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Summary
High-quality radish (Raphanus sativus) genome represents a valuable resource for agronomical

trait improvements and understanding genome evolution among Brassicaceae species. However,

existing radish genome assembly remains fragmentary, which greatly hampered functional

genomics research and genome-assisted breeding. Here, using a NAU-LB radish inbred line, we

generated a reference genome of 476.32 Mb with a scaffold N50 of 56.88 Mb by incorporating

Illumina, PacBio and BioNano optical mapping techniques. Utilizing Hi-C data, 448.12 Mb

(94.08%) of the assembled sequences were anchored to nine radish chromosomes with 40 306

protein-coding genes annotated. In total, 249.14 Mb (52.31%) comprised the repetitive

sequences, among which long terminal repeats (LTRs, 30.31%) were the most abundant class.

Beyond confirming the whole-genome triplication (WGT) event in R. sativus lineage, we found

several tandem arrayed genes were involved in stress response process, which may account for

the distinctive phenotype of high disease resistance in R. sativus. By comparing against the

existing Xin-li-mei radish genome, a total of 2 108 573 SNPs, 7740 large insertions, 7757

deletions and 84 inversions were identified. Interestingly, a 647-bp insertion in the promoter of

RsVRN1 gene can be directly bound by the DOF transcription repressor RsCDF3, resulting into its

low promoter activity and late-bolting phenotype of NAU-LB cultivar. Importantly, introgression

of this 647-bp insertion allele, RsVRN1In-536, into early-bolting genotype could contribute to

delayed bolting time, indicating that it is a potential genetic resource for radish late-bolting

breeding. Together, this genome resource provides valuable information to facilitate

comparative genomic analysis and accelerate genome-guided breeding and improvement in

radish.

Introduction

Radish (Raphanus sativus L., 2 n = 2x = 18), an annual or biennial

dicot belonging to the Brassicaceae family, is an economically

important root vegetable cropworldwide (Luo et al., 2020). During

the long-term artificial selection from the 13th century BC, a large

number of local and commercial radish varieties varying in root size,

shape, colour and flavour have been developed in theworld (Mitsui

et al., 2015). The fleshy taproot, as the most agronomically

important edible organ, provided many beneficial nutrients com-

posed of a wide range of carbohydrates, minerals, riboflavin,

phytochemicals and dietary fibres (Shirasawa et al., 2020). How-

ever, despite the biological uniqueness and favourable nutritional

value, themolecular genetic studies of radish are progressingmuch

slower compared with its close relative Brassica crops (Cai

et al., 2022; Liu et al., 2014; Lu et al., 2019; Song et al., 2021),

which partially attributes to the limited information of genome

assembly and annotation gains to date.

Construction of a high-quality genome assembly is a funda-

mental step for dissecting genomic variations that contribute to

explore the genetic and molecular basis of desirable traits in

plants (Nunn et al., 2022). In the past decades, several genome

assemblies of R. sativus and R. raphanistrum were released that

consist of thousands of small arbitrarily ordered contigs and

scaffolds (Kitashiba et al., 2014; Mitsui et al., 2015; Moghe

et al., 2014). Using traditional genetic mapping, a proportion of

draft radish genomes were assembled at the pseudo-

chromosome level with low coverage of the euchromatin regions

(Jeong et al., 2016; Shirasawa et al., 2020; Zhang et al., 2015).

Recently, leveraging PacBio single-molecule real-time (SMRT)

sequencing and high-throughput chromatin conformation cap-

ture (Hi-C) mapping approach, Zhang et al. (2021) reported a

new radish genome of Xin-li-mei with 446 MB mapped to nine

chromosomes, providing valuable genetic resources for molecular

mapping and gene cloning in radish. Fine-scale physical mapping

of centromeres is a fundamental step for high-quality genome
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assembly in plants (Gong et al., 2012). CENTROMERE SPECIFIC

HISTONE H3 (CENH3) is an epigenetic signature that specifies

centromere location in plant kingdoms (Maheshwari et al., 2017;

Naish et al., 2021). Although the ChIP-seq has becoming a

promising approach to assist assembly of CENH3-associated

centromeric chromatin for plant genomes (Hu et al., 2019;

Schneider et al., 2016), no ChIP-seq data have been deployed to

assist the reference centromeres assembly in radish. To gain

better understanding of genetic bases underlying the diversity of

Raphanus, it is crucial to generate another high-quality radish

genome assembly of distinctive cultivar for identifying genetic

variations likely contributed to the trait differences.

As a crucial developmental milestone of the plant life cycle, the

timing of transition from vegetative to floral meristems is

governed by different complex genetic pathways such as

photoperiod, vernalization and gibberellic acid pathways (Chen

et al., 2021; Cho et al., 2017; Shang et al., 2020). These

pathways converged on key floral integrators (e.g. FT and SOC1)

and induced the meristem-identity genes (e.g. FRUITFULL, LFY

and AP1) to initiate flower bud formation and anthesis (Lu

et al., 2020; Srikanth and Schmid, 2011; Zhang et al., 2019).

Vernalization is a long-term cold-mediated acquisition of flower-

ing competence for the winter-annual plants (Kang et al., 2021;

Kyung et al., 2022). In Arabidopsis, the FLOWERING LOCUS C

(FLC) acted as the central regulator of vernalization, and its stable

repression and histone modifications could be achieved by the

AtVRN1 gene during the winter (Cho et al., 2017; Levy

et al., 2002). It has been extensively established that CDF

(CYCLING DOF FACTOR) transcription factor (TF) is one of the

most important participators in the transcriptional regulatory

networks of bolting and flowering in plants (Renau-Morata

et al., 2020; Xu et al., 2021). Previous studies reported that a

range of CDFs, including AtCDF1, AtCDF2, AtCDF3 and SlCDF3,

were involved in photoperiodic regulation of flowering in

Arabidopsis and tomato through a CO/FT-dependent manner

(Goralogia et al., 2017; Imaizumi et al., 2005; Xu et al., 2021).

However, whether CDF TF genes mediate the regulatory network

of vernalization pathways remains largely unclear in radish.

Genomic structural variations (SVs), including insertions, dele-

tions, duplications and inversions, are an important resource of

genetic variations determining important agronomic traits in

crops (Alonge et al., 2020; Li et al., 2022; Wang et al., 2020).

Identification of SVs among different varieties of Raphanus and

investigating their evolutionary dynamics can shed light on the

contribution of SVs to critical horticultural traits in radish

domestication and breeding. In this study, a radish advanced

inbred line ‘NAU-LB’ was used to assemble an improved

chromosome-scale reference genome. Comparing with these

radish varieties employed in previous radish pan-genome study

(Zhang et al., 2021), the ‘NAU-LB’ genotype harbours an

extremely late-bolting phenotype that requires a long-term

vernalization process. Under normal environmental condition, it

takes approximately 90–100 d from days after transplanting to

bolting, making it as a desirable genotype to dissect the genomic

architecture conditioning bolting time variation in radish. Despite

comparative genomic and evolutionary analysis, genomic SVs

between the NAU-LB and Xin-li-mei genome were comprehen-

sively identified. More importantly, we addressed a specific

647-bp insertion in the RsVRN1 gene promoter that might be

responsible for the late-bolting phenotype. Our findings would

provide valuable genome resources for genome evolution studies

and pave the way for genomic selections of desirable target traits

like late-bolting in radish and other species in the Brassicaceae

family.

Results

Assembly of a high-quality radish genome

The k-mer analysis indicated that the NAU-LB genome was highly

homozygous with heterozygosity of 0.14%, which was suitable

for improving the quality of genome assembly (Table S1). A total

of 54.01 Gb of reads (N50 length of 18.06 Kb) were generated

with the PacBio RSII platform, amounting to 104.969 coverage of

the estimated 514.57 Mb genome. Then, the consensus

sequences were polished with 64.17 Gb (124.71 9 coverage)

of Illumina reads and 63.47 Gb (123.35 9 coverage) of 109

Genomics data (Table S2). We initially assembled the genome into

1821 contigs (~ 483.68 Mb) and 872 scaffolds (~ 489.8 Mb) with

a contig N50 and scaffold N50 of 1.76 and 2.86 Mb, respectively.

Next, the long reads assembly was integrated with ~171.55 Gb

BioNano optical map data (~182.45 9 coverage, Table S3),

creating a hybrid assembly consisting of 797 scaffolds

(~468.61 Mb) with a scaffold N50 of 4.39 Mb (Table S4).

To construct the chromosome-scale scaffolds, ~77.37 Gb of Hi-

C data (~150.369 coverage, Tables S2 and S5) was used to

categorize these assemblies into super scaffolds. As expected, the

Hi-C interaction matrices displayed a distinct anti-diagonal

pattern for the intrachromosomal interactions (Figure 1a). The

size of final genome assembly was 476.32 Mb (265 super-

scaffolds) with a scaffold N50 value reaching 56.88 Mb (Tables 1

and S6). The largest 9 super-scaffolds representing pseudo-

chromosomes totalled 448.12 Mb (94.08%) of the radish

genome with GC content of 34.24% (Tables 1 and S7), consistent

with the chromosome order reported previously (Jeong

et al., 2016). Collinearity analysis indicated good co-linearity of

chromosomes between this assembly and other previously radish

chromosome-level genomes (Figure S1), confirming the high

accuracy of the contig orientation.

Notable improvement of centromere regions and gene
annotation

To evaluate the quality of this genome assembly, we firstly

mapped 99.68% of Illumina short reads to the assembly with

98.82% overall coverage (Table S8). CEGMA (Core Eukaryotic

Genes Mapping Approach) and BUSCO (Benchmarking Universal

Single Copy Orthologs) analysis indicated that 241 (97.18%) and

1376 (95.50%) conserved core eukaryotic genes were captured

in the whole-genome assembly (Table S9 and S10). Moreover,

99.49% of Expressed sequence tag (EST) sequences assembled

from transcriptome sequencing were mapped to the genome

assembly, from which 88.85% of ESTs were considered as

complete (more than 90% of the transcript sequences aligned to

one scaffold) (Table S11). For the centromeres region assembly, a

total of 39.27 million reads generated from centromere-specific

Histone 3 (CenH3) ChIP-seq library were mapped to the unique

sites in NAU-LB genome. Fluorescence in situ hybridization (FISH)

assay showed that several high-intensity and distinct signals were

observed in the centromeric region for each radish chromosome

(Figure 1b), confirming highly specific enrichment of the CenH3

ChIP DNA sequences. With the exception of Chr.1, the CenH3

ChIP-seq data were mapped to a sharp interval on eight

chromosomes (Figure 1c), which might be attributed to the
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fragmented nature of Chr.1 centromeric regions. Moreover, long

terminal repeat (LTR) annotation indicated an LTR assembly index

(LAI) score of assembly was 16.07 (Figure S2), reaching to the

criterion of reference quality. Together, the extensive coverage of

core plant genes and centromere sequence continuity indicated

the high completeness and accuracy of our genome assembly,

ensuring the reliability of subsequent comparative genomic

analysis.

Combing ab initio, homology-based and RNA sequence-aided

prediction methods, a total of 40 306 protein-coding genes were

annotated with an average gene length of 2196.62 bp, coding

sequence length of 1114.86 bp and exon number of 4.98 (Tables 1

and S12). Notably, 39 290 (97.48%) of the protein-coding genes

had amatch in at least one databases, including 97.41%, 80.64%,

76.62% and 75.28% of genes matching GenBank NR, InterPro,

SwissProt and Pfam entries, respectively (Table S13).

Dynamic evolution of LTR retrotransposons

In plants, the polyploidization driven by whole-genome duplica-

tion (WGD) events and proliferation of transposable elements

(TEs) are major sources for genome size expansion (Van de Peer

et al., 2009). In the current study, 249.14 Mb (52.31%) of the

assembled genome comprised of repetitive sequences, which is

larger than that reported for two B. rapa assemblies: NHCC001

(213.04 Mb) and Chiifu v3.0 (133.95 Mb). Among these repet-

itive elements, the LTR retrotransposons, including Ty1_Copia

(22.01%) and Ty3_Gypsy (21.93%), were the most abundant

(combined: 30.31%), followed by the DNA TEs (4.87%) and

Figure 1 Overview of the radish genome assembly. (a) Genome-wide Hi-C map of the NAU-LB genome. Post-clustering heatmap shows density of Hi-C

interactions between contigs. (b) Fluorescence in situ hybridization (FISH) assay using NAU-LB ChIP DNA. FISH signals (red) are visible in the centromeres on

the chromosomes (blue). Scale bar: 10 lm. (c) Circos plot of the multidimensional topography for the NAU-LB genome assembly. The outermost layer of

coloured blocks was a circular representation of the 9 pseudochromosomes with each scale mark labelling of 5 Mb. Concentric circles from outermost to

innermost show chromosome length with centromere region, gene density, GC content, TE density, LINE density, DNA density, Ty3-gypsy LTR density, Ty1-

copia LTR density, root gene expression, leaf gene expression, stamen gene expression and pistil gene expression. The inner lines indicate syntenic blocks in

the genome.

