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IAPP toxicity activates HIF1α/PFKFB3 signaling
delaying β-cell loss at the expense of β-cell function
Chiara Montemurro 1,5, Hiroshi Nomoto 1,5, Lina Pei1,5, Vishal S. Parekh2, Kenny E. Vongbunyong1,

Suryakiran Vadrevu2, Tatyana Gurlo1, Alexandra E. Butler1, Rohan Subramaniam1, Eleni Ritou3, Orian S. Shirihai3,

Leslie S. Satin2, Peter C. Butler1 & Slavica Tudzarova 1,4

The islet in type 2 diabetes (T2D) is characterized by amyloid deposits derived from islet

amyloid polypeptide (IAPP), a protein co-expressed with insulin by β-cells. In common with

amyloidogenic proteins implicated in neurodegeneration, human IAPP (hIAPP) forms mem-

brane permeant toxic oligomers implicated in misfolded protein stress. Here, we establish

that hIAPP misfolded protein stress activates HIF1α/PFKFB3 signaling, this increases glyco-

lysis disengaged from oxidative phosphorylation with mitochondrial fragmentation and

perinuclear clustering, considered a protective posture against increased cytosolic Ca2+

characteristic of toxic oligomer stress. In contrast to tissues with the capacity to regenerate,

β-cells in adult humans are minimally replicative, and therefore fail to execute the second

pro-regenerative phase of the HIF1α/PFKFB3 injury pathway. Instead, β-cells in T2D remain

trapped in the pro-survival first phase of the HIF1α injury repair response with metabolism

and the mitochondrial network adapted to slow the rate of cell attrition at the expense of

β-cell function.
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Type 2 diabetes (T2D) is characterized by a progressive
defect in insulin secretion in the setting of relative insulin
resistance1. Histopathological studies in individuals with

T2D reveal a partial β-cell deficit with islet amyloid derived from
islet amyloid polypeptide (IAPP), a protein co-expressed and co-
secreted with insulin by β-cells2,3. In common with other protein
misfolding diseases, the most toxic forms of IAPP aggregates are
small membrane permeant oligomers4–6. These oligomers are
considered the likely cause of aberrant Ca2+ signaling manifest as
calpain hyperactivation characteristic of cells affected by mis-
folded proteins7–10.

One of the unexplained observations in both T2D and neu-
rodegenerative diseases is the remarkably slow rate of β-cell and
neuron loss given the known cytotoxicity of aberrant Ca2+ sig-
naling mediated through mitochondrial-induced apoptosis.
Another unexplained observation is the shared alterations in
metabolism and mitochondrial network changes in affected β-
cells and neurons11–14. These include increased flux through
glycolysis with the diversion of pyruvate to lactate, fragmentation
of the mitochondrial network with decreased glucose-induced
oxidative phosphorylation, changes that contribute to β-cell, and
neuron dysfunction. We noted that the latter changes are also
characteristics of cancer cells15,16, well adapted for survival,
implying a potential shared pro-survival signaling pathway. Given
this, we paid particular attention to signaling pathways that
regulate metabolism in cancer to test the hypothesis that com-
parable signaling is activated in stressed β-cells.

In the present study, we establish that the conserved HIF1α/
PFKFB3 signaling pathway is activated by IAPP misfolded
protein-driven stress in pancreatic β-cells to trigger an adaptive
protective metabolic response that slows β-cell death at the
expense of β-cell function. Further, we establish that this
signaling pathway is activated in β-cells in humans with T2D
providing a basis for slow β-cell loss.

Results
HIF1α/PFKFB3 activation by human IAPP toxicity. There are
numerous hypotheses as to what initiates β-cell dysfunction in
T2D. Since the metabolic alterations in β-cells in T2D are similar
to those in neurons impacted by misfolded protein stress17,18, we
focused on human IAPP (hIAPP) misfolding induced stress. To
identify potential metabolic signaling pathways induced by
hIAPP toxicity, we first analyzed available microarray data19

(GEO Accession Number GSE90779) from islets isolated from
human IAPP (HIP) transgenic rats at 4.5 months of age when β-
cell stress is present but preceding diabetes onset.

The pattern of changes in metabolic regulatory genes induced
by hIAPP toxicity was indeed reminiscent of that in cancer cells,
with upregulation of genes involved in glycolysis (lactate
dehydrogenase C, LDHC; phosphofructokinase L, PFKL; pyr-
uvate kinase M2, PKM2 and 6-phosphofructo-2-kinase fructose
2,6 biphosphatase, PFKFB3) and downregulation of those
engaged in the TCA cycle (pyruvate carboxylase, PC; malate
dehydrogenase, MDH; fumarate hydratase, FH; succinate dehy-
drogenase, SDH) (Fig. 1).

HIF1α, a key regulator of metabolism in cancer20 as well as in
response to stress21, was upregulated while its inhibitor, Von-
Hippel Lindau tumor suppressor, was downregulated (Fig. 1a).
Consistent with this, HIF1α target genes were differentially
expressed between islets with hIAPP-induced stress and controls
(Fig. 1a). PFKFB3, a master regulator of glycolysis22, was highly
upregulated by hIAPP stress (20- and 9.5-fold in two independent
experiments). In further support of hIAPP-induced increased
aerobic glycolysis, transcription of both LDHA and MCT1, as
evaluated by qRT-PCR, was increased in islets from prediabetic

HIP rats (p < 0.05, Fig. 1b) as was the rate of lactate production
(p < 0.05, Fig. 1c). To further test whether hIAPP toxicity induces
the HIF1α/PFKFB3 stress/repair signaling pathway, we confirmed
that HIF1α and PFKFB3 protein levels were increased in HIP rat
islets (Fig. 1d, e). To assure that this pathway was activated well
before any confounding effects of hyperglycemia, we evaluated
islets from HIP rats at 2.5 and 3.5 months of age, and found that
PFKFB3 levels were already increased by 2.5 months of age,
namely before frank hyperglycemia (Supplementary Fig. 1a–c and
Supplementary Table 1).

HIF1α/PFKFB3 activation in β-cells of humans with T2D.
Having established the HIF1α/PFKFB3 stress/repair signaling
pathway as a potential mediator of hIAPP-induced changes in β-
cell metabolism, we next sought to establish if the key mediator of
this response, PFKFB3 is increased in β-cells in humans with
T2D. We immunostained human pancreas sections from brain
dead organ donors procured from the nPOD consortium23 with
T2D and age and BMI matched non-diabetics (ND) and, for
comparison, pancreas of HIP and WT rats. The frequency of
β-cells immune-positive for PFKFB3 was increased (p < 0.05 and
p < 0.001, respectively) in both humans with T2D and HIP rats
(Fig. 2 and Supplementary Table 2). Concomitant with this
finding, nuclear HIF1α and PFKFB3 levels were increased in
isolated islets from humans with T2D (Fig. 2d and Supplementary
Table 3).

To establish if the induction of PFKFB3 in β-cells is under the
transcriptional control of HIF1α, we transfected a β-cell line (INS
832/13 cells) with a PFKFB3 promoter-luciferase reporter
construct, containing two hypoxia response elements, and tested
its activation in control and cells transduced with hIAPP
adenoviral vector. Luciferase activity was increased (p < 0.05)
in INS 832/13 cells overexpressing hIAPP (Fig. 3a), affirming
binding of HIF1α to the PFKFB3 promoter.

