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Abstract

Objective: This study aims to investigate a hybrid automated treatment planning (HAP) solution that combines
knowledge-based planning (KBP) and script-based planning for esophageal cancer.

Methods: In order to fully investigate the advantages of HAP, three planning strategies were implemented in the
present study: HAP, KBP, and full manual planning. Each method was applied to 20 patients. For HAP and KBP, the
objective functions for plan optimization were generated from a dose–volume histogram (DVH) estimation model,
which was based on 70 esophageal patients. Script-based automated planning was used for HAP, while the regular
IMRT inverse planning method was used for KBP. For full manual planning, clinical standards were applied to create
the plans. Paired t-tests were performed to compare the differences in dose-volume indices among the three
planning methods.

Results: Among the three planning strategies, HAP exhibited the best performance in all dose-volume indices,
except for PTV dose homogeneity and lung V5. PTV conformity and spinal cord sparing were significantly improved
in HAP (P < 0.001). Compared to KBP, HAP improved all indices, except for lung V5. Furthermore, the OAR sparing
and target coverage between HAP and full manual planning were similar. Moreover, HAP had the shortest average
planning time (57 min), when compared to KBP (63 min) and full manual planning (118 min).

Conclusion: HAP is an effective planning strategy for obtaining a high quality treatment plan for esophageal cancer.
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Introduction
Esophageal cancer is one of the most common thoracic
malignancies, but more than 60% of patients are at a rela-
tively late stage when diagnosed, resulting in non-eligibility
for surgical resection. Radiotherapy is one of the standard
options for advanced/late stage cancer [1]. Since 1985, an
increasing number of patients have undergone preoperative
radiotherapy to downstage tumor, and achieved higher cure
rates [2]. Beginning in 2001, the prevalence of intensity
modulated radiation therapy (IMRT) has led to better
organs at risk (OAR) protection without compromising
tumor coverage, when compared to three-dimensional con-
formal radiation therapy (3DCRT) [2].

At present, pursuing optimal plans remains a time-
consuming and demanding task, especially for less experi-
enced physicists/dosimetrists. Typically, plan optimization
requires planners to adjust plan parameters according to
the difference between current dose distribution and clin-
ical goals. Common parameters involved are beam orienta-
tion, normalization, optimization objectives and their
priorities/weights. This trial-and-error process could take a
few hours, or sometimes, a few days [3]. The recently emer-
gence of automated planning techniques has improved the
overall treatment plan quality, consistency and planning ef-
ficiency [4–6].
There are two major types of automated planning tech-

niques: script-based planning and knowledge-based plan-
ning (KBP) [7].
Script-based planning follows the general planning

strategies and steps that experienced planners usually
take during optimization. Its automation relies on the
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optimization algorithm itself, without taking individual
anatomy, prior planning experience into account.
The KBP is another approach that requires a plan library.

It utilizes statistical models, which are developed with plan
libraries, to predict achievable dose-volume histograms
(DVH), then automatically generates optimization objec-
tives given predicted DVHs, patient and beam geometry.
However, it relies on the classic, user dependent
optimization process to generate the final dose map.
The present study introduces a hybrid automated

treatment planning (HAP) solution that combines dif-
ferent mechanisms of the two approaches mentioned
above. The performance of HAP was evaluated by
comparing its results with KBP and manual planning
(MP).

Methods
To fully compare these three planning approaches, three
sets of plans were created: (1) Manual plans, (2) KBP plans
and (3) HAP plans. Details of how these plans were devel-
oped can be found in section 2.3, 2.4 and 2.5 respectively,

and the general work flow is illustrated in Fig. 1. Statistical
analysis of the comparison were described in section 2.7.
For the purpose of this study, a Varian Trilogy Linac model
and fixed gantry IMRT technique with 6MV energy
were chosen for all plans. Same beam configuration
was applied to each patient’s all three types of plans.
All optimizing work were done in Pinnacle 9.10 (Phi-
lips Medical System, Fitchburg, WI, USA) while
Eclipse 13.5 Varian Medical System, Palo Alto, CA)
was only used to generate planning objectives. One
dosimetrist with 3 years’ experience performed all the
planning work and a senior oncologist having more
than 10 years’ experience in radiotherapy for thoracic
region reviewed all the plans.