Table 1 Statistics for radish genome assembly and annotation of

NAU-LB

Assembly and annotation feature Statistics

Assembly features

Assembled genome size (Mb) 476.32

Number of scaffolds 265

Scaffold N50 (Mb) 56.88

Scaffold N90 (Mb) 36.29

Longest scaffold (Mb) 62.08

Anchored to chromosome (Mb) 448.12

Scaffold GC content (%) 34.24

Anchored % of assembly 94.08

Total repetitive sequences (%) 52.31

Gene models

Number of protein-coding genes 40 306

Mean coding sequence length (bp) 1114.86

Mean number of exons per gene 4.98
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LINEs (3.47%) (Table S14). These TEs exhibited an inverse

correlation with gene density (Figure 1c). In particular, 9276

intact LTR-RTs with an average length of 7141.43 bp were

identified, much more than the number classified in the A.

thaliana and B. rapa genomes (Figure 2a). In comparison with A.

thaliana and B. rapa, the frequency distribution of intact radish

LTR-RTs insertion time had a burst in less than 1 million years ago

(MYA) (Figure 2b and Figure S3). These insertions took place in

radish specifically, as the timing of the insertion event was much

less than the estimated divergence time of A. thaliana and B.

rapa. In addition, 2970 radish genes contained TE insertions

(Figure 2c), with 1138 intact LTR-RTs (38.32%) reside within 2 Kb

upstream of the gene body (Figure 2d), followed by 1120 and

301 inserted into the 30-terminus region (37.71%) and encoding

region (10.13%), respectively. The proximity to genes indicated

their potential roles in regulating gene expression in radish.

Comparative genomic and genome evolutionary analysis

Using 1576 shared single-copy orthologous gene families, phy-

logenetic analysis showed that the R. sativus diverged from B.

rapa and B. oleracea approximately 7.1–10.4 MYA (Figure 3a).

Gene family evolution analysis showed that 1078 and 4445 gene

families were significantly expanded and contracted in radish,

respectively (P < 0.01) (Figure 3b). For the enriched GO terms, the

expanded genes were significantly involved in translation and

inorganic cation transmembrane transport in biological process

category (P < 0.05, FDR <0.05; Table S15). Using the single-copy

orthologous gene families (Figure 3c), analyses of transversions at

four-fold degenerate sites (4DTv) and Ks values indicated that,

except for the recent WGT event (4DTv distance � 0.15, Ks peak

value � 0.4) shared among the Brassicaceae species (Hu

et al., 2011), no additional specific WGD event was occurred in

the evolutionary process of R. sativus (Figures 4a and S4). In

addition, 14 175 gene families were shared by R. sativus, A.

thaliana, B. rapa and B. oleracea, whereas 661 gene families

containing 1319 genes were specific to R. sativus (Figure 4b),

Classification of gene duplicates origin indicated that WGD/

segmental duplication is the predominant duplicate gene origin

type (64.02%, 25 802), followed by dispersed duplication

(18.00%, 7255), tandem duplication (5.03%, 2029) and proximal

duplication (2.63%, 1061) (Figure 4c). Interestingly, the distribu-

tion of duplicate gene origin type varied among nine radish

chromosomes. The Chr. 9 had the highest proportion of proximal

and tandem duplication, while the Chr. 5 had the highest

proportion of WGD/segmental duplication (67.96%, 3864) (Fig-

ure 4d). Functional enrichment analysis revealed that the genes

from different duplication origins have biological function pref-

erence. The gene duplicates originated from tandem duplication

were enriched in the GO terms related to biotic and/or abiotic

stress response, such as response to biotic stimulus and defence

response to fungus (Table S16). Considering the tandemly

arrayed genes might tend to be volatile after gene duplication

(Miao et al., 2021), the retained tandem genes may play vital

functional roles in regulating important biological process of

radish plants.

Identification and evolution of radish NBS-LRR genes

In plants, most of the cloned disease resistance genes are encode

nucleotide-binding-site-leucine-rich-repeat (NBS-LRR) proteins,

which play a pivotal role in host resistance to disease in

Figure 2 Evolution of LTR retrotransposons in the NAU-LB genome. (a) Length distribution of the intact LTR-RTs in radish, Arabidopsis thaliana and

Brassica rapa. (b) Distribution of insertion times of LTR retrotransposons in radish, A. thaliana and B. rapa. (c) Count of LTR-RTs in each chromosome. (d) The

proportion of the LTR-RTs located in different regions of genes. (e) Tissue expression patterns of the LTR-inserted genes in radish root, leaf, stamen and

pistil.
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horticultural plants (Bayer et al., 2019; Golicz et al., 2016). Based

on searching against the protein sequences in our NAU-LB

assembled genome with NBS domain (Pfam: PF00931), a total of

110 NBS-LRR resistance genes (RsNBS001–RsNBS110) were iden-

tified in this study (Figure S5), which were clustered and dispersed

into nine radish chromosomes (Figure S6) with Chr. 6 contained

the largest number of genes (22, 20%). Phylogenetic analysis

showed that 45 and 65 RsNBS genes were classified into CNL

(CNL-A ~ CNL-D) and TNL (TNL-A ~ TNL-H) subfamilies

(Table S17), respectively. Transcriptome analysis showed that a

proportion of RsNBS genes exhibited tissue-specific gene expres-

sion in radish. For instance, the RsNBS045, RsNBS085 and

RsNBS097 genes were highly expressed in leaves, while the

RsNBS011, RsNBS063 and RsNBS096 genes exhibited high

expression profile in root (Figure S7). Interestingly, MCScanX

analysis showed that 36 (32.7%) RsNBS genes were classified into

16 tandem duplication events, which were unevenly distributed

on eight radish chromosomes except for Chr. 3 (Figure S6).

Moreover, 77 pairs of whole genome duplication (WGD)/seg-

mental events consisted of 55 RsNBS genes (e.g. RsNBS001,

RsNBS011, RsNBS065 and RsNBS079) were identified in all

chromosomes (Figure S8), indicating the important role of

tandem duplication and WGD/segmental duplication in driving

NBS gene expansion in radish.

Genomic SVs between NAU-LB and Xin-li-mei genome

Through collinear blocks alignment, the genetic variants consisted

of SNPs, small InDels (<50 bp in size) and SVs (large insertion,

deletion and inversions, ≥50 bp in size) were identified between

the NAU-LB and Xin-li-mei genome. Using NAU-LB genome as the

reference, a total of 2 108 573 SNPs were identified with an

average density of 4.71 SNPs per Kb (Table S18). In all, 365 143

(17.32%) of SNPs were located in the exonic region, among

which 132 894 (6.30%) were nonsynonymous SNPs (Table S19).

Moreover, 5496 (1.05%) of the identified 521 225 small InDels

caused changes of start/stop codons, splicing sites or frameshifts

(Table S20), which likely resulted in the divergent gene functions

in the two genetic backgrounds. In total, 15 581 SVs ranging

from 51 bp to 14.4 Mb were identified (Figure 5a, b), including

7740 insertions, 7757 deletions and 84 inversions (Table S21

and S22), which together covered 32.00% (~143.41 Mb) of the

total genome. Interestingly, approximately 31.35% of the SV

sequences were LTR retrotransposons (Figure 5c), suggesting that

SVs occurred frequently in genome regions occupied by LTR

retrotransposons. In addition, 47 large inversions longer than 100

Kb were located on Chr. 2, 4, 5, 6, 7 (Table S22), which might

contribute to relatively lower collinearity of these chromosomes

between the two radish genomes.