Furthermore, HIF1α silencing in both INS 832/13 cells and
human islets transduced with hIAPP led to a reduction of
PFKFB3 protein expression (Fig. 3b and Supplementary Fig. 2a–b)
as well as LDHA, another representative target of HIF1α.
Taken together, these results support the hypothesis that the

HIF1α/PFKFB3 stress/repair pathway is activated by hIAPP
toxicity, and is also activated in β-cells in humans with T2D.
While activation of HIF1α was first described under conditions of
hypoxia24, it is now appreciated that HIF1α activation also occurs
when the mitochondrial TCA cycle flux is attenuated, even in the
absence of hypoxia (pseudo-hypoxic activation)21,25. Pseudo-
hypoxic activation of HIF1α may occur due to mitochondrial
dysfunction or adaptive quiescence of mitochondria to protect the
mitochondrial network, as previously described in response to
increased cytosolic Ca2+ 26. It is of interest that β-cells in T2D are
characterized by a fragmented mitochondrial network, altered
mitochondrial function, and disrupted Ca2+ dynamics4,7,11.
Therefore, we next sought to examine the impact of hIAPP
toxicity on the mitochondrial network and β-cell function.

hIAPP toxicity changes mitochondrial form and distribution.
The mitochondrial network in β-cells in T2D, as immunostained
with Tom20 (Fig. 4a) was fragmented and less dense in appear-
ance (p < 0.01) compared to β-cell mitochondria in ND (Fig. 4a,
d), consistent with previous work11. To investigate the potential
role of hIAPP toxicity in inducing these changes, we transduced
INS 832/13 cells with hIAPP at an MOI known to induce mis-
folded protein stress8. Since the mitochondrial network and the
dynamics of Ca2+ vary through the cell cycle27, we synchronized
INS 832/13 cells at the G1/S stage of the cell cycle (0 h post-
aphidicolin release), as confirmed by FACS analysis
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(Supplementary Fig. 3c, d)28. hIAPP toxicity induced fragmen-
tation of mitochondria (Fig. 4b, c and S4a, b) in the absence of
apoptosis as confirmed by flow cytometry (Supplementary
Fig. 3c). While the mitochondrial network of control cells (CTRL)
was extensively reticular and tubular throughout the cytoplasm
(~70% of the cells), the network was fragmented in cells over-
expressing hIAPP (~50% of the cells), and displayed a perinuclear
distribution (Fig. 4b, c and Supplementary Fig. 4b). Therefore, we
concluded that, in common with other amyloidogenic proteins,
hIAPP toxicity induces fragmentation and a perinuclear dis-
tribution of the mitochondrial network.

The mitochondrial network is continuously remodeled and
repaired through regulated fission, fusion, and mitophagy29. To
establish whether the altered mitochondrial network under
conditions of hIAPP toxicity is a regulated adaptive response,
we next investigated the effect of hIAPP toxicity on regulators of
mitochondrial fission (dynamin related protein 1 (Drp1)) and
fusion (mitofusins 1/2 (MFN1/2) and optical atrophy related 1
(Opa1)).

Immunoblotting of whole cell extracts from hIAPP transduced
INS 832/13 cells revealed reduced MFN2 protein levels (n= 3,
Supplementary Fig. 4a) but no change in Drp1 expression
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Fig. 1 hIAPP upregulates the HIF1α/PFKFB3 stress pathway. a Summary of the differentially expressed genes of interest after microarray analysis25

performed on RNA isolated from wild type (WT) and hIAPP overexpressing (HIP) rat islets (4.5 months) presented as a fold change over WT. Asterisk
represents genes that were differentially expressed in one experiment. b LDHA and MCT1 mRNA levels in HIP versus WT as measured by qRT-PCR.
c Lactate production rate (fold change) measured in isolated islets from HIP relative to WT. d Representative Western blot of PFKFB3 and HIF1α protein
levels in whole cell extracts and nuclear-enriched fractions of islets from 6 months old WT (3) and HIP (3) rats. GAPDH and PARP were used as loading
controls for whole cell extract (WCE) and nuclear extracts, respectively. e Quantification of HIF1α (upper panel) and PFKFB3 (lower panel) in cytoplasmic
and nuclear fractions. Data are presented as mean ± SEM, n= 3 independent experiments for (b) and (d), and n= 4 independent experiments for (c).
Statistical significance was analyzed by Student t-test (*p < 0.05, **p < 0.01)
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compared to controls or cells transduced with non-amyloidogenic
rodent IAPP (rIAPP), implying a MFN2-dependent mechanism
for mitochondrial network fragmentation (Supplementary
Fig. 4a). This was supported by the finding that overexpression
of the dominant negative Drp1 mutant K48A failed to protect
against hIAPP toxicity induced mitochondrial network fragmen-
tation (Supplementary Fig. 4b).

In conclusion, hIAPP toxicity induces an adaptive perinuclear
distribution and fragmentation of the mitochondrial network
mediated by decreased mitochondrial fusion, in common with
other adaptive states that favor high glycolysis over oxidative
phosphorylation30–32. We next sought to establish the impact of
this change in mitochondrial network morphology on mitochon-
drial function.

hIAPP toxicity induces changes in mitochondrial function. To
determine whether the altered mitochondrial network was asso-
ciated with changes in mitochondrial function, we measured the
cellular oxygen consumption rate (OCR) and mitochondrial
membrane potential in the presence and absence of hIAPP

toxicity. We measured OCR in islets from 5–6-month old pre-
diabetic HIP rats versus those from WT. There was a 30%
decrease in OCR in response to 20 mM glucose in HIP rat islets
compared to WT (p < 0.01) (Fig. 5a, b) and an increased extra-
cellular acidification rate (ECAR) at both basal and stimulated
glucose conditions suggesting increased acidification of the
medium of HIP rat islets caused by lactate production (Supple-
mentary Fig. 5a, b). These findings are consistent with the
diversion of glycolysis to lactate production rather than pyruvate
oxidation through the TCA cycle under conditions of hIAPP
toxicity. Next, we investigated if the diversion of glycolysis from
mitochondrial oxidative phosphorylation was secondary to a loss
of mitochondrial membrane potential, or if the membrane
potential was preserved despite hIAPP toxicity in a manner that
would further support adaptive protective changes rather than
direct mitochondrial membrane depolarization by toxic hIAPP
oligomers. INS 832/13 cells expressing hIAPP or rIAPP were
synchronized at G1/S (0 h post-release from aphidicolin block)
and then treated with tetramethylrhodamine ethyl ester (TMRE)
after which we performed flow cytometry analysis. Cells treated
with carbonyl cyanide-4(trifluoromethoxy) phenylhydrazone
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(FCCP), a known proton ionophore, served as a positive control
for the loss of mitochondrial membrane potential (Fig. 5c). The
overlay of TMRE fluorescence profiles revealed no loss of mito-
chondrial membrane potential by hIAPP toxicity (Fig. 5d).
However, inhibition of mitochondrial ATPase activity with oli-
gomycin (5 mM) or inhibition of glycolysis with 2-deoxy-D-
glucose (2-DOG, 2 mM) decreased the number of viable cells in
the hIAPP group, indicating increased vulnerability to cell death
upon additional toxic stimuli (Fig. 5e, f).

In conclusion, the mitochondrial network in β-cells adapts
both morphologically and functionally to hIAPP toxicity,
consistent with changes reported both in islets in T2D as well
as neurons impacted by protein misfolding and toxic
oligomers11,12. Given that hIAPP toxicity activates the HIF1α/
PFKFB3 metabolic stress response and induces adaptive changes
in mitochondrial morphology and function, we next sought to
establish the metabolic consequences of these changes for β-cells.

hIAPP increases glycolysis and pentose phosphate pathways.
To evaluate the impact of hIAPP toxicity on metabolism, we
performed an unbiased metabolomics analysis in INS 832/13 cells
overexpressing hIAPP versus rIAPP. Changes in the metabolite
composition induced by hIAPP included decreased levels of
fructose 1,6-biphosphate (F16BP), glycerol-3-phosphate (G3P),
phosphoenolpyruvate (PEP), and increased levels of the glycolytic
end products lactate and alanine, demonstrating enhanced gly-
colytic flux (Supplementary Fig. 6a, b), consistent with the
increased LDHA and MCT1 gene expression we observed
(Fig. 1b). Interestingly, while α-ketoglutarate (α-KG) was reduced
in cells overexpressing hIAPP, its intermediate 2-
hydroxyglutarate (2-HG), which may divert glucose from entry
into the TCA cycle33, showed a trend to be increased (Supple-
mentary Fig. 6a). Reduced α-KG but maintained citrate levels are
indicative of α-KG reductive carboxylation to citrate, compen-
sating for a decreased PDH branch activity of TCA in metabolic
states that mimic hypoxia34. Furthermore, the GSH/GSSG ratio
was decreased, indicating redox stress in cells transduced with
hIAPP (Supplementary Fig. 6a).