Patients
A total of 20 patients with esophageal cancer treated in
the department of radiation oncology between June 2016
and June 2018 were included in this study. The patient
characteristics are summarized in Table 1.

Fig. 1 Workflow of the present study. Abbreviations: KBP = knowledge-based planning; IMRT = intensity modulated radiation therapy; HAP = hybrid
automated planning; MP =manual planning
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Target volume and OAR delineation
All patients were scanned in supine position during simula-
tion. A chest board was used to rest their arms over their
heads. Clinical target volume (CTV) and planning target vol-
ume (PTV) as well as bilateral lungs, heart and spinal cord
were contoured on Planning CT (3mm slice thickness). The
lung-PTV structure defined as bilateral lungs minus PTV,
was used for optimization and monitoring lung dose.

Manual plans
20 plans were designed following departmental planning
protocol. Each plan consisted of 5–7 coplanar beams.

Gantry angles were determined by the dosimetrist consid-
ering the position of PTV in relation to OARs. The dose
prescribed to PTV was 61.2Gy in 34 fractions, with a frac-
tional dose of 1.8Gy. A pre-defined template containing
objectives that were moderately tighter than the dose
constraints listed in the protocol, was used for initial
optimization. Subsequent cycles of optimization involving
adding dose control structures (e.g. rings, planning organ
at risk volumes), adjusting objectives or their weights, fine-
tuning dose distribution, were at the planner’s discretion.
Planning goals were including prescribed dose covering at
least 95% PTV, maximum dose not exceeding 110% of
prescription dose, all OARs’ dose constraints being met.

KBP plans
RadpidPlan is Varian’s commercial solution of knowledge-
based DVH prediction algorithm. It incorporates geomet-
ric and associated dosimetric information extracted from
existing clinical plans into a statistical model called
principle component analysis (PCA). Given beam orienta-
tion, it estimates the range of achievable DVH taking into
account patient specific anatomy, and automatically gen-
erates objectives based on estimated DVHs [8, 9].
To create KBP plans, firstly, a new PCA model was

trained with 70 previously delivered plans. Then, by ap-
plying this model to the each selected patient, predicted
DVHs were generated for lung-PTV, heart and spinal
cord, and their corresponding objectives (Table 2
column 2 and 3 excluding those for ring structures)
were manually entered into Pinnacle’s optimization
algorithm. After that, the planner proceeded to initial
optimization with identical beam arrangement of MP
and followed general planning steps described in previ-
ous section.

Table 1 Clinical features of the 20 patients with thoracic
esophageal cancer

Characteristics No. of patients

PTV length (cm)

< 14 8

14–18 4

> 18 8

PTV volume (cc)

> 400 5

300–400 10

< 300 5

Gender

Male 12

Female 8

Age (year) 40–60

Lung volume (cc)

2000–3000 4

3000–4000 10

> 4000 6

Table 2 Setting of the objective dose and constraints in the hybrid auto-planning (HAP) and KBP-only planning

OARs Objective functions Weighting (KBP-only) Weighting (HAP)

