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Over the past decade, major discoveries in retrotransposon biology have

depicted the neural genome as a dynamic structure during life. In particular,

the retrotransposon LINE-1 (L1) has been shown to be transcribed and mobi-

lized in the brain. Retrotransposition in the developing brain, as well as

during adult neurogenesis, provides a milieu in which neural diversity

can arise. Dysregulation of retrotransposon activity may also contribute to

neurological disease. Here, we review recent reports of retrotransposon

activity in the brain, and discuss the temporal nature of retrotransposition

and its regulation in neural cells in response to stimuli. We also put forward

hypotheses regarding the significance of retrotransposons for brain develop-

ment and neurological function, and consider the potential implications of

this phenomenon for neuropsychiatric and neurodegenerative conditions.
1. Introduction
The mammalian brain is remarkably complex in form and function. Neural cell

diversity underpins this complexity, and has classically been defined in terms

of the morphological differences between cell types, their diverse connectivity

patterns, physiological and functional properties and the expression of various

transcription factors (TFs), cell surface and secreted molecules [1,2]. At the same

time, it has been assumed that the neural cells of any individual will all carry

the same genetic instructions, or genotype, and that cellular diversity is

achieved by changing how these instructions are read, for example, through

epigenetic modifications [3]. However, recent advances in DNA sequencing

and genetic analysis, as well as bioinformatics, have made it possible to identify

mutations generating distinct genotypes among the neurons of an individual

human brain. These mutations include single-nucleotide variants, copy

number variants (CNVs) and retrotransposon insertions [4–10]. Collectively,

these genetic variants form a landscape of somatic mosaicism within the brain.

Somatic mosaicism is defined as the existence of two or more cells with

different genotypes within one individual. Depending on its developmental

timing, mosaicism can encompass mutations that are heritable (germline mosai-

cism), non-heritable (somatic mosaicism) or a combination of these two

outcomes [9,11–14]. Retrotransposons, colloquially referred to as ‘jumping

genes’, are DNA fragments that have the ability to copy their sequences from

one location in the genome and insert themselves into a new genomic position,

causing mutations and changing the genomic landