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INTRODUCTION 
 

Lung cancer is the leading cause of cancer-related 

mortality worldwide, with >1 million deaths reported 

annually [1]. Lung adenocarcinoma (LUAD), a major 

subclass of lung cancer, accounts for nearly 40% of lung 

cancer cases [2]. Despite considerable improvements in 

LUAD diagnosis and treatment, the prognosis for LUAD 

patients remains poor, with a 5-year survival rate ranging 

from ~10% to ~15%. Delayed diagnosis, disease relapse, 

and drug resistance are common causes of mortality in 

LUAD patients [3]. Although several prognostic models 

have provided insights for therapeutic strategies in lung 

cancer [4–6], predictive and prognostic signatures are 

needed to accurately diagnose and treat LUAD as a 

heterogeneous and complex disease. 
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ABSTRACT 
 

Epigenetic factors play crucial roles in carcinogenesis by modifying chromatin architecture. Here, we established 
an epigenetic biosignature-based model for examining survival in patients with lung adenocarcinoma (LUAD). We 
retrieved gene-expression profiles and clinical data from The Cancer Genome Atlas and Gene Expression Omnibus 
and clustered the data into training (n = 490) and Validation (n = 226) datasets, respectively. To establish an 
epigenetic model, we identified prognostic epigenetic regulation-related genes by LASSO and Cox regression 
analyses, and established a novel 11-gene signature, including EPC1, GADD45A, HCFC2, RCOR1, SMARCAL1, TLE2, 
TRIM28, and ZNF516, for predicting LUAD overall survival (OS). The biosignature performed optimally in both the 
training and validation sets according to receiver operating characteristic and calibration plots. Moreover, the 
biosignature classified patients into high- and low-risk clusters with distinct survival times, with Cox regression 
analysis revealing the biosignature as an independent LUAD prognostic index. Furthermore, the generated 
nomogram integrating the prognostic gene biosignature and clinical indices predicted LUAD OS with high 
efficiency and outperformed tumor-node-metastasis staging in LUAD survival prediction. These results 
demonstrated the efficacy of the epigenetic signature prognostic nomogram for reliably predicting LUAD OS and 
its potential application for informing clinical decision making and individualized treatment. 
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Tumorigenesis is a multistep process involving genetic 

and epigenetic alterations [7]. Epigenetics is a 

fundamental regulatory mechanism of gene expression 

that involves DNA methylation, histone modification, 

noncoding RNA regulation, and chromatin remodeling 

[8–11]. Epigenetic abnormalities are reportedly involved 

in tumor initiation, progression, and recurrence [12, 13]. 

For example, aberrant methylation of DNA associated 

with genes encoding pathway molecules, such as those 

related to the extracellular-signal-regulated kinase (ERK) 

family, the Hedgehog signaling pathway, and the  

nuclear factor kappaB signaling pathway, were identified 

in lung squamous cell carcinoma by genome-wide 

association studies [14]. Additionally, epigenetic 

interplay between cancer, stromal, and immune cells in 

the tumor microenvironment play a vital role in  

both tumor initiation and progression. Inhibitors of 

histone deacetylases block monocyte-to-dendritic cell 

differentiation and result in a decreased immunogenic 

phenotype [15], with immune-cell evasion recognized as 

an emerging hallmark of cancer. These findings promote 

a deeper understanding of LUAD tumorigenesis and 

promote the development of potential epigenetic therapy. 

 

However, to the best of our knowledge, the 

prognostic value of epigenetic regulation-related 

genes (ERGs) and their biological function in LUAD 
remain poorly defined. Here, we developed and 

validated a nomogram with an epigenetic signature 

for predicting prognosis in LUAD patients. We first 
identified ERGs related to LUAD prognosis and 

explored their potential functional mechanisms, 

followed by the development and validation of a 
nomogram with an epigenetic signature capable of 

predicting survival in LUAD patients. This study 

offers insight into the application of epigenetic 

signatures to improve the prognosis and clinical 
treatment of LUAD patients. 
 