To investigate the impact of hIAPP on glucose utilization, we
compared the mass isotopologue distribution (MID) of TCA
intermediates using [U-13C6]-labeled glucose in INS 832/13 cells
transduced with hIAPP versus rIAPP expressing adenoviruses.
The intracellular M6 fraction of glucose was near 100%,
demonstrating a high efficiency of labeling of glucose and its
downstream metabolites (Supplementary Fig. 6b). hIAPP did not
alter the glucose labeling pattern as there was no difference in the
M6 fraction compared to control rIAPP overexpressing cells
(Supplementary Fig. 6b). Linkage between glycolysis and the TCA
cycle was disrupted by hIAPP, as demonstrated by a relative
decrease in the flux of pyruvate to different glucose-derived
metabolites (with M0—indicating no labeled carbons, and
M1–M6—one to more labeled carbons) (Supplementary Fig. 6b).
The M2 fractions of fumarate (Fum) and α-ketoglutarate (α-KG)
derived from the conversion of Pyr to acetyl-CoA after the first
round of the TCA cycle, were decreased in hIAPP compared to
rIAPP overexpressing cells. The M3 fraction of aspartate (Asp),
surrogate marker for oxaloacetate (OAA), fumarate (Fum), and
malate (Mal) were also reduced, suggesting decreased pyruvate
anaplerosis in hIAPP compared to rIAPP overexpressing cells
(Supplementary Fig. 6b). In addition, M5 citrate was lower,
suggesting a significant decrement in the use of OAA in
consecutive rounds of the TCA cycle in the hIAPP cells
(Supplementary Fig. 6b). Interestingly, the M0 (no labeled
carbons) fraction of most TCA metabolites was increased in
hIAPP cells, suggesting that another source of energy besides
glucose was metabolized through the TCA cycle. Whereas the key
pentose phosphate pathway (PPP) metabolite, glucose-6-phos-
phate/fructose-6-phosphate (G6P-F6P), was reduced (Supple-
mentary Fig. 6a), oxidized glutathione, inositol monophosphate
(IMP), and the M5 isotopologues of ADP, ATP, UDP, and UTP
nucleotides were higher in hIAPP overexpressing cells, indicating
an increased contribution of de novo purine and pyrimidine
synthesis via the PPP, suggesting activation of a DNA damage-
repair pathways (Supplementary Fig. 7a, b).

Taken together, these results indicate that hIAPP reduces the
oxidation of glucose through the TCA cycle and pyruvate
anaplerosis in β-cells while promoting the synthesis of nucleo-
tides (Supplementary Fig. 7a). These findings, along with the
accumulation of succinate and 2-hydroxyglutarate, are all in line
with HIF1α-dependent molecular pathways25,35. Moreover, our
findings in β-cells exposed to hIAPP toxicity resemble those
previously reported in islets of patients with T2D18 as well as
neurons exposed to toxic oligomers from amyloidogenic
proteins: increased aerobic glycolysis and lactate production14
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implying disengagement of glucose metabolism from mitochon-
drial respiration.

PFKFB3 mediates hIAPP-induced changes in metabolism. To
establish if the metabolic reprogramming of β-cells under conditions
of hIAPP toxicity is mediated by the HIF1α/PFKFB3 stress response
pathway, we next investigated the effect of silencing PFKFB3 on
hIAPP-induced changes in β-cell metabolism. PFKFB3 silencing
restored most metabolites to their control levels (Fig. 6a). ADP/ATP
and AMP/ATP ratios were normalized, as were lactate and palmitate
levels and metabolites of the homocysteine pathway (Fig. 6a).

To investigate the impact of PFKFB3 inhibition on the
metabolic fate of glucose, we analyzed the MID of TCA
metabolites derived from culturing INS 832/13 cells transduced
with rIAPP or hIAPP, in the presence or absence of PFKFB3, with
[U-13C6]-labeled glucose. PFKFB3 silencing led to a decrease of
pyruvate anaplerosis via OAA as demonstrated by a relative
reduction of the M3 fractions of Mal, Asp, and Fum (Fig. 6b and
Supplementary Fig. 8). However, the conversion of acetyl-CoA to
Cit, α-KG, and Fum was increased in β-cells transduced with
hIAPP and silenced for PFKFB3 as demonstrated by the increased
abundance of the M2 isotopologue fraction of these metabolites
and implying re-engagement of glucose metabolism to the TCA
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LacZ (CTRL) or rodent IAPP (rIAPP) or human IAPP (hIAPP). c Quantification of mitochondrial morphology in G1/S enriched INS 832/13 cells after
indicated treatments to overt fragmented or overt intermediate-to-fused mitochondria. d Quantification of mitochondrial area per β-cell in ND and
T2D subjects. Data are presented as mean ± SEM, n= 3 independent experiments for each group. Statistical significance was analyzed by Student t-test
(**p < 0.01 relative to CTRL and ♯♯p < 0.01 relative to rIAPP)
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cycle via PDH, at least after the first round of the TCA cycle
(Fig. 6b). The lactate levels were reduced after PFKFB3 inhibition
(Fig. 6c) confirming that the PFKFB3 suppression reduced the
flux through glycolysis, as expected from our hypothesis.

Several isotopologue fractions of the PPP intermediates, G6P-
F6P (M2–M5), ribulose-5-phosphate (R5P) (M3), and
sedoheptulose-7-phosphate (S7P) (M1–M6), were increased in
hIAPP transduced cells when PFKFB3 was silenced, indicating
the oxidation of glucose in this pathway was upregulated
(Supplementary Fig. 8). In conclusion, inhibition of PFKFB3
promotes a partial re-engagement of glucose entry into the
mitochondrial TCA cycle via acetyl-CoA in β-cells overexpressing
hIAPP, while permitting further its utilization in the PPP.

Having established that PFKFB3 implements many of the
changes in metabolism induced by hIAPP toxicity, we next

investigated the role of PFKFB3 in mediating the hIAPP toxicity-
induced changes in the mitochondrial network. The re-
engagement of glycolysis to the TCA cycle due to
PFKFB3 silencing in β-cells exposed to hIAPP toxicity restored
the fused form of the mitochondrial network (Fig. 7a, b). The
fragmentation and perinuclear clustering of the mitochondrial
network observed in cells exposed to toxicity induced by
amyloidogenic proteins has been attributed to a protective
adaptation to aberrant cytosolic Ca2+ 26. We next investigated
β-cell Ca2+ levels under conditions of hIAPP toxicity and after
PFKFB3 silencing.

Activated PFKFB3 contributes to aberrant β-cell Ca2+

dynamics. The exocytosis of insulin granules is triggered by Ca2+

influx through voltage-gated Ca2+ channels into the cytosol of
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the β-cell36. These channels are activated (opened) by depolar-
ization of the β-cell membrane as a consequence of the closure of
K(ATP) channels by a rise in ATP/ADP. Cellular toxicity induced
by amyloidogenic proteins is linked with sustained aberrant Ca2+

signaling, and this is evident in affected cells, including β-cells in
T2D, by calpain hyperactivation7,8.