Lung-PTV Max DVH V20 50 Medium

Max DVH V30 50 Medium

Max DVH V5 50 Medium

Max EUD 30 Low

Heart Max DVH V30 50 Medium

Max EUD 30 Low

Spinal cord Max dose 100 Medium

SC + 0.3 Max dose 100 Medium

Ring 1 Max dose 50 Medium

Ring 2 Mad dose 50 Medium

Ring 3 Max dose 30 Low

Note: SC + 0.3 represents the volume around the spinal cord with a 3 mm radius
Ring 1 represents the volume around PTV with a 5 mm radius
Ring 2 represents the volume around PTV with a 10 mm radius
Ring 3 represents the volume around PTV with a 15 mm radius
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HAP plans
Auto-Planning is an integrated module in Pinnacle 9.10.
Its concept originated from reginal optimization [10],
then was implemented based on the regions of interest
(ROIs) [11] and now has been matured as an automated
optimization engine [8]. Auto-Planning mimics the
decision-making process of an experienced planner with
a progressive optimization algorithm which continually
adjusts planning objectives based on the difference be-
tween planning goals set by the user and current DVH
parameters. In addition to that, Auto-Planning auto-
mates optimizing process by automatically adding
planning structures and objectives for general plan-
ning tasks such as managing targets uniformity and
conformity, sparing OARs, controlling dose fall-off
outside targets [12]. In some cases, Auto-Planning
could dramatically reduce the number of objectives
required for optimization [13].
Similar to KBP plans, planning objectives were inher-

ited from model prediction, but inputted into Auto-
Planning engine instead. Beam configurations were
identical to MP and KBP. For PTV, only the prescrip-
tion dose needs to be entered, as target dose uniformity
and conformity are automatically controlled by a built-
in module with preset parameters. Four priority levels
are available for OARs: low, medium, high, and con-
straint. The objectives and their associated weights used
for HAP plans are presented in Table column 2 and 4.
Unlike MP or KBP, no further human interventions
other than normalization adjustment were performed

for HAP plans after the initial optimization. Then plan
was taken as it was out of a single run.

Evaluation metrics
Metrics used for plan evaluation and comparison are
listed in the first column in Table 3. Homogeneity index
(HI) was defined as

HI ¼ D1%−D99%
D50

Where Dx% is the dose received by x% volume. Con-
formity index (CI) was defines as

CI ¼ V95%�V95%
PIV�TV ;

Where PIV is the total volume covered by 95% of the
prescription dose, TV is the volume of the PTV, and
V95% is the volume of the PTV covered by 95% of the
prescription dose.

Statistical analysis
Paired t-tests were performed to compare the differ-
ences among the three planning strategies. The SPSS
statistical software (IBM, Chicago, IL, USA) was used
for the analysis.

Table 3 PTV and OAR sparing comparison

Mean ± SD P-value

KBP-only HAP Manual KBP-only vs. HAP KBP-only vs. Manual HAP vs. Manual

PTV

HI 0.13 ± 0.03 0.12 ± 0.02 0.11 ± 0.02 0.04 < 0.001 0.11

CI 0.64 ± 0.05 0.74 ± 0.03 0.69 ± 0.04 < 0.001 < 0.001 < 0.001

D1% 67.42 ± 1.42 67.08 ± 1.05 66.39 ± 0.98 0.15 < 0.001 0.02

D99% 58.98 ± 0.58 59.36 ± 0.46 59.2 ± 0.61 0.01 0.11 0.24

Lung-PTV

V5 47.85 ± 18.66 52.00 ± 18.40 47.71 ± 13.61 0.1 0.11 0.01

V20 22.55 ± 6.91 20.16 ± 6.14 21.30 ± 5.90 0.01 0.22 0.07

V30 11.63 ± 4.11 10.19 ± 4.05 12.22 ± 4.55 < 0.001 0.25 < 0.001

Dmean 11.45 ± 3.24 11.09 ± 3.42 11.37 ± 3.14 0.01 0.78 0.33

Heart

V30 21.27 ± 17.05 19.12 ± 16.47 22.35 ± 18.66 0.02 0.40 < 0.001

V40 13.89 ± 12.07 11.81 ± 11.12 14.97 ± 13.04 0.01 0.37 0.01

Dmean 14.76 ± 10.74 14.05 ± 10.49 15.32 ± 11.47 0.05 0.25 < 0.001

Spinal Cord

Dmax 43.99 ± 2.00 41.42 ± 2.60 43.61 ± 2.2 < 0.001 < 0.001 < 0.001

Planning time (range) 62 min (15–122) 57 min (20–106) 118 min (22–210) 0.42 < 0.001 < 0.001
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Results
The overall plan quality of the three planning strategies
were similar, whereas HAP and KBP took much shorter
time than MP (P < 0.001). Table 3 presents the results of
the comparison of all dose metrics and planning time.
Approved by the senior oncologist, all plans were clinically
acceptable.
HAP achieved significantly better CI than KPB and