RESULTS 
 

Construction of a prognostic model with a LUAD-

specific epigenetic signature 

 

We first performed univariate Cox regression analysis to 

identify 113 and 217 prognosis-related ERGs in The 

Cancer Genome Atlas (TCGA) and GSE31210 datasets, 

respectively. Among these ERGs, we selected 48 that 

overlapped for further analysis (Figure 1A), and only 20 

ERGs remained following LASSO Cox regression 

analysis of the training set (Figure 1B, 1C). We then 

performed stepwise forward multivariate Cox regression 

analysis to screen ERGs related to overall survival (OS), 

identifying 11 genes that were subsequently used to 

construct the prognostic model for LUAD patients 

(Figure 1D). A risk score for each patient was then 

calculated as follows: risk score = (−0.070819821 × 

DMAP1 level) + (0.093606965 × ENY2 level) + 

(−0.141271509 × EPC1 level) + (0.01034072 × 

GADD45A level) + (−0.356532015 × HCFC2 level) + 

(0.012487505 × PHC2 level) + (0.073312056 ×  RCOR1 

level) + (0.139640667 × SMARCAL1 level) + 

(−0.018668209 ×TLE2 level) + (0.005275523 × TRIM28 

level) + (−0.088282786 × ZNF516 level). 

 

ERG expression and genetic alteration in LUAD 
 

We then evaluated mRNA levels of the 11 ERGs 

between tumor tissues and normal lung tissue. We 

found that DMAP1, ENY2, GADD45A, PHC2, 

SMARCAL1, and TRIM28 expression was significantly 

elevated and HCFC2, RCOR1, and TLE2 expression 

significantly decreased in tumor tissue relative to 

normal tissue, with no difference in EPC1 expression 

observed between tissue types (Figure 2A). Analysis of 

protein levels for the 11 ERGs agreed with mRNA 

results (Figure 2B). Additionally, we evaluated genetic 

alterations in the 11 ERGs across four LUAD datasets, 

with the most commonly identified changes being 

mutations, amplifications, and deletions found in only 

0.7% to 5% of the genes (Figure 2C). 
 

Gene set enrichment analysis (GSEA) and gene set 

variation analysis (GSVA) 
 

We then performed functional enrichment analysis 

between high- and low-risk groups. The results 

indicated that the top 5 Gene Ontology (GO) terms and 

Kyoto Encyclopedia of Genes and Genomes (KEGG) 

pathways were significantly enriched for the high-risk 

phenotype (cadherin binding, peptidase complex, 

interleukin 1-mediated signaling pathway, cell cycle, 

proteasome, and pyrimidine metabolism) (Figure 3A, 

3B). Additionally, GSVA revealed that the epithelial-to-

mesenchymal transition, the G2M checkpoint, 

angiogenesis, and the p53 pathway were significantly 

activated in the high-risk group (Figure 3C). These 

results suggested that tumorigenesis-related pathways 

were enriched in the high-risk group. 

 

Prognostic significance of the epigenetic biosignature 

in the training set 
 

Patient data included in the training set were clustered 

into high- (n = 245) and low-risk clusters (n = 245) 

according to the median risk score, with the risk-score 

distribution shown in Figure 4A. Patients in the high-risk 

group displayed a worse OS relative to those in the low-

risk group (Figure 4B, 4D). Additionally, area under the 

receiver operating characteristic (ROC) curve (AUC) 

values generated to predict 1-, 3-, and 5-year survival 
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were 0.709, 0.704, and 0.731, respectively (Figure 4E), 

indicating that this epigenetic biosignature showed good 

predictive capability. Moreover, Cox regression analysis 

demonstrated the biosignature as an independent 

predictor following adjustment of clinicopathological 

features, including age, sex, grade, and tumor-node-

metastasis (TNM) stage (Figure 4F, 4G).  

 

Verification of the epigenetic biosignature in the 

validation set  
 

We then verified the predictive potential of the 

epigenetic biosignature using the GSE39582 dataset. 

Figure 5A through 5D shows the risk-score distribution, 

survival status, and a heatmap of the 10 ERG expression 

profiles between the high- and low-risk groups. Survival 

analysis revealed that OS and relapse-free survival 

(RFS) were markedly lower in the high-risk group 

(Figure 5E, 5F), which was consistent with findings 

using the training set and demonstrated that the 

epigenetic biosignature could discriminate the high-risk 

group from overall LUAD patients. Additionally, the 

AUC values showed good accuracy in prognostic 

predictions of patient survival (Figure 5G, 5H), 

confirming the good predictive performance of the 

signature for LUAD patient survival. 