As shown in Figure 5d, 17.79% (2761 out of 15 517) and

25.52% (3960 out of 15 517) of the annotated SVs were

overlapped with the coding sequences (CDS) and promoter

regions (defined as 2 Kb upstream of gene body), notably lower

than the proportion in the intergenic regions (34.90%, 5415 out

of 15 517), which was consistent with the previous reports of

peach and rice genomes (Fuentes et al., 2019; Guan

et al., 2021). Only a small proportion of SVs were retained in

the CDS regions might partially attribute to the fact that SVs

occurring in CDS might lead into loss-of-function effect and

faced strong purifying selection during plant genome evolution

(Guan et al., 2021).

Figure 3 Phylogenetic tree and gene family identification in radish and some other related species. (a) Inferred phylogenetic tree constructed from single-

copy orthologue gene families in NAU-LB and other eleven additional plant species. Divergence timings (million years ago, MYA) were indicated at each

node, representing 95% credibility intervals of the estimated dates. (b) Expansions and contractions of gene families. The number of expanded and

contracted gene families was marked with plus and minus ahead the digitals, respectively. (c) Clusters of orthologous and paralogous gene families in NAU-

LB and other eleven plant species.
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A 647-bp insertion in promoter region leads into late-
bolting phenotype in NAU-LB

As an important breeding objective in modern breeding of

Brassicaceae crops, the trait of bolting and flowering was

continually selected during radish domestication (Jeong

et al., 2016). Using NAU-LB assembly as the reference genome,

one 39-bp insertion was found in the intron of FUL gene of Xin-li-

mei genome, while one 16-bp deletion and one 18-bp deletion

were identified in the intron of LFY and FT gene, respectively

(Table S23). One 9-bp deletion and two insertions (8 and 9 bp)

were detected in the intron and promoter of FLC3 gene,

respectively. For the VRN2 gene, one 14-bp deletion was

detected in the promoter region, while one 15-bp insertion and

two deletions (6 bp and 42 bp) were detected in the intron

region. In addition, three and five nonsynonymous SNVs were

identified in the exon of LFY and VRN2 gene, respectively.

Considering these genes were major determines in the photope-

riod or vernalization pathways, it’s reasonably to hypothesize that

these genomic variants might contribute to differences of bolting

and flowering time during radish evolution and domestication.

In the Brassicaceae family, several winter-annual plant ecotypes

can only start transition to flowering state after fulfilling the

vernalization requirement. By comparing the coding region of

RsVRN1 gene from NAU-LB genome and two other radish

genomes (Xin-li-mei and WK10039), only eight synonymous SNVs

were found in the ‘WK10039’ genome (Figure S9), resulting in no

frameshift mutation or amino acid changes of the RsVRN1 gene

(Figure S10). To validate the reliability of genome sequences, the

coding regions of RsVRN1 gene were cloned and sequenced from

the late-bolting genotype ‘NAU-LB’ and early-bolting genotype

‘Xin-li-mei’ using PCR approach. The RsVRN1 gene contains an

open reading frame (ORF) of 1032 bp that encodes 343 amino

acids (Figure S10), and no nucleotide sequence difference was

observed in the coding regions between the two radish geno-

types. Interestingly, a 647-bp insertion was identified in the

promoter region of RsVRN1 gene in ‘NAU-LB’ genotype (Fig-

ures 6a, b and S11), which was further verified by PCR amplifi-

cation using the primer pairs listed in Table S24. The expression

profile of the RsVRN1 gene was increased during the prolonged

vernalization time in ‘NAU-LB’ genotype (P < 0.01; Figure 6c). To

investigate whether the promoter sequence differences affect

promoter activity of RsVRN1 gene, the corresponding promoters

without or with the 647-bp insertion (pRsVRN1Del-536/S1,

pRsVRN1In-536/S2) were fused to luciferase gene, respectively

(Figure 6d). Interestingly, the pRsVRN1In-536-LUC exhibited signif-

icantly low LUC activity than the pRsVRN1Del-536-LUC in N.

benthamiana leaves (P < 0.001; Figure 6e), indicating that the

647-bp insertion reduces promoter activity of the RsVRN1 gene in

NAU-LB.

Figure 4 Comparative genomic and genome evolutionary analysis of the radish genome. (a) 4dTv distance distribution of duplicated gene pairs in syntenic

blocks within the genomes of Raphanus sativus, Arabidopsis thaliana and Brassica rapa and B. oleracea. (b) Venn diagram of shared orthologous gene

families among R. sativus, A. thaliana, B. rapa and B. oleracea. (c) Classification of gene duplicates origin in the NAU-LB genome. The origins of gene

duplicates were classified into five types: whole genome/segmental duplication (collinear genes in collinear blocks), tandem duplication (consecutive

repeat), proximal duplication (two duplicated genes are distributed adjacent to each other on chromosomes, with no more than 10 genes spaced but not

adjacent), dispersed duplication (duplication type other than WGD/segmental, tandem and proximal) and singleton (no duplication). (d) Number of gene

duplicates on each chromosome of the NAU-LB genome.
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RsCDF3 directly binds to the RsVRN1In-536 allele and
inhibits bolting time

By aligning to the PLACE database, some key cis-acting

elements targeted by several transcription factors were found

in the 647-bp insertion (Table S25). To test if the promoter

variations of RsVRN1 gene associate with differential binding

and regulation by several specific TFs, a yeast one-hybrid (Y1H)

library was screened using the 647-bp insertion promoter

fragment as the bait. Interestingly, the RsCDF3, belonging to

D subfamily of the DOF TFs, was identified in the screens. The

Y1H assays with the S1, S2 promoter fragments and potential

DOF binding sites (P1, P2, P3, P4) of RsVRN1 indicated direct

binding of RsCDF3 to the P1 site in the 647-bp insertion

(Figure 6f). Moreover, a dual-luciferase reporter assay showed

that RsCDF3 significantly repressed the transactivation of the

RsVRN1 In-536 promoter variant compared with the

RsVRN1Del-536 promoter variants (Figure 6e). Furthermore, the

EMSA assay indicated that RsCDF3-dependent mobility shifts

were detected with biotin-labelled P1 probes and competed by

an unlabelled cold competitor probe in a dose-dependent

manner, but not by a mutated P1 probe (Figure 6g), further

supporting that RsCDF3 specifically binds to the P1 fragment of

the 647-bp insertion. Together, these results indicated that

RsCDF3 can specifically bind the DOF binding elements (50-
TACTTTAT-30) in the 647-bp insertion of RsVRN1 In-536 promoter

and suppress its transcription activity.

