and so conditioning

on this third collider variable will induce an association

between the variables of interest.37,40 In this case, the

third variable is participation in the study and condition-

ing on it is unavoidable, as data are only available for the

participants. Although selection bias is distinct from pop-

ulation stratification in its source, the subsequent biases

in MR studies are similar.39,41 Negative control outcomes

could also be used to detect selection bias in GWAS

results by using outcome phenotypes that are expected to

affect participation in a study, but that are predetermined

relative to the exposure and outcome considered in the

MR analysis. Such negative control outcomes could in-

clude early life variables such as place of birth or educa-

tion. Alternatively, participation can be examined directly

in birth cohort studies which are followed up over time,

and GWAS results from these studies could be used as a

negative control outcome.42

There are a number of weaknesses with our method

that should be considered. This method is only able to

detect bias as far as it affects the chosen negative control

outcome, and therefore no detected effect of the

phenotype on the negative control outcome does not mean

that the phenotype, and any associated MR analysis, is

necessarily free from bias. This limitation can be mitigated

by choosing negative control outcomes that are likely to be

highly population stratified, as far as they are available.

Negative control outcome calibration has been proposed

for observational negative control studies, to adjust the ef-

fect of the exposure of interest on the outcome for the bias

detected by the negative control outcome.43 We believe that

mechanical application of such an approach should be

avoided due to the strong assumptions required for such cal-

ibration to give reliable estimates.44 A key assumption for

such an approach to work is that the model fully identifies

the effect of the exposure on the outcome and negative con-

trol outcome, such that the size of the effect of the bias on

the outcome can be determined once and differences in scale

of the outcome and negative control have been taken into

account. In the context of MR this is not a reasonable as-

sumption, as this assumption would require the instrument-

outcome confounding to have exactly the same effect in the

exposure, outcome and negative control outcome, and so if

bias is detected, this method does provide a method to cor-

rect the estimated effect. However, the size and direction of

the estimated effect on the negative control outcome could

be used as an indicator for a sensitivity analysis which con-

sidered whether bias of up to, for example, five times that

estimated by the negative control outcome would change

the conclusions from the main MR analyses.

An extension to this method is to consider the use of

similar phenotypes, considered as negative control out-

comes here, as negative control exposures. Such an ap-

proach provides an obvious complement to the approach

considered here; however, the assumptions required and

implications of such an analysis are notably different from

those for a negative control outcome study, and therefore

we leave this as an area for future research.
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