To investigate the impact of hIAPP toxicity on β-cell Ca2+, we
first investigated islets isolated from hIAPP transgenic mice in 11
mM glucose (submaximal). As expected, cytosolic Ca2+ was

elevated in islets of hIAPP transgenic mice compared to those
from rIAPP transgenic controls (Fig. 7c).

In order to further probe the impact of hIAPP toxicity on Ca2+

dynamics, we next measured [Ca2+] in the cytosol, as well as the
ER, and mitochondria under basal (2.8 mM) and stimulated (16.8
mM) glucose in INS 832/13 cells exposed to hIAPP toxicity versus
controls. In control cells, raising glucose to 16.8 mM increased
mean cytosolic, ER, and mitochondrial [Ca2+] (Fig. 8a–c and
Supplementary Fig. 9a–f) as previously reported37,38 and the
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addition of the SERCA blocker cyclopiazonic acid (CPA) or the
mitochondrial inhibitor sodium azide (NaN3) decreased ER or
mitochondrial [Ca2+], respectively. Individual Ca2+ traces
detailing the Ca2+ dynamics of each compartment for the
different experimental conditions examined are shown in
Supplementary Fig. 9.

In INS 832/13 cells under conditions of hIAPP toxicity,
cytosolic [Ca2+] was elevated compared to controls (p < 0.05
versus LacZ_CTRL siRNA) in 2.8 mM glucose and increased
further compared to controls when challenged with 16.8 mM
glucose (Fig. 8a and Supplementary Fig. 9a, d). ER and
mitochondrial [Ca2+] were higher than in controls (p < 0.05)
under basal conditions at 2.8 mM glucose but were relatively
unresponsive to an increase in glucose to 16.8 mM (Fig. 8b, c and
Supplementary Fig. 9b, c, e, f). However, both ER and
mitochondria were actively sequestering Ca2+ despite hIAPP
toxicity, since pharmacologically inhibiting ER or mitochondrial
Ca2+ uptake led to store depletion, inferring maximal levels of
stored [Ca2+]. Importantly, silencing PFKFB3 under conditions
of hIAPP toxicity in INS 832/13 cells partially restored the levels
and dynamics of Ca2+ in all three compartments (i.e., cytosolic,
ER, and mitochondrial) both under basal and glucose stimulatory
conditions (Fig. 8a–c). These data imply that the increased basal
cytosolic, ER, and mitochondrial [Ca2+] and the diminished
glucose responsiveness observed during hIAPP toxicity might be
at least in part due to the sustained closure of K(ATP) channels
by high basal glycolytic flux induced by PFKFB339,40. Of interest,
inhibition of the K(ATP) channel has been reported to be
protective against β-cell loss in several models of diabetes41,42.

On the one hand, these data could imply that inhibition
of PFKFB3-mediated metabolic remodeling might be protective
against hIAPP cytotoxicity. On the other hand, given that the
HIF1α/PFKFB3 signaling pathway is considered as protective
against cytotoxicity, inhibition of this signaling pathway might
be deleterious to cell survival under conditions of hIAPP
toxicity. To address this, we next examined the impact of

inhibition of HIF1α or PFKFB3 signaling on β-cell survival under
conditions of hIAPP toxicity.

HIF1α/PFKFB3 signaling attenuates hIAPP stress-induced
apoptosis. In order to establish if hIAPP-induced HIF1α signal-
ing is indeed protective against cell death, we exposed INS 832/13
cells transduced with hIAPP to a well characterized and specific
HIF1α inhibitor43. Under these conditions, hIAPP-induced β-cell
apoptosis was enhanced (p < 0.05) as affirmed by western blotting
(cleaved caspase-3), TUNEL immunostaining, and FACS analysis
that revealed an increased proportion of sub-G1 cells (Fig. 9 and
Supplementary Fig. 10).

We undertook comparable experiments in INS 832/13 cells
transduced with hIAPP to establish if PFKFB3 is protective
against hIAPP-induced β-cell death by using validated
PFKFB3 siRNA. β-cell apoptosis was also increased by suppres-
sion of PFKFB3 (p < 0.05) as evaluated by activation of cleaved
caspase-3, TUNEL immunostaining, and by FACS analysis (Fig. 9
and Supplementary Fig. 10).

In conclusion, the HIF1α/PFKFB3 signaling pathway is
protective against hIAPP-induced β-cell apoptosis.

Discussion
Protein misfolding and the toxicity of amyloidogenic proteins
reflect a mismatch between the rate of synthesis of the protein
versus the capacity of the cell to properly fold, traffic, and clear
the misfolded proteins. IAPP expression increases with insulin
resistance44, and is a major risk factor for T2D, and as well, the
capacity to clear misfolded proteins declines with age45 in long-
lived cells such as β-cells and neurons. Moreover, the toxicity of
misfolded protein further compromises the autophagy and ubi-
quitin proteasome pathways’ capacity to clear misfolded
proteins46,47. Therefore, once β-cell IAPP misfolded protein
toxicity develops, it is likely to be sustained unless there is a
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marked increase in insulin sensitivity, such as following
childbirth.

In this study, we discovered that changes in the mitochondrial
network and metabolism induced by hIAPP toxicity recapitulate
the phenotype of β-cells in T2D11,48 as well as of neurons in
neurodegenerative diseases13,14,49,50. We were initially drawn to
these potential protective effects of altered metabolism given that
they are reminiscent of those present in cancer cells that adap-
tively resist cell death. We propose that in non-replicative cells
such as β-cells and neurons, in the face of chronic misfolded
protein stress, toxicity is countered by the protective metabolism
induced by the HIF1α/PFKFB3 metabolic stress pathway, pro-
viding an explanation for the slow rate of attrition of cells at the
expense of cell dysfunction. This concept is supported by our
finding of enhanced hIAPP-induced β-cell toxicity when HIF1α
activation was suppressed.

The main adaptive metabolic response mediated by activation
of the HIF1α/PFKFB3 pathway was the disengagement of gly-
colysis from the mitochondrial TCA cycle along with adaptive
fragmentation of the mitochondrial network (Fig. 10). The HIF1α
stress response thus provides short-term survival benefit in
response to acute stress, such as a hypoxic event51–53. However,

given the unique dependence of β-cell function on tight engage-
ment of glucose with the TCA cycle, this adaptive change pre-
dictably induces β-cell dysfunction with relatively high insulin
secretion occurring at baseline glucose values (likely because of
ATP generated by unrestrained glycolysis), but also a deficient
response to glucose stimulation, both characteristics of β-cells in
T2D54.

The PFKFB3-mediated increased flux through glycolysis under
conditions of hIAPP toxicity also predominately redirects pyr-
uvate to lactate. The latter regenerates NAD for the maintenance
of the redox state in mitochondria55. Also, under conditions of
hIAPP toxicity the enhanced glucose flux through glycolysis is
partitioned to a greater extent than in healthy β-cells through the
PPP, typically activated under conditions of stress or during cell
replication to provide nucleotide precursors needed for DNA
synthesis and/or repair as well as reducing equivalents. Therefore,
β-cells experiencing hIAPP-induced stress adopt a metabolic
pattern that mimics the so called Warburg effect reported in
cancer cells15. We observed increased PFKFB3 expression, mainly
in the β-cell nuclei of both HIP rats and humans with T2D.
PFKFB3 allosterically activates the downstream PFK1 through its
product fructose 2,6 biphosphate (F2,6BP), and is also known to
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regulate cellular growth. Metabolites such as F2,6BP can pass
unassisted by diffusion through the nuclear pore complex and
activate PFK1 without any necessity for PFKFB3 to undergo
cytoplasmic shuttling56. Previous studies linked PFKFB3 with
signaling that promotes entry into the cell cycle57,58 presumably
to facilitate the regenerative phase of the HIF1α/PFKFB3 stress
response pathway. While adult β-cells have a limited capacity to
complete the cell cycle, the partial dedifferentiation of β-cells
previously reported in T2D59,60 may reflect sustained signaling
for entry into, but a failure to execute, the cell cycle. Partial
dedifferentiation is a regulated step in preparation for replication
by differentiated cells such as β-cells61. The adaptive changes in
metabolism and mitochondrial network induced by the HIF1α/
PFKFB3 pathway in response to hIAPP toxicity are also present
in β-cells in T2D and are comparable to those present in repli-
cating β-cells27. Immature β-cells retain comparable metabolism
presumably to permit cell replication, so it is not surprising that
β-cells exposed to the sustained activation of the HIF1α/PFKFB3
pathway might be considered as adopting an immature ded-
ifferentiated state. The current study provides a plausible

mechanism for that process and establishes that it protects β-cell
viability against stress at the expense of β-cell function.