To investigate the role of RsCDF3 in bolting and flowering, we

generated transgenic T3 Arabidopsis plants (Figure 7a) constitu-

tively expressing RsCDF3 driven by the CaMV 35 S promoter.

Under long-day condition, both total rosette leaf number and

days from germination to flowering indicated that the RsCDF3-

overexpressed plants exhibited dramatically delayed floral initia-

tion compared with that in WT plants (Figure 7b, c), providing

clear evidence supporting a negative role for RsCDF3 in regulating

floral initiation. We then evaluate the transcriptional activity of

RsCDF3 in vitro and in vivo. In yeast, the transactivation activity of

VP16 was significantly repressed when RsCDF3 was fused to the

VP16 activator (Figure 7d). In N. benthamiana leaves, RsCDF3

significantly repressed expression of the LUC reporter and VP16

activator in comparison to the effect of pBD and pBD-VP16

vector, respectively (P < 0.001; Figure 7e–g). These results

indicated that RsCDF3 had transcriptional repression activity in

both yeast and plant cells. Considering that VRN1 gene is critical

to accelerate flowering post-vernalization (Sharma et al., 2020), it

is reasonable to conclude that RsCDF3-mediated repression of

RsVRN1 due to the 647-bp insertion is likely responsible for late-

bolting phenotype of the ‘NAU-LB’ genotype.

Figure 5 Features of structural variants between the NAU-LB and Xin-li-mei genome. (a) Distribution of insertion size. (b) Distribution of deletion size. (c)

Contents of different categories of transposable elements in the SV regions and NAU-LB genome. (d) The proportion of SVs located in different regions of

genes.
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Figure 6 RsCDF3 can directly binds to the promoter of RsVRN1In-536 allele. (a) PCR-based cloning of the RsVRN1 promoter from ‘NAU-LB’ and ‘Xin-li-mei’

genotype, respectively. M: DL2000 marker. 1: NAU-LB; 2: Xin-li-mei. (b) Schematic diagram of the RsVRN1Del-536 and RsVRN1In-536 promoter fragments

used for construction of the transient expression vector. The vertical line and triangle represent one SNP and two InDels in the RsVRN1 promoter of Xin-li-

mei compared with NAU-LB, respectively. Four potential DOF binding elements (P1, P2, P3 and P4) within the 647-bp insertion are indicated in red. The

mutated nucleotides are presented in lowercase in mP1 fragment sequences. (c) The expression profile of the RsVRN1 gene during prolonged vernalization

period in ‘NAU-LB’ genotype. (d) Schematic diagrams of the LUC, S1 and S2 reporter constructs used for transient expression assay. (e) Transient expression

assays of different promoter fragments from two RsVRN1 genotypes. (f) Yeast one-hybrid assays showing that RsCDF3 binds to P1 fragment within the

647-bp insertion. The prey and bait vectors used for the assays are indicated at the top. (g) Analysis of RsCDF3 binding to the P1 fragment of the 647-bp

insertion in an EMSA system. Biotin-labelled probes were incubated with GST or GST-tagged RsVRN1. 109 and 1009 unlabelled competitor fragments

were added to evaluate binding specificity. Values are mean � SD from three independent biological replicates. Asterisks indicate statistically significant

differences using two-sided Student’s t test (**P < 0.01; ***P < 0.001).

ª 2023 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd., 21, 990–1004

A high-quality genome assembly of radish 997



Introgression of the RsVRN1In-536 allele could inhibit
radish bolting time

To investigate whether the insertion allele of RsVRN1In-536 can

make a contribution to late-bolting, a F2 population consisted of

104 individuals was generated by crossing ‘NAU-LB’ carrying the

RsVRN1 In-536 allele and an early-bolting radish genotype ‘NAU-YH’

carrying the RsVRN1Del-536 allele. Evaluation of bolting time

confirmed that the F2-RsVRN1
In-536 plants from F2 lines exhibited

late bolting phenotype compared with their F2-RsVRN1
Del-536

siblings (P < 0.001; Figures 7h and S12), indicating that the

RsVRN1In-536 allele can contribute to late bolting in radish breeding.

Therefore, theRsVRN1 In-536 allelewould facilitate thedevelopment

of geneticmarker for early/late-bolting selection at an early stage in

radish.

Discussion

Comparison of NAU-LB genome to other previous radish
genomes

High-quality chromosome-level genome assembly is a vital

prerequisite for molecular breeding and decoding the molecular

basis of economically important traits in plants (Guo et al., 2020;

Xia et al., 2020; Zhang et al., 2022). In recent years, the Hi-C

sequencing technology, relying on the linkage information across

a range of length scales spanning tens of megabases, had

becoming an efficient approach to assemble chromosome-scale

scaffolds for many large eukaryotic genomes (Cai et al., 2021;

Ghurye et al., 2019). Radish is an important root vegetable crop

of the Brassicaceae family. Although several radish genomes have

Figure 7 The overexpression, transcriptional repressor activity of RsCDF3 as well as introgression of the RsVRN1In-536 allele in radish. (a) Representative

images of wild-type (WT) and RsCDF3-OE plants under long-day (LD) condition. (b, c) Rosette leaf number (b) and days to flowering (c) of WT and RsCDF3-

OE plants under LD condition. (d) Transcriptional repression assay of RsCDF3 in yeast. The transformants were streaked on SD/-Trp, SD/-Trp-His, SD/-Trp-

His+3-AT and SD/-Trp-His+3-AT+X-gal plates. (e) Transcriptional repression assay of RsCDF3 in N. benthamiana leaves. pBD and pBD-VP16 were used as a

negative and positive control, respectively. (f) Schematic diagrams of the effector and reporter constructs used for the transcriptional activity analysis.

5 9 GAL4, five GAL4 binding domains; LUC, firefly luciferase; REN, Renilla luciferase. (g) The relative value of LUC/REN measured in the transcriptional

activity analysis. (h) Genotyping of proRsVRN1 (up) and boxplot of bolting time (bottom) in the F2 population generated by crossing ‘NAU-LB’ carrying the

RsVRN1 In-536 allele and ‘NAU-YH’ carrying the RsVRN1Del-536 allele. (i) A proposed model for RsVRN1In-536/RsVRN1Del-536 allele-mediated bolting time

difference in radish. Values are mean � SD from three biological replicates. Asterisks indicate statistically significant differences using two-sided Student’s t

test (***P < 0.001).
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been assigned to the pseudo-chromosome level (Jeong

et al., 2016; Shirasawa et al., 2020; Zhang et al., 2015, 2021),

only one chromosome-level genome of Xin-li-mei was con-

structed using the Hi-C mapping (Zhang et al., 2021), which

greatly hampered the discovery of functional genomic variations

and dissection of the genetic determinants of several complex

traits in radish.