 

Correlation between the signature and 

clinicopathological features 
 

We then analyzed correlations between the epigenetic 

signature and clinicopathological features, including 

age, gender, pathological stage, and TNM stage, in the 

training set. We found that TRIM28 mRNA level was 

significantly elevated in males, whereas TLE2 level was 

significantly lower. Additionally, mRNA levels of 

 

 
 

Figure 1. Identification of ERGs for predicting survival of LUAD patients. (A) Venn diagrams of prognostic ERGs in TCGA and GEO 
datasets. (B) Identification of 20 prognostic ERGs by LASSO regression analysis of TCGA data. (C) Each curve represents an ERG according to 
1,000-fold cross-validation using 1-SE criteria in LASSO regression analysis. (D) Forrest plot of 11 ERGs generated by multivariate Cox 
regression analysis. 
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SMARCAL1, TLE2, and TRIM28 were lower among 

patients aged ≥65 years, and differential expression of 

EPC1, GADD45A, HCFC2, RCOR1, SMARCAL1, 

TLE2, and ZNF516 was observed in patients exhibiting 

different pathological and TNM stages (Figure 6). 

These results suggested that the epigenetic biosignature 

was closely related to various clinicopathological 

features. 

 

 
 

Figure 2. mRNA and protein levels of and genetic alterations in the 11 identified ERGs. (A) mRNA levels between tumor and 
normal tissues in the training set. (B) Protein levels between tumor and normal tissues obtained from the Human Protein Atlas database 
(HCFC2 and GADD45A are not available). (C) Genetic alterations in the 11 LUAD-related ERGs according to data obtained from the cBioPortal 
for Cancer Genomics. 
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Subgroup analysis of the prognostic significance of 

the epigenetic signature  

 

Given the link between the ERG-related biosignature and 

clinicopathological features, we evaluated whether the 

prognostic significance of the model was suitable for 

other clinical parameters. Using the training set, the 

model accurately predicted OS between low- and high-

risk groups in subclusters including patients exhibiting 

various clinicopathological features, including age, 

gender, cancer stages (I and II, T2, N0-1, and M0) 

(Figure 7 and Table 1). Additionally, the model accurately 

predicted OS and RFS between the low- and high-risk 

groups in subclusters including patients of various ages 

and genders, as well as smoking status, cancer stage, 

presence of epidermal growth factor receptor (EGFR) 

mutation, and those with EGFR/KRAS/anaplastic 

lymphoma kinase (ALK)-negative LUAD (Table 2). 

 

 
 

Figure 3. GSEA and GSVA. Top 5 representative (A) GO terms and (B) enriched KEGG pathways between high- and low-risk groups. (C) 
GSVA of the high- and low-risk clusters. 
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Immune-cell profiles in low- and high-risk groups  
 

We then investigated the abundance of infiltrated 

immune cells in tumor tissues between high- and low- 

risk groups. The results revealed that the high-risk 

group showed higher proportions of activated memory 

CD4+ T cells, resting natural killer (NK) cells, M0 and 

M1 macrophages, activated mast cells, and neutrophils 

but lower levels of plasma cells and resting mast cells 

(Figure 8A, 8B). 

 

 
 

Figure 4. Prognostic value of the epigenetic signature using the training set. (A) Rankings for the risk signature and group 
distribution. (B) Survival status of patients in the low- and high-risk groups. (C) Heatmap of the gene-expression profiles. (D) Patients in the 
high-risk group demonstrated poor OS. (E) ROC curve showing the prognostic significance of the risk signature. (F) Univariate and (G) 
multivariate Cox regression analyses of discrete clinical factors. 
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Figure 5. Validation of the epigenetic biosignature in the test set. (A) Rankings for the risk signature and group distribution. (B) 
Heatmap of the gene-expression profiles. Patients in the high-risk group demonstrated (C) earlier mortality and (D) earlier relapse. (E) OS and 
(F) RFS of patients in the low- and high-risk groups. ROC analyses of (G) OS and (H) RFS predictions using the epigenetic signature. 
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Nomogram construction and validation of 

nomogram 

 

To predict the OS of LUAD patients, we generated a 

nomogram incorporating the ERG biosignature, 

pathological stage, age, and gender using the training set 

(Figure 9A). AUC values for predicting 1-, 3-, and 5-year 

survival were 0.759, 0.747, and 0.757, respectively 

(Figure 9B), and those for 1-, 3-, and 5-year survival 

probability were 0.9, 0.845, and 0.78, respectively (Figure 

9C). Additionally, ROC results indicated that the 

nomogram showed good predictive value, and calibration 

plots confirmed accurate estimation of 1-, 3-, and 5-year 

OS using the training set (Figure 10A–10C). Furthermore, 

decision curve analysis (DCA) suggested the clinical 

utility of the nomogram for predicting LUAD patient 

prognosis (Figure 10D–10F). These results demonstrated 

that the nomogram outperformed the use of single 

independent risk factors in predictive performance. 

 

DISCUSSION 
 

Most of the established biomarkers used for LUAD 

treatment response and survival are based on clinical 

indices with limited accuracy and specificity. Genomic 

and transcriptomic analyses have provided a 

comprehensive understanding of genetic and epigenetic 

alterations in cancer. Previous studies have reported the 

utility of epigenetic signatures as prognostic indicators 

in breast and colon cancers [16, 17]; however, the 

efficacy of such a signature as an independent 

prognostic factor for LUAD has not been determined. In 

the present study, we developed an epigenetic signature 

based on 11 ERGs (DMAP1, ENY2, EPC1, GADD45A,
 

 
 

Figure 6. Relationship between the prognostic epigenetic biosignature and clinicopathological features. 



 

www.aging-us.com 23208 AGING 

HCFC2, PHC2, RCOR1, SMARCAL1, TLE2, TRIM28, 
and ZNF516) and constructed a nomogram for predicting 

LUAD patient survival. The results suggested that this 

epigenetic signature could differentiate between low- and 

high-risk groups, and that the nomogram could serve as a 

reliable tool for predicting LUAD patient survival. 

The majority of ERGs included in our signature are 

closely related to tumor initiation, proliferation, and 

metastasis. Yamaguchi et al. [18] reported that low 

expression of DMAP1 is related to poor prognosis in 

neuroblastoma patients and contributes to tumorigenesis 

through inhibition of ataxia telangiectasia mutated/p53 

 

 
 

Figure 7. Verification of the biosignature stratified by different clinical parameters in the training set. 
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Table 1. The association between the signature and OS of LUAD patients in training set (n=490). 

Characteristics Number (low/high) Percentage (%) HR (95%CI) (low/high) P-value 

Age(years) 

≥65 132/139 55.3% 3.127(2.014-4.857) 0.000 

<65 113/106 44.7% 2.313(1.375-3.890) 0.002 

Gender 

Female 127/139 54.3% 2.700(1.687-4.320) 0.000 

Male 118/106 45.7% 2.633(1.626-4.264) 0.000 

Stage 

I 104/157 53.3% 2.238(1.300-3.852) 0.004 

II 69/48 23.9% 2.682(1.362-5.284) 0.004 

III 54/25 16.1% 1.936(0.921-4.070) 0.082 

IV 15/10 5.1% 1.718(0.532-5.550) 0.366 

NA 3/5 1.6% - - 

T stage 

T1 69/97 33.9% 1.662(0.885-3.120) 0.114 

T2 136/122 52.7% 3.634(2.277-5.799) 0.000 

T3 29/16 9.2% 2.223(0.712-6.940) 0.169 

T4 10/8 3.7% 2.720(0.599-13.237) 0.215 

NA 1/2 0.6% - - 

M stage 

M0 169/153 65.7% 3.192(2.053-4.961) 0.000 

M1 15/9 4.9% 2.110(0.574-7.754) 0.261 

NA 61/83 29.4% - - 

N stage 

N0 134/183 64.7% 2.368(1.481-3.788) 0.000 

N1 57/35 18.8% 3.481(1.680-7.210) 0.001 

N2 49/19 13.9% 1.598(0.724-3.531) 0.246 

N3 2/0 0.4% - - 

NA 3/8 2.2% - - 

NA, not available. 
 

Table 2. The association between epigenetic signature and survival (OS and RFS) of LUAD patients in validation set 
(n=226). 

Characteristics 
Number 

(low/high) 

Percentage 

(%) 

OS (low/high) RFS (low/high) 

HR (95%CI) P-value HR (95%CI) P-value 

Age(years) 

≥65 33/29 27.4% 4.736(1.314-17.07) 0.017 3.879(1.516-9.925) 0.005 

<65 80/84 72.6% 5.303(2.201-12.78) 0.000 3.308(1.898-5.765) 0.000 

Gender 

Female 66/55 53.5% 2.680(0.930-7.723) 0.068 1.957(0.966-3.964) 0.062 

Male 47/58 46.5% 16.64(2.22-124.718) 0.006 7.086(2.483-20.225) 0.000 

Smoke status 
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Ever smoker 47/64 49.1% 15.177(2.031-113.402) 0.008 5.193(2.008-13.427) 0.001 

Never smoker 66/49 50.9% 2.037(0.980-4.236) 0.057 2.285(1.100-4.748) 0.027 

Stage 

I 99/69 74.3% 7.295(2.094-25.420) 0.002 3.465(1.738-6.905) 0.000 

II 14/44 25.7% 1.503(0.434-5.202) 0.520 1.280(0.483-3.391) 0.619 

Mutation 

ALK-fusion+ 5/6 4.9% 0.745(0.046-11.968) 0.836 0.645(0.039-10.556) 0.645 

EGFR mutation+ 68/59 56.2% 15.974(2.098-122.148) 0.008 3.740(1.664-8.408) 0.001 

KRAS mutation+ 7/13 8.8% 38.256(0.001-113.116) 0.488 3.028(0.353-25.951) 0.312 

EGFR/KRAS/ALK- 33/35 30.1% 3.758(1.206-11.695) 0.022 3.587(1.499-8.584) 0.004 

 

 
 

Figure 8. Immune-cell distribution between low- and high-risk groups. (A) Relative proportion of immune cells between two groups. 
(B) Violin plots immune-cell distribution between groups. 
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pathway activation. ENY2, a nuclear transcription factor, 

coordinates the activity of multiple H2B deubiquitinases, 

thereby potentiating tumor proliferation and growth [19]. 

Additionally, Wang et al. [20] identified a novel 

oncogenic function of EPC1 that involves activation of 

metastasis-related gene expression. A previous study 

described GADD45A as a tumor suppressor capable of 

inducing G2/M phase arrest and apoptosis [21]. Wang et 

al. [22] reported that hypermethylation of PHC2 is 

associated with prostate carcinogenesis, and Xiang et al. 

[23] showed that RCOR1 directly binds to MED28 to 

weaken its induction of cancer stem cell-like activity in 

carcinoma cells. SMARCAL, a chromatin remodeling 

factor, decreases telomere-replication stress related to 

carcinogenesis [24, 25], and TLE2 is highly expressed in 

patients with early stage bladder cancer and correlates 

with favorable prognosis [26]. Furthermore, TRIM28, a 

transcriptional corepressor, reportedly promotes tumor 

proliferation and metastasis [27, 28]. There are limited 

studies of the tumor specific roles of HCFC2 and 

ZNF516, suggesting that additional studies are needed to 

elucidate their associations with LUAD.  

 

 
 

Figure 9. Nomogram construction and validation. (A) Nomogram generated based on the epigenetic signature and clinical traits. ROC 
curves for nomogram-based prognostic prediction using the (B) training and (C) test sets. 
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Using these 11 ERGs, we applied an epigenetic signature 

as an independent prognostic factor for LUAD patients 

using several survival-analysis methods and successfully 

distinguished low- and high-risk groups. Additionally, we 

found that this signature was suitable for risk assessment 

in LUAD patients with different clinicopathological 

traits, including age, sex, pathological stage, TNM stage, 

and gene-mutation status. These clinical features were 

previously confirmed as closely associated with LUAD 

patient prognosis [29–31]. The generated nomogram 

incorporated both the epigenetic signature and clinical 

indices to predict LUAD patient survival, resulting in a 

predictive accuracy confirmed using ROC and calibration 

plots. The findings suggested its reliability as a tool for 

individualized assessment of LUAD survival and a 

promising strategy for LUAD management. 

 

Additionally, we explored the differential distribution of 

infiltrating immune cells in the tumor microenvironment 

between low- and high-risk groups. The results revealed 

that proportions of activated memory CD4+ T cells, 

resting NK cells, M0 and M1 macrophages, activated 

mast cells, and neutrophils were higher in the high-risk 

group relative to those in the low-risk group, indicating a 

correlation between signature-specific prediction of 

LUAD survival and immune-cell infiltration. Epigenetic 

alterations such as DNA methylation play a ubiquitous 

role in regulation of immune cells function. Evidence 

revealed that epigenetic programming is associated with 

macrophage polarization and T cell differentiation [32, 

33]. M0 and M1 macrophages secrete proinflammatory 

cytokines that trigger chronic inflammation locally and 

systemically and epigenetic therapy also could induce the 

secretion of these cytokines, thereby promoting tumor 

progression or initiating cancer immunotherapy [34].  

In addition, Li et al. [35] reported that histone 

demethylase Jmjd3 ablation promotes CD4+ T cell 

differentiation into Th2 and Th17 cells. These results 

provide insight into immunological and epigenetic 

processes associated with LUAD. 

 

One study limitation is that other risk factors for LUAD, 

such as emphysema and chronic obstructive pulmonary 

disease, were not collected from TCGA or Gene 

Expression Omnibus (GEO) datasets. Further research 

should be undertaken to validate this model in larger 

LUAD cohorts. Furthermore, in vitro or in vivo 

experiments are needed to investigate the underlying 

mechanisms associated with the prognostic significance 

of the identified ERGs in LUAD. 

 

 
 

Figure 10. Nomogram evaluation using the training set. (A–C) Calibration plot examining the estimation accuracy. (D–F) DCA assessing 
clinical utility. 
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In summary, we constructed and validated a nomogram 

incorporating an epigenetic signature and clinical traits 

of patients (age, gender, and TNM stage) for predicting 

the survival in LUAD patients. This nomogram could 

serve as a reliable tool for determining LUAD treatment 

strategies and potential outcomes. 

 

MATERIALS AND METHODS 
 

Data collection  
 

Gene-expression profiles from LUAD tissues were 

downloaded from TCGA (https://portal.gdc.cancer.gov) 

and GEO (GSE31210 [36]; https://www.ncbi.nlm. 

nih.gov/geo/) and used as training and testing datasets, 

respectively. The GSE31210 dataset includes 226 

frozen tissue of primary lung tumors from patients with 

lung adenocarcinomas based on the GPL570 

(Affymetrix Human Genome U133A 2.0 Array) 

platform. Samples with incomplete survival data or 

follow-up times of <1 day were excluded, resulting in 

490 LUAD cases from TCGA database used for 

analysis. An ERG list was obtained from EpiFactors 

(http://epifactors.autosome.ru/) [37], and protein 

expression of the ERGs in LUAD and non-cancerous 

tissues was assessed using the Human Protein Atlas 

(https://www.proteinatlas.org/). ERG mutation data 

were acquired from the cBioPortal for Cancer 

Genomics (https://www.cbioportal.org/). 

 

Development and validation of an ERG prognostic 

signature 

 

We first screened prognosis-related genes in the overall 

cohort (n = 716) using univariate Cox and LASSO 

regression analyses. Multivariate Cox regression 

analysis was subsequently used to identify independent 

prognostic parameters in the training set (n = 490). Risk 

scores were calculated for each patient in both the 

training and test sets based on gene-expression levels 

and coefficients of multivariate Cox regression. The 

patients were then clustered into high- and low-risk 

group based on their median risk score. Kaplan–Meier 

analysis was performed to generate curves using the log 

rank test in order to assess differences in survival 

between the high- and low-risk groups. Additionally, 

ERG expression levels were analyzed between groups, 

and Kaplan–Meier analysis was performed to evaluate 

survival according to various clinicopathological 

characteristics. 

 

GSEA and GSVA 
 

GSEA (http://software.broadinstitute.org/gsea/index.jsp) 

was used to explore potential biological functions and 

enriched pathways between high- and low-risk groups in 

the training set. The normalized enrichment score was 

obtained from 1,000 permutations. Additionally, GSVA 

was performed to evaluate differential pathway activation 

between high- and low-risk groups using the “GSVA” R 

package (https://www.r-project.org/). A cut-off criterion 

of P < 0.05 was considered statistically significant. 

 

Immune-cell analysis 
 

We assessed 22 immune-cell types, including both 

innate and adaptive immune cells, in the low- and high-

risk groups using the CIBERSORT algorithm 

(https://cibersort.stanford.edu/). To improve the 

reliability of the deconvolution method, samples with a 

CIBERSORT P < 0.05 were selected for further 

analysis. The number of permutations was set at 100. 

 

Nomogram development and validation 

 

We constructed a nomogram using patient risk scores 

and clinical indices (age, gender, and TNM/pathological 

stage), and calibration plots were generated to test the 

performance of the predictive nomogram using the 

training set. Additionally, we performed ROC analysis 

to examine the predictive accuracy of the nomogram by 

internal (training set) and external (verification set) 

validation. DCA was performed to evaluate the clinical 

usefulness of the nomogram. 

 

Statistical analysis 
 

mRNA-expression profiles from TCGA and GEO 

datasets were extracted as raw data, with expression 

levels normalized by log2 transformation. All statistical 

analyses were conducted in R (v.3.6.2; https://www.r-

project.org/), and a P < 0.05 was considered statistically 

significant. 
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survival; RFS: relapse-free survival; TCGA: The 

Cancer Genome Atlas; TNM: tumor-node-metastasis. 
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