The importance of mitochondrial network remodeling as a
means to regulate cell metabolism was recently elegantly illu-
strated in T-cells31. Mitochondrial fragmentation seen in
response to hIAPP overexpression in β-cells was associated with
reduced glucose flux through the TCA cycle, as demonstrated by
measurements of OCR and mass spectrometry. Mitochondria
network form and disposition is regulated by alterations in the
balance of network fusion and fission. The more fragmented form
in response to hIAPP was mediated by a decrease in the fusion
protein MFN2, mirroring the mechanism subserving adaptation
to the more fragmented network form seen in response to stress
in neurons26 and activation of T-cells62 and in the regulated
adaptation of brown fat cells so as to withstand the stress of
insulin resistance63. A more fragmented perinuclear mitochon-
drial network has been shown to be protective against the
potentially deleterious effects of aberrantly high cytosolic Ca2+

waves26,64 as present in hIAPP toxicity, and following ischemic
reperfusion injury in cardiomiocytes52. Of interest the latter are
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Fig. 9 HIF1α and PFKFB3 are protective against hIAPP mediated β-cell death. a Representative immunoblotting (left) and quantification (right) of the whole
cell extract (WCE) from asynchronous INS 832/13 cells treated with either HIF1α inhibitor KC7F2 (10 μM) or PFKFB3 siRNA (75 nM) for 56 h versus
control. Cells were transduced with hIAPP adenovirus (75 MOI) or LacZ adenovirus as control (75 MOI) for last 32 h of culture. DMSO or CTRL siRNA,
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presented as mean ± SEM, n= 4, *p < 0.05, **p < 0.01. b Quantification of DNA content distribution after FACS analysis of INS 832/13 cells treated as
described in (a). Data are the mean ± SEM, n= 4, *p < 0.05, **p < 0.01. c The frequency of TUNEL positive INS 832/13 cells treated as described in
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test with Tukey’s post-test (*p < 0.05, **p < 0.01). See Supplementary Fig. 10 for additional supportive data
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toxicity induces increased β-cell cytosolic [Ca2+], initially most likely as a consequence of the nonselective membrane permeability at the ER. In response
to high cytosolic [Ca2+], mitochondria adopt a defensive fragmented posture leading to reduced TCA momentum and metabolic pseudo-hypoxia
important for activation of HIF1α and its target PFKFB3. PFKFB3 enhances the aerobic glycolysis that diverts pyruvate into lactate and stimulates the
pentose phosphate pathway to forge repair. However, glycolysis also produces ATP that may sustain the closure of the K(ATP) channels and
concomitantly, Ca2+ influx
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also protected from cell death by activation of the HIF1α stress
pathway52.

Given that the initial response to hIAPP toxicity appears to be
protective, the question arises: what underpins the eventual failure
of these adaptive responses in β-cells, and are there therapeutic
strategies that might be employed to sustain protection? Stabiliza-
tion of HIF1α has been reported to occur in response to the
accumulation of TCA intermediates such as fumarate, citrate, or
hydroxyglutarate when TCA cycle flux declines, as occurs during
short term hypoxia21,25,35. Under such stress conditions, the
marked acceleration of glycolysis to generate ATP with enhanced
DNA synthesis for DNA repair are clearly desirable attributes to
promote cell survival. Moreover, upon cessation of the short-term
injury, cells that survive with minimal DNA damage and are
replication competent can pass through the cell cycle and contribute
to tissue repair. In both β-cells and neurons undergoing misfolded
protein stress there are several predictable reasons why the HIF1α/
PFKFB3 stress pathway becomes chronically activated.

First, misfolded protein-induced stress is typically a char-
acteristic of aging, occurring when protective mechanisms against
proteotoxicity, including chaperone proteins, autophagy, and the
proteasome, are in decline45,65. Therefore, the protein misfolding
stress, once initiated, is typically sustained and indeed self-
perpetuating. Second, both β-cells and neurons are highly
dependent on the tight linkage between glycolysis and the TCA
cycle66,67. With sustained dysregulated ATP production through
a high glycolytic flux, both neurons and β-cells are vulnerable to
accumulate DNA damage and undergo a process of cell identity
loss or dedifferentiation59,68. Moreover, key aspects of cell func-
tion (for example the regulated exocytosis of insulin or neuro-
transmitters) in neurons and β-cells require tight regulation of
subcellular Ca2+ transients. However, with a sustained high gly-
colysis, harmful aberrant cytosolic Ca2+ signaling occurs that
contributes to calpain hyperactivation in both neurons and β-
cells7,8,69.

In order to understand to what extent the metabolic phenotype
and/or loss of Ca2+ homeostasis observed under misfolded pro-
tein stress by hIAPP relies on PFKFB3, we suppressed accelerated
glycolysis by silencing PFKFB3. Silencing PFKFB3 suppressed
hIAPP-increased glycolytic flux, restored pyruvate incorporation
into TCA to generate Ac-CoA, while still permitting the adaptive
increase in the PPP pathway. The latter supports not only DNA
repair but also the increased formation of NAD+ and NADP+ for
protection of β-cells against ROS to which they are particularly
vulnerable70. Moreover, higher NAD+ availability by PFKFB3
downregulation may contribute to the observed restoration of the
mitochondrial network71 in a NAD+-dependent manner. Inter-
estingly, reducing the levels of PFKFB3 and aerobic glycolysis
partially restored cytosolic, ER, and mitochondrial [Ca2+] levels
as well as organellar glucose-dependent Ca2+ dynamics observed
in controls.

In conclusion, these studies provide a potential link between
the IAPP misfolded protein stress characteristic of β-cells in T2D
and the seemingly disparate alterations in β-cell function known
to occur in T2D. IAPP misfolded protein stress activates the
conserved HIF1α/PFKFB3 injury regeneration pathway, which is
also activated in β-cells in T2D. The metabolic and mitochondrial
network changes in β-cells in T2D reflect the pro-survival
adaptations of the HIF1α/PFKFB3 pathway. The β-cell metabolic
and mitochondrial remodeling induced by the HIF1α/PFKFB3
pathway in T2D provides an explanation for the slow rate of β-
cell loss at the expense of β-cell function, mirroring the time
course and functional changes present in neurons impacted by
protein misfolding. The adaptive changes mediated by sustained
HIF1α/PFKFB3 signaling pathway likely also provide the
mechanism underlying the recently described phenomenon of

partial β-cell dedifferentiation in T2D. Moreover, sustained acti-
vation of the HIF1α/PFKFB3 stress response pathway and the
consequent metabolic remodeling that occurs in response to
misfolded protein stress provides a unifying explanation for the
early loss of cell function (i.e., β-cell glucose responsiveness) but
slow rate of β-cell loss in misfolded protein diseases such as
Alzheimer’s disease and T2D. Inhibition of the pathway without
removing misfolded protein stress would likely hasten cell loss in
these diseases.

Methods
Cell culture. The rat insulinoma cell line INS 832/13 was provided by
Dr. Christopher Newgard (Duke University, Durham, NC). INS 832/13 cells were
cultured in RPMI 1640 medium supplemented with 10 mM HEPES, 1 mM sodium
pyruvate, 100 IU/ml penicillin and 100 mg/ml streptomycin (Invitrogen, Carlsbad,
CA, USA), 10% heat-inactivated fetal calf serum (FCS) (Gemini Bio-Products,
West Sacramento, CA, USA), and 50 μM β-mercaptoethanol (Sigma, St. Louis,
MO, USA) at 37 °C in a humidified 5% CO2 atmosphere. For studies to investigate
the role of HIF1α and PFKFB3 on protection against cell death, we made use of the
HIF1α inhibitor, KC7F2 (Selleckchem). Asynchronous INS 832/13 cells were see-
ded at cell density of 0.8 × 106 per/well in 6-well plates. Next day cells were treated
with the HIF1α inhibitor (10 μM in DMSO) or DMSO vehicle only, for 24 h prior
transduction of hIAPP or LacZ adenoviruses at 75 MOI or PFKFB3 siRNA (75 nM,
see the sequence below in the section “Small interfering RNA”) for 32 h. Aliquots of
cells were collected for protein expression- by immunoblotting and flow cytometry
analysis, while cells seeded on the coverslips were fixed with 4% paraformaldehyde
solution in PBS at room temperature for 10 min before being subjected to TUNEL
assay according to manufacturer’s instructions (Roche).

Cell cycle synchronization. INS 832/13 cells were plated in culture medium with
10% FCS for 24 h. Medium was then replaced with fresh medium containing 0.1%
FCS for 56 h to allow cells to reach the G0 out-of-cycle state. Synchronization of
cells in G1/S, S, and G2/M stages of cell cycle was carried out as follows: after 24 h
in medium containing 10% FCS, cells were maintained in culture medium+ 0.1%
FCS for 56 h. Medium was replaced with fresh medium+ 10% FCS and, 12 h later,
aphidicolin was added. After 12 h treatment with aphidicolin (Sigma A0781, St.
Louis, MO, USA), the medium was replaced with medium containing 10% FCS w/o
aphidicolin and the cells were collected at 0, 4, 12 h after aphidicolin release. Cell
cycle distribution was determined based on flow cytometry profiling of DNA
content.

Cell cycle distribution and sub-G1 analysis by flow cytometry. Cells were
trypsinized, washed with ice-cold PBS, and fixed in 80% methanol at −20 °C for at
least 2 h. Cells were stained with propidium iodide (50 μg/ml) in the presence of
RNase A (50 μg/ml) in PBS for 30 min at 37 °C after methanol was removed by
centrifugation at 2000g for 2 min. DNA content analysis was performed using
NovoCyte flow cytometer (ACEA Biosciences, San Diego, CA, USA) equipped with
the NovoExpress software. The gating strategy for the cell cycle analysis of DNA
distribution by flow cytometry is presented in Supplementary Fig. 12.

Scheme of treatments. In experiments involving cells synchronized in G0, ade-
noviruses, siRNA, plasmids, or drugs were applied 36 h before the end of 56 h
culture in medium containing 0.1% FCS.

Adenoviruses. Cells or human islets were transduced with rodent IAPP (rIAPP)
or human IAPP (hIAPP) adenoviruses8 (75 or 100 MOI [multiplicity of infection])
for cells or islets, for 30–36 and 48 h, respectively. The adenovirus-based short
hairpin RNA (shRNA) expression system (Ad-RFP-U6-h-HIF1α-shRNA), (Ad-
RFP-U6-r-HIF1α-shRNA), (Ad-GFP-U6-r-PFKFB3-shRNA) against human
HIF1α, rodent HIF1α and PFKFB3 and control adenovirus (Ad-U6-shRNA-RFP)
were purchased from Vectorbiolabs.

Small interfering RNA. PFKFB3 small interfering RNAs (siRNAs) (L-095107-02-
0005) were purchased from Dharmacon, Lafayette, CO, USA.

Plasmids. Drp1 K48A plasmid containing a dominant negative mutation in Drp1
gene was kindly provided by Dr. Takehiro Yasukawa (University College London,
London, UK).

Drugs. Oligomycin (5 mM) (Sigma 04876, St. Louis, MO, USA) and 2-deoxy-
glucose (2-DOG, 1 mM) (Sigma D6134, St. Louis, MO, USA) were used in
experiments evaluating the mitochondrial membrane potential. Final concentration
of DMSO in medium was <0.04.
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Mitochondrial membrane potential. Cells synchronized in G1/S or S phase of cell
cycle were washed with PBS and trypsinized. One million cells from each sample
were incubated for 15 min at 37 °C with TMRE (10 nM, Sigma 87917, St. Louis,
MO, USA). Afterwards cells were centrifuged at 2000g for 2 min, TMRE solution
was removed and cells were resuspended in fresh culture medium. Mitochondrial
membrane potential was measured using NovoCyte flow cytometer (ACEA Bios-
ciences, San Diego, CA, USA). Data were analyzed by NovoExpress software.

Mitochondrial network. INS 832/13 cells were grown on coverslips and incubated
with the cell-permeant mitochondria-specific red fluorescent probe MitoTracker
Red CMXRos (MTR) (Cell Signaling Technology 9082P, Danvers, MA, USA,) at a
final concentration of 50 nM at 37 °C for the last 30 min in culture. Cells were then
washed with PBS and fixed in 100% methanol at −20 °C for 20 min. Images were
taken under a 63× objective with the AxioImager.M2a fluorescence microscope
(Zeiss, Oberkochen, Germany) equipped with the optical sectioning system Apo-
Tome.2 and software ZEN2. At least 500 cells per group were analyzed to quantify
the mitochondrial architecture. Mitochondrial morphology was classified as fused-
to-intermediate if fused mitochondria occupied >50% of the mitochondrial area
and fragmented if fragmented mitochondria were present in >50% of the mito-
chondrial area. Mitochondrial morphology was independently scored by two
observers (C.M. and K.V.).

Calcium measurements. To measure the concentration of cytosolic-free Ca2+,
cells or islets were loaded with 2.5 μM Fura 2-AM for 30–45 min, followed by a
wash for 10 min at 37 °C. For all measurements in INS832/13 cells, 7 × 105 cells
were seeded onto poly-L-lysine coated coverslips in a 6-well plate 24 h prior
treatments. Cells that reached ~60% confluence the next day were either infected
with the genetically encoded FRET probe D4ER adenovirus (for measuring ER
calcium)37 or transfected with the ratiometric mitochondrial pericam (Mito-Peri-
cam), for mitochondrial calcium72 using Lipofectamine 3000 (Thermo Scientific,
USA), 2 h prior RNAi silencing with 75 nM of either non-targeting control (CTRL)
or rat PFKFB3 siRNA (Dharmacon, USA). Following 8 h of incubation, the cells
were then transduced with either LacZ or hIAPP expressing adenovirus (75 MOI
each) for 40–43 h. Cells were imaged after incubation for 30 min in a buffer
containing 2.8 mM glucose and 0.1% BSA, followed by buffer containing 16.8 mM
glucose during imaging. Experiments were carried out at 33.5 °C using an in-line
solution and chamber heaters (Warner Instruments, Hamden, CT, USA). Excita-
tion was provided by a TILL Polychrome V monochromator (FEI, Munich, Ger-
many). Excitation (x) or emission (m) filters (Chroma Technology, Bellows Falls,
VT, USA) were as follows: Fura-2, 340/10x and 380/10x , 535/30m (R340x/380x
–535m); D4ER, 430/24x , 470/24m and 535/30m (430x –R535m/470m); Mito-
Pericam 485/15x , 400/15x , t510lpxrxt dichroic, and et535/50m emission filter
(Chroma Tech. Corp., USA). Fluorescence emission was collected with a Quan-
tEM:512SC cooled CCD camera (PhotoMetrics, Tucson, AZ, USA) at 10 s interval.
Data were acquired and analyzed using Metafluor software (Molecular Devices,
Sunnyvale, CA, USA) and plotted using Igor Pro (WaveMetrics Inc., USA).