In this study, we generated a new highly accurate radish

genome of 476.32 Mb with a scaffold N50 value reaching

56.88 Mb (Table S6 and S7), which was slightly longer than the

corresponding values (459.83 Mb with scaffold N50 of

49.37 Mb) of the Xin-li-mei radish genome (Table S26). More-

over, leveraging CENH3 localizes exclusively to functional

centromeres (Maheshwari et al., 2017; Naish et al., 2021), we

firstly assembled the repetitive-DNA-rich centromeric regions of

radish genome by combining the CenH3 ChIP-seq and long-read

sequencing approach, revealing insights into centromere archi-

tecture and chromatin organization for Raphanus species.

Interestingly, despite good co-linearity between NAU-LB and

Xin-li-mei genome (Figure S1), the genetic variants (SNPs, small

InDels and SVs) conditioning differential bolting and flowering

time were addressed in radish. In addition, the dynamic

evolution of LTR retrotransposons and duplicate gene classifica-

tion were well characterized. With the rapid advance of

sequencing technologies, it is urgent to characterize the genetic

variations among a number of radish species, sub-species and

varieties and dissect their impact on genetic control of vital

horticultural traits in Raphanus (Zhang et al., 2021). Taken

together, the availability of this complete radish genome

assembly provides a valuable genome resource for further

genetic breeding and evolutionary and comparative studies in

genus Raphanus.

A specific RsVRN1In-536 allele is responsible for late-
bolting phenotype in radish

Increasing the number of studies indicated that SVs can cause

major phenotypic and morphological variance by affecting a few

critical gene dosage, function and regulation in crop species

(Renner et al., 2021; Wang et al., 2017; Yang et al., 2019). In this

study, the assembled radish genotype ‘NAU-LB’ exhibited an

extremely late-bolting phenotype compared with ‘Xin-li-mei’

genotype. In Arabidopsis, the AtVRN1 gene was critical for stable

repression and histone modifications of the FLC gene (Sharma

et al., 2020). Although the biological functions of VRN1 and its

downstream signalling networks associated with plant bolting

and flowering had been addressed (Kyung et al., 2022; Sharma

et al., 2020), the vital molecular switches regulating VRN1 gene

expression under vernalization pathway remain largely unclear. In

the current study, we found that a 647-bp indel in the RsVRN1

promoter was responsible for variation of RsVRN1 promoter

activity between early- and late-bolting radish genotypes (Fig-

ure 6e). Interestingly, this 647-bp insertion harbouring specific

DOF binding elements (50-TACTTTAT-30) was directly bound by

RsCDF3 to delay bolting time (Figures 6f, g and 7h). Overexpres-

sion of RsCDF3 significantly inhibits bolting time in Arabidopsis

(Figure 7a–c). Several CDFs (e.g. AtCDF1, AtCDF2 and AtCDF3)

were participated in the flowering-time control via modulating

the expression of CO and/or FT genes in Arabidopsis (Corrales

et al., 2017; Fornara et al., 2009; Goralogia et al., 2017). To our

knowledge, this study firstly revealed an RsCDF3-RsVRN1 module,

which involved in CDF-mediated bolting and flowering process

via a CO/FT-independent manner in plants.

Notably, the replacement of RsVRN1Del-536 allele in early-

bolting radish varieties with RsVRN1In-536 allele significantly

represses bolting time under normal growth condition (Figure 7h),

indicating that introgression of this RsVRN1 In-536 alleles could

provide an effective and flexible strategy for the development of

elite late-bolting radish cultivars. A working model for

RsVRN1In-536 allele-mediated bolting time difference was pro-

posed in radish (Figure 7i). In detail, RsCDF3 directly binds to the

DOF binding elements within the 647-bp insertion of the

RsVRN1In-536 promoter, leading to significantly decreased activity

of pRsVRN1 and late-bolting phenotype. In contrast, RsCDF3 does

not bind to the RsVRN1Del-536 promoter, leading to relatively high

activity of pRsVRN1 and early-bolting phenotype. Further func-

tional characterization of the adaptive advantages of RsVRN1
In-536 and RsVRN1Del-536 would fine-tune the gene regulatory

network of vernalization pathway in radish breeding programs.

In conclusion, a new high-quality radish genome was gener-

ated with 448.12 Mb (94.08%) assembled into nine radish

chromosomes. The assembly of centromeric regions, dynamic

evolution of LTR retrotransposons and duplicate gene classifica-

tion were characterized. Among the identified SNPs, small INDELs

and SVs between NAU-LB and Xin-li-mei radish genome, a 647-

bp insertion in the promoter region of RsVRN1 gene resulted in its

low promoter activity, which was partially conferring the late-

bolting phenotype of the ‘NAU-LB’ genotype. These results would

not only facilitate comprehensive identification of genetic variants

associated with key horticultural traits, but also provided rich

genomic resources to establish efficient gene-targeted strategies

to improve desirable traits in radish.

Experimental procedures

Plant materials and genome sequencing

Germinated seeds of an extremely late-bolting genotype ‘NAU-

LB’ were planted in a growth chamber with a photoperiod cycle

of 14 h/25 °C light and 10 h/18 °C dark (Xu et al., 2020).

Genomic DNA was extracted from young fresh leaf tissues at the

four true-leaf stage using the DNAsecure Plant Kit (Tiangen

Biotech, Beijing, China). A SMRTbell DNA library with 20 kb

insertion was constructed using the SMRTbell template prep kit

and sequenced on the PacBio Sequel platform (Pacific Bio-

sciences, CA). For BioNano optical mapping, the genomic DNA

was labelled with Nb.BssSI and subjected to optical scanning on

the BioNano Genomics Saphyr System (Renner et al., 2021). For

Hi-C sequencing, the isolated DNA from fresh young leaves was

fixed, cross-linked and biotinylated following previous report

(Miao et al., 2021). The libraries of Illumina, 10 9 Genomics and

Hi-C sequencing were sequenced on an Illumina HiSeq9Ten

platform (Illumina, San Diego, CA).

Genome assembly and Hi-C scaffolding

Raw contigs were de novo assembled and corrected with PacBio

long reads using FALCON (ver. 0.3.0) and Arrow (ver. 2.1.0),

respectively. Then, Pilon (https://github.com/nanoporetech/ont-

assembly-polish) was used to polish PacBio-corrected contigs

with the Illumina short reads. The 10 9 Genomics linked-reads

were mapped to the consensus assembly using Burrows-

Wheeler Aligner (Li and Durbin, 2009). FragScaff was used to

extend contigs into initial scaffolds (Renner et al., 2021). Raw

BioNano data were assembled into a consensus physical map

using the IrysView package (BioNano Genomics, San Diego), and

the hybrid scaffold assembly was constructed using the IrysSolve
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software (BioNano Genomics, San Diego). Gap filling was

performed using FGAP (ver. 1.8.1) with PacBio subreads (Piro

et al., 2014).

After removing low-quality and adapter sequences, clean Hi-C

reads were aligned to the assembly using BWA (ver. 0.7.17) with

default parameters (Li and Durbin, 2009). The deduplicated list of

Hi-C reads was generated using Juicer pipeline (ver. 1.5.7)

(Durand et al., 2016). Draft genome scaffolds were clustered with

valid interaction read pairs using the 3D de novo assembly (3D-

dna) pipeline (Dudchenko et al., 2017). The heatmap for Hi-C

interaction was generated by the 3D-DNA visualize module and

Juicebox (ver. 1.9.0) (Durand et al., 2016).

Chromosomal immunofluorescence, FISH and ChIP-seq

Chromosomal immunofluorescence and FISH experiments were

carried out following a previous report (Li et al., 2018). In brief,

the amplified DNAs were labelled with nick-translation using

biotin-16-dUTP or digoxigenin-11-dUTP (Roche Diagnostics).

On the basis of hybridization, the signals of biotin-labelled and

digoxigenin-labelled probes were identified with Alexa FluorTM

488 streptavidin (Thermo Fisher Scientific, Waltham, MA) and

rhodamine-conjugated anti-digoxigenin (Roche Diagnostics),

respectively. The chromosomes were counterstained with 406-
Diamidino-2-phenylindole (DAPI) in a vectashield antifade

solution.

ChIP and ChIP-seq were conducted according to the previous

studies by Nagaki et al. (2003) and Huang et al. (2021). The nuclei

isolated from young radish leaves were digested with 0.5 U

micrococcal nuclease (MNase; Sigma-Aldrich) and used for

immunoprecipitation with antibodies. The untreated chromatin

was employed as input control. The library was constructed using

the ChIP and input control DNA samples following the construc-

tion protocol from NEBNext UltraTM DNA Library Prep Kit (New

England BioLabs, Ipswich, MA) and sequenced on the Illumina

HiSeq platform (Illumina, San Diego, CA).

Genome evaluation and RNA-seq analysis

To assess genome assembly quality, we mapped the Illumina

paired-end reads to the assembly using BWA (ver. 0.7.17).

Genome assembly completeness was evaluated using the Bench

marking Universal Single-copy Orthologs (BUSCO) (ver. 4.0.6) and

Core Eukaryotic Genes Mapping Approach (CEGMA) analysis

(ver. 2.5) (Parra et al., 2007; Simao et al., 2015). Construction of

four cDNA libraries from leaf, root, pistil and stamen tissues was

performed according to previous report (Xu et al., 2020). Clean

RNA-seq reads were aligned to the genome assembly using

Bowtie2 (Langmead and Salzberg, 2012). Gene expression level

was quantified as FPKM (fragments per kilobase of transcript per

million mapped reads) value using Cufflinks (ver. 2.1.1) (Trapnell

et al., 2012). Genes with a twofold change and adjusted P < 0.05

were considered as differentially expressed.

Repeat annotation

Transposable elements (TEs) were identified at both the DNA and

protein levels using a combination of de novo and sequence

similarity-based strategies. A de novo repeat database was

constructed using the RepeatModeler software (http://www.

repeatmasker.org/RepeatModeler/). RepeatMasker (ver. 4.0.7)

(http://www.repeatmasker.org) was used to screen TEs from the

Repbase database (ver. 19.06) (http://www.girinst.org/repbase),

MIPS Repeat Element Database (ver. 9.3) and the de novo repeat

library. Assembly sequences were searched against the repetitive

element protein database using the WU-BLASTX package

(Tarailo-Graovac and Chen, 2009). Tandem repeats were anno-

tated using Tandem Repeats Finder (TRF, ver. 4.09). The

candidate long terminal repeat retrotransposons (LTR-RTs) were

identified using LTR_FINDER (ver. 1.0.7) (Xu and Wang, 2007).

Intact LTR-RTs were classified into Copia (PF07727) and Gypsy

(PF000078) superfamilies using HMMER (http://hmmer.org) with

E-value of 1 e-5. The insertion timing of intact LTR-RTs was

estimated using LTR_retriever (Ou et al., 2018a; Ou and

Jiang, 2018b).

Gene prediction and genome annotation

For de novo gene prediction, the Genscan (hollywood.mit.edu/

GENSCAN.html), Augustus (Nachtweide and Stanke, 2019),

GeneID (Blanco et al., 2018), GlimmerHMM (Majoros

et al., 2004) and SNAP (Korf, 2004) were used to scan the

genome. For the similarity-based approach, the assembled

scaffolds were searched against nonredundant protein sequences

using GeMoMa (Keilwagen et al., 2016). For RNA-seq-based

prediction, the transcriptome sequences from four tissues were

aligned to the genomes using TopHat (ver. 2.1.1) (Trapnell

et al., 2012). Nonredundant gene set was generated by

integrating three gene models using EVidenceModeler (EVM)

(Haas et al., 2008). Gene functional annotation was achieved by

performing a BLASTP search against sequences from the NCBI-nr

(https://www.ncbi.nlm.nih.gov/), Swiss-Prot (http://www.uniprot.

org/), GO (http://www.geneontology.org/) and KEGG (http://

www.genome.jp/kegg/) and InterProScan (www.ebi.ac.uk/

interpro/) databases with an E-value threshold of 1 e-5.

Phylogenetic, synteny analysis and divergence time
estimation

To investigate the genome evolutionary history of R. sativus, the

orthologous genes between radish and 11 other plant species

including four Brassicaceae species (Arabidopsis thaliana, Ara-

bidopsis lyrate, Brassica rapa and B. oleracea) and seven eudicots

clade (Capsella rubella, Cucumis sativus, Prunus persica, Vitis

vinifera, Solanum tuberosum, S. lycopersicum and Daucus carota)

were identified using OrthoMCL (ver. 2.0.9) (Li et al., 2003) with

default parameters. The protein sequences of 1527 single-copy

orthologous groups were aligned using MUSCLE (ver. 3.8.31)

(Edgar, 2004). For each orthologous group, a maximum likeli-

hood phylogenetic tree was constructed using RaxML (ver.

8.2.12) (Stamatakis, 2014) with 400 bootstrap replicates.

Paralogous and orthologous genes were identified using all-

against-all BLASTP with an E-value threshold of 1 e-5. Based on

identifying syntenic blocks using MCScanX (Wang et al., 2012),

the 4DTv value of orthologous/paralogous gene pair was calcu-

lated to determine WGD events (Maere et al., 2005). The

synonymous substitution (Ks) values of syntenic gene pair were

calculated using the yn00 program in PAML package

(Yang, 2007). Species divergence time was estimated using

MCMCTree in PAML package. Speciation event dates for

monocot-eudicot and A. thaliana–B. rapa split time were used

to calibrate the divergence time. Based on the phylogenetic tree

topology, significant expansion and contraction of radish gene

families were identified using CAFE (ver. 4.2.1) (De Bie

et al., 2006).