MP (P < 0.001). Figure 2 shows the difference of dose
distribution in KBP and HAP. Regarding OAR protec-
tion, the heart and the spinal cord in HAP group re-
ceived less dose than those in the other two groups.
Also except for V5, the mean values of dose metrics for
lung were lowest with HAP, even though for most dose
metrics the differences did not reach statistical signifi-
cance. A representative DVH comparison between KBP
and HAP is shown in Fig. 3.

Discussion
The present study combined two different automation
mechanisms (knowledge-based and scripts-based) for
esophageal cancer planning. This method greatly lessens
a physicist’s planning time, because it does not require
the iterative modification of objectives to pursue the op-
timal plans for esophageal cancer.
HAP was superior to KBP and manual planning in OAR

sparing, except for the lung V5. One possible explanation
to the higher V5 is the better CI and the lower doses to
other OARs, as there are often trade-offs between objec-
tives. Furthermore, CI appeared in HAP group owing to
the built-in target conformity management.
These present findings are similar to the findings re-

ported by Li, Wang [3], in which automated planning was
compared with manual planning in lower esophageal

cancer, and it was found that automated planning resulted
in more conformity and better OAR protection than man-
ual planning, except for lung V5. However, the IMRT pa-
rameters chosen by Li, Wang [3] were based on their
subjective opinions of optimal values, which may have cer-
tain impacts on the results.
Compared to full manual planning, KBP did not im-

prove plan quality. This was because although KBP is a
powerful tool for gathering information from existing
treatment plans based on patient-specific anatomies and
prescription information, it’s performance is limited by
the quality of data set used to generate the model as well
as the robustness of the modeling algorithm. In contrast,
Auto-Planning employs a totally different mechanism
which is more generic and protocol-specific. It’s progres-
sive optimization algorithm, auto-generated planning
structures and self-adjusted objectives enhance a plan-
ner’s abilities to manipulate dose distribution and to
spare OARs. It is not surprising that HAP, a solution
inherited the merits from both KBP and Auto-Planning,
outperformed KBP-only in many aspects. It would be in-
teresting to utilize HAP to build a iterative loop for opti-
mizing KBP models, and to find how it will affect KBP
and HAP.
The oncologist who participated in this study was in

favor of HAP plans, as the correlation between lung V5
and pulmonary toxicity is considered not as strong as
V20 or mean lung dose (MLD) [14], and based on the
findings of a recent phase 3 clinical study, prioritizing
lung V20 and MLD over lung V5 is recommended [15].
The better target conformity and lower heart dose would
likely benefit patients in a long term. That being said,
HAP plans are at least as good as KBP and manual plans
from clinical perspective.

Fig. 2 The dose distribution in the transverse slice
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There were some limitations in the present study.
First, the KBP model may not be optimal. A better KBP
model may exhibit better performance in DVH predic-
tion, thus outperform manual planning. Second, the
number and direction of fields may have a considerable
impact on the dose distribution, which were not taken
into account in the present study. A further limitation of
this study is the quality of manual plans is dependent on
the experience of the planner. Future investigations on
how will KPB model quality or planner’s level of experi-
ence impact the effectiveness of HAP are encouraged.

Conclusion
The present study presents a HAP solution for esopha-
geal cancer, which combines KBP and script-based plan-
ning. This approach is effective and recommended for
esophageal cancer.
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