Immunocytochemistry and morphometric analysis of cell culture. 300,000 cells
were seeded on coverslips in 6-well plate and synchronized as previously described.
Cells were fixed with 4% PFA for 10 min at room temperature. After washing, cells
were permeabilized with 0.4% Triton X-100/Tris-buffered saline for 15 min at
room temperature, blocked with 3% bovine serum albumin, 0.2% Triton X-100/
Tris-buffered saline for 1 h at room temperature and incubated overnight at 4 °C
with primary antibodies. Secondary antibodies were applied for 1 h at room
temperature. For the PI staining, cells were incubated with 0.5 μM propidium
iodide (PI, Molecular Probes, Eugene, OR, USA) for 20 min at 37 °C as previously
described8 and then fixed with 4% PFA. Coverslips or slides were mounted using
Vectashield with DAPI (Vector Laboratories, H-1200, Burlingame, CA, USA). The
frequency of cell death was evaluated after staining with PI or with MTR. 25 fields
per section were imaged using a Leica DM6000 fluorescent microscope (Wetzlar,
Germany) with a 20× objective equipped with OpenLab 5.5 software (Improvision,
Coventry, UK). Only cells that had two-thirds or more of the nuclear area covered
by PI were considered positive. The frequency was expressed as percentage of cells
expressing the marker of interest over the total cells counted. Image analysis was
performed blindly by two independent investigators (K.V. and C.M.). TUNEL
assay was performed with a commercial kit and according to manufacturer’s
instructions (Roche).

U-13C-glucose tracing and HPLC-MS analysis. For metabolomic analysis, cells
were incubated in medium containing [U-13C6] glucose (Cambridge Isotope
Laboratories CML1396, Tewksbury, MA, USA) for 24 h. To extract intracellular
metabolites, cells grown in 6-well plate were briefly rinsed with 2 ml of ice-cold 150
mM ammonium acetate (pH= 7.3), before addition of 1 ml of ice-cold 80%
methanol. Cells were scraped and transferred into Eppendorf tubes and then 5 nM
D/L-norvaline was added. After vortexing at maximum velocity, samples were spun
at 20,000g for 5 min at 4 °C. Supernatant was then moved into a glass vial, dried
using speedvac centrifuge, and reconstituted in 50 μl 70% acetonitrile. 5 μl of each
sample was injected onto a Luna NH2 (150 mm × 2mm, Phenomenex, Torrance,
CA, USA) column. Samples were analyzed with an UltiMate 3000RSLC (Thermo

Scientific, Waltham, MA, USA) coupled to a Q Exactive mass spectrometer
(Thermo Scientific, Waltham, MA, USA). The Q Exactive was run with polarity
switching (+3.00 kV/−2.25 kV) in full scan mode with an m/z range of 70–1050.
Separation was achieved using 5 mM NH4AcO (pH 9.9) and ACN. The gradient
started with 15% NH4AcO and reached 90% over 18 min, followed by an isocratic
step for 9 min and reversal to the initial 15% NH4AcO for 7 min.

Luciferase assay. A luciferase reporter construct containing PFKFB3 promoter
with hypoxia responsive elements (HRE), a luciferase reporter with actin promoter,
and an empty luciferase reporter construct were purchased from SwitchGear
Genomics (Menlo Park, CA; #S722433, #S717678, and #S790005, respectively).

INS 832/13 cells were transfected with appropriate luciferase plasmids and
transduced with LacZ or hIAPP expressing adenoviruses for 36 h. Cells were
harvested and treated with LightSwitch Luciferase Assay Reagents (SwitchGear
Genomics) according to the manufacturer’s instructions. Luciferase signal was
measured using SpectraMax L.

Animal models. Animal studies were performed in compliance with the guidelines
of the UCLA Office of Animal Research Oversight. Ethical approval was obtained
from the Research Safety & Animal Welfare Administration at UCLA (ARC #2004-
114-51). Wild type (WT) and hIAPP overexpressing (HIP) transgenic male
rats between 2 and 6 months of age were generated as previously described73,74.
Littermates of the same sex were randomly assigned to experimental groups.

Islet isolation. After an overnight fast, animals were euthanized using isoflurane.
The bile duct was cannulated, and a Hanks’ balanced salt solution (HBSS) (Invi-
trogen, Carlsbad, CA, USA) containing 0.23 mg/ml liberase (Roche 05401020001,
Basel, SUI), and 0.1 mg/ml DNase (Roche 10104159001, Basel, Switzerland) was
injected in the pancreas. The pancreas was then removed and transferred into a
glass vial containing ice-cold liberase solution, digested for 20 min at 37 °C, and
dispersed by shaking for 30 s. Islets were manually picked and cultured in RPMI
1640 medium (11 mM glucose) supplemented with 100 IU/ml penicillin, 100 mg/
ml streptomycin, and 10% FCS. Islets were studied within 2 days of isolation.

Lactate measurements. Medium from cultured rodent islets was sampled every
hour within 4 h and lactate was analyzed using an enzymatic assay (Trinity Biotech
732-10, Bray, Ireland) according to the manufacturer's instructions. Islets were
collected for protein extraction. Lactate production (per μg protein) was expressed
as the hourly change in the accumulated amount of lactate.

Mitochondrial function. OCR was determined using the Seahorse XF Extracellular
Flux Analyzer (Seahorse Bioscience, North Billerica, MA, USA). After an overnight
recovery, isolated islets from WT and HIP rats were seeded (25–50 islets per well)
into the V7 plate (Seahorse Bioscience, North Billerica, MA, USA). To assess
mitochondrial function, OCR was measured at the basal state and after stimulation
with 20 mM glucose and sequential injection of oligomycin (ATP synthase inhi-
bitor), carbonyl cyanide-p trifluoromethoxyphenylhydrazone (FCCP; uncoupler),
and rotenone (complex I inhibitor).

Human subjects. Pancreata from brain dead (cadaveric) organ donors with dia-
betes for whom consent has been provided from the relatives by the donors were
obtained from the Network for Pancreatic Organ Donors with Diabetes (nPOD),
administered by the University of Florida, Gainesville, Florida, in a collaborative
manner. All procedures were in accordance with federal guidelines for organ
donation and the University of Florida Institutional Review Board. Three pancreata
from individuals with T2D (6186, 6275, 6255) and 3 from ND (6104, 6288, 6020)
controls matched by age, sex, and BMI were examined in this study.

Human islets. Human pancreatic islets were from the Islet Cell Resource Con-
sortium. Using of human islets was determined as not human subjects research by
the UCLA Office of Human Research Protection Program (IRB Exception,
01.06.2016). They were derived from brain-dead (cadaveric) organ donors, for
whom consent has been provided by the relatives, through the Integrated Islet
Distribution Program (IIDP) in a collaborative manner. IIDP is supported by the
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) and
provides a network for pancreatic islet availability for fundamental research.
Dithizone staining was performed to assess the islet purity that was 90–95%. The
donors, aged 25–60 years, were heart-beating cadaveric organ donors. Islets were
cultured in RPMI 1640 medium (5.5 mM glucose) containing 100 units/ml peni-
cillin, 100 g/ml streptomycin, and 10% fetal bovine serum (Invitrogen, Carlsbad,
CA, USA) for 1 day and then processed for western blotting analysis.