Identification of NBS-LRR resistance gene

A set of NBS-LRR proteins was identified from the NAU-LB

genome using the Hidden Markov Model (HMM) of the NBS
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family (NB-ACR; Pfam: PF00931). The conserved domains of

RsNBS proteins were identified using Pfam 33.0 (http://pfam.

xfam.org/) and SMART (http://smart.embl-heidelberg.de/). Chro-

mosomal location and gene structure of RsNBS genes were

analysed using the MapInspect Software 9 and GSDS (http://gsds.

cbi.pku.edu.cn/), respectively. MEME (http://meme-suite.org/)

was used to isolate candidate motifs from the NBS-LRRs. The

NBS-LRRs were subdivided into CNL and TNL groups following the

previous report (Tirnaz et al., 2020). The predicted proteins were

trimmed at ~10 aa N terminal to the first Gly before the P-loop

motif and ~ 30 aa beyond the MHDV motif. Based on multiple

sequence alignments, a phylogenetic tree of NBS-LRR proteins

was constructed using RaxML (Stamatakis, 2014).

Structural variants identification

The Nucmer program (Marcais et al., 2018) was used to align the

Xin-li-mei genome to the NAU-LB assembly with the parameters

‘--mum -g 1000 -c 90 -l 40’, and the alignment block filter was

performed using delta-filter with one-to-one alignment mode (-

1). SNPs and InDels were extracted from one-to-one block using

show-snp with parameter settings ‘-ClrH’ of the MUMmer4

toolkit. Functional effects of SNPs and InDels were annotated

using the SnpEff package (Cingolani et al., 2012). Translocation

and inversion events (≥1 Kb) were detected based on the

nonallelic similarity blocks from the resulting alignments using

MUMmer4 following the previous reports (Liu et al., 2020). The

functional annotations of SVs were carried out using the

ANNOVAR package (Wang et al., 2010).

cDNA library screening and yeast one-hybrid (Y1H) assay

The 647-bp insertion of the RsVRN1 promoter was cloned and

inserted into the pHIS2 vector for yeast library screening. In

brief, 5 lg of the bait plasmid pHIS2-proRsVRN1 and 10 lg of

the cDNA library plasmid were co-transformed into the yeast

strain Y187 using the MatchmarkerTM Library Construction &

Screening Kits (Clontech). The yeast cells were coated with

synthetic define (SD) medium lacking His, Leu and Ade with an

appropriate 3-amino-1,2,4-triazole (3-AT) concentration. After

incubating in a 28 °C oven for 3–5 days, single colonies were

picked for PCR detection. Only single-band PCR products were

sequenced. Sequencing fragments were aligned with the

Arabidopsis Information Resource (TAIR) database and NAU-LB

radish genome.

For Y1H assay, the 647-bp insertion of the RsVRN1 promoter

was cloned into the pLacZi vector, while the full-length ORF of

RsCDF3 was inserted into the pJG vector. To detect positive

clones, different combinations of plasmids were co-transformed

into the yeast strain EGY48. Yeast cells were grown on SD/-Trp-

Ura selection plates for 3 days. Positive interactions were iden-

tified on SD medium containing X-a-gal.

Generation of Arabidopsis plants overexpressing RsCDF3

The ORF of RsCDF3 was PCR amplified and inserted into the

pCAMBIA1300-GFP vector to produce the pCAMBIA1300-

RsCDF3-GFP recombinant expression vectors.

Agrobacterium tumefaciens strain GV3101 carrying the con-

struct 35 S::RsCDF3 was transformed into Arabidopsis Col-0

plants using the floral dip method. The T1 seedlings were raised

on Murashige and Skoog medium with 30 mg/L hygromycin.

Based on validating the positive transformants, three T3 trans-

genic Arabidopsis lines were further employed for the phenotypic

analyses.

Transcriptional activity assays

The coding sequence of RsCDF3 was inserted into pGBKT7 and

BD-VP16 vector to evaluate transcriptional activity of RsCDF3 in

yeast. The fusion plasmid constructs were then transformed into

yeast strain AH109. The pGBKT7 and BD-VP16 were used as

negative and positive controls, respectively. Transfected yeast

cells were grown on SD/-Trp-His selection plates for 3 d at 30 °C.
The b-galactosidase activity was examined by X-gal staining. To

further validate transcription activity of RsCDF3 in N. benthami-

ana, the coding sequence of RsCDF3 was inserted into pBD and

pBD-VP16 effector to generate effector plasmid. After introduc-

ing into Agrobacterium GV3101, the effector was co-infiltrated

into N. benthamiana leaves with a double-reporter vector. The

pBD and pBD-VP16 were used as negative and positive controls,

respectively. The primers used in transactivation assays are listed

in Table S24.

Dual luciferase reporter assay

The promoter region of RsVRN1 gene was amplified from the

NAU-LB and Xin-li-mei genomic DNA, respectively. Both sets of

fragments were ligated into pGreenII-0800-LUC vector to gener-

ate the ProRsVRN1-NAU-LB-LUC and ProRsVRN1-Xin-li-mei-LUC

construct, respectively. The constructed vector and an empty

vector (control) were transformed into A. tumefaciens strain

GV3101, which were further infiltrated into N. benthamiana

leaves. Luciferase signalling was tested using a living fluorescence

imager (Lb985, Berthold, Germany). Transient expression was

determined as the ratio of firefly luciferase (LUC) to Renilla

luciferase (REN) activities (Fan et al., 2020) using Dual Luciferase

Reporter Assay Kit (Vazyme, Nanjing, China). Three biological

replicates were prepared for each sample. The primers for vector

construction are shown in Table S24.

Electrophoretic mobility shift assay (EMSA)

For EMSA assay, the CDS of RsCDF3 was cloned into the pGEX4T-

1 vector and expressed in E. coli strain Rosetta (DE3, Promega).

The recombinant protein was induced in transformed E. coli using

0.6 mM isopropylthio-b-galactoside at OD600 = 0.6, and the cells

were incubated at 28 °C for 12 h. The GST fusion protein was

purified with GST-Sefinose resin (Promega) following the manu-

facturer’s instructions. EMSA reactions were performed using the

Light Shift Chemiluminescent EMSA Kit (Thermo Fisher Scientific)

according to the manufacturer’s instructions. The biotin-labelled,

unlabelled and mutated DNA probes are listed in Table S24.
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radish genomes. (a), (b), (c) and (d) represents the mummer plot

of NAU-LB chromosomes with WK10039, RSAskr_r1.0, Xin-li-mei

and XYB36-2, respectively. The chromosomes of NAU-LB were

numbered according to the WK10039, which is different with

that of Xin-li-mei and XYB36-2 in the Chr1 and Chr6.
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