Antibodies. For detection of PFKFB3, we utilized a previously reported antibody75,
anti-PFKFB3 (Abcam 181861, Cambridge, UK, 1:200 for IF, 1:1000 for WB) the
specificity of which we confirmed by silencing PFKFB3 and measuring transcript
and protein levels by western blot, qRT-PCR, and immunofluorescence (Supple-
mentary Fig. 11a-d).
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The following antibodies were used: anti-PFKFB3 (Abcam 181861, Cambridge,
UK, 1:400 for IHC, 1:200 for IF, 1:1000 for WB), anti-Tom20 (Santa Cruz
Biotechnology sc-11415, Dallas, TX, USA, 1:200 for IF), anti-HIF1α (NOVUS
Biologicals NB100-105, Littleton, CO, USA, 1:1000 for WB), anti-MFN2 (Cell
Signaling Technology 9482S, Danvers, MA, USA, 1:1000 for WB), anti-Opa1 (BD
Transduction 612606, San Diego, CA, USA, 1:1000 for WB), anti-Drp1 (Cell
Signaling Technology 8570S, Danvers, MA, USA, 1:1000 for WB), anti-nucleolin
(Santa Cruz Biotechnology sc-13057, Dallas, TX, USA, 1:1000 for WB), anti-
PARP1 (Cell Signaling Technology 9542S, Danvers, MA, USA, 1:1000 for WB),
anti-insulin (DAKO A0564, Glostrup, Denmark, 1:200 for IF), anti-GAPDH and
anti-cleaved caspase 3 from Cell Signaling Technology 2118S and 9664S,
respectively, Danvers, MA, USA, (1:1000 for WB). Secondary antibodies for
immunofluorescence staining were F(ab’)2 conjugates with Cy3 or FITC purchased
from Jackson Laboratories and used at dilution of 1:200.

Uncropped and unprocessed Western blots are provided in the separate Data
Source File.

qRT-PCR. The levels of PFKFB3, LDHA, and MCT1 mRNA were quantified by
qRT-PCR. Total RNA was isolated using a RNeasy mini kit (Qiagen, Hilden,
Germany) according to the manufacturer’s instructions. 250 ng of total RNA from
each sample was denatured at 65 °C and then reverse transcribed using Superscript
III reverse transcriptase (Invitrogen, Carlsbad, CA, USA) at 50 °C for 1 h. Real-time
quantitative polymerase chain reaction (qPCR) was performed using ABI7900HT
(Applied Biosystems™, Foster City, CA, USA) with initial denaturation at 95 °C for
20 s, followed by 45 cycles of 94 °C for 1 s and 60 °C for 20 s, then continued with a
dissociation stage. Each qPCR reaction contained 1× Fast SYBR® Green Master Mix
(Applied Biosystems™, Foster City, CA, USA), 1 μM of each primer, and 400 ng
cDNA. Relative mRNA expression of target gene was determined using the com-
parative cycle threshold (Ct) method, where the amount of target cDNA was
normalized to the internal control, GAPDH cDNA. The primers used were:
PFKFB3 (fwd: CACGGCGAGAATGAGTACAA, rev: TTCAGCTGACTGGTCCA
CAC)76; LDHA (fwd: TGC TGG AGC CAC TGT CG, rev: CTG GGT TTG AGA
CGA TGA GC)77; MCT1 (fwd: ATG TAT GCC GGA GGT CCT ATC, rev: CCA
ATG GTC GCT TCT TGT AGA)78; and GAPDH (fwd: ATG ACT CTA CCC
ACG GCA AG, rev: CTG GAA GAT GGT GAT GGG TT).

Tissue immunostaining and morphometrical analysis. 4-μm paraffin tissue
sections from human or rodent samples were exposed to toluene for 10 min and,
then, to 100% ethanol for other 10 min, 95% ethanol and 70% ethanol for 5 min
each, and water. Sections were transferred in heat-induced antigen retrieval solu-
tion in citrate buffer at pH 6.0, using microwave and then cooled to room tem-
perature for 1 h, then soaked in Soaking Buffer (TBS, 0.4% TX100) for 30 min on
ice, and washed once with TBS. After blocking the unspecified binding sites with a
blocking solution (TBS, 3% BSA, 0.2% TX100) for 1 h, the slides were incubated
with the primary antibodies diluted in Antibody Buffer (TBS, 3% BSA, 0.2%
Tween-20) overnight at +4 °C. After washing in TBST, slides were incubated with
secondary antibodies diluted in Antibody Buffer for 1 h at room temperature.
Slides were then mounted using Vectashield with DAPI. The presence of PFKFB3
in the islets was evaluated in pancreatic sections immunostained for PFKFB3 and
insulin. Images of 25 islets per sample were taken using a Leica DM6000 fluor-
escent microscope (Wetzlar, Germany) with a 20× objective equipped with
OpenLab 5.5 software (Improvision, Coventry, UK). The frequency of nuclear
PFKFB3 staining was expressed as a percentage of β-cells expressing PFKFB3 only
in the nuclei. Nuclei were considered positive for PFKFB3 staining only if at least
two-thirds of their area was occupied by multiple bright puncta of the marker of
interest. The frequency of both cytoplasmic and nuclear PFKFB3 staining was
expressed as percentage of β-cells expressing the PFKFB3 in the cytoplasm and
nuclei. Image analysis was performed blindly by two independent investigators (K.
V. and C.M.). To visualize mitochondria in human pancreatic tissue, sections were
stained with Tom20. The mitochondrial area was quantified using the Image-Pro
Premier 9.1 software (Rockville, MD, USA) and expressed as Tom20 positive area,
inside the insulin positive area in the islet, divided by the number of β-cells.

Western blotting. To prepare whole cell extracts, cells or islets were incubated for
20 min on ice in NP40 lysis buffer (20 mM Tris–HCl, 150 mM NaCl, 2 mM MgCl2,
0.5% NP-40, 1 mM DTT, 5 mM NaF, 1 mM Na3VO4), and protease inhibitor
cocktail (Sigma P2714, St. Louis, MO, USA), sonicated, and spun at 10,000g at 4 °C
for 10 min. To separate cytoplasmic and nuclear protein fractions, after incubation
in NP40 lysis buffer, samples were centrifuged at 3500g at 4 °C for 10 min. Then,
supernatant representing the cytoplasmic part was transferred in another Eppen-
dorf whereas the pellet (nuclear part) was resuspended in RIPA lysis buffer. Protein
concentration was determined using the DC protein assay kit (Bio-Rad, Irvine, CA,
USA). Proteins (20–35 μg/lane) were separated by SDS-PAGE (4–20%) and, then,
transferred onto polyvinylidene fluoride membranes (Bio-Rad, Irvine, CA, USA) by
semi-dry electroblotting. After blocking with 5% milk for 1 h, membranes were
probed overnight at 4 °C with primary antibodies. Then, membranes with trans-
ferred protein were incubated with horseradish peroxidase-conjugated secondary
antibodies for 1 h at room temperature (Invitrogen, Carlsbad, CA, USA). Proteins

were visualized using ECL reagents from Bio-Rad and expression levels were
quantified using Labworks software (UVP).

Statistical analysis. Results are expressed as the means ± SEM. The statistical
analysis was performed by two-tailed t test, one-way ANOVA, or two-way
ANOVA with repeated measures using GraphPad Prism software (La Jolla, CA,
USA). A value of p < 0.05 was taken as an evidence of statistical significance.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request. Source data for Figs. 1, 2, 3, and 9 are provided in the
separate Data Source File. The metabolomics data set was deposited in the MetaboLights
under identifier MTBLS951. Study dataset can be accessed at https://www.ebi.ac.uk/
metabolights/MTBLS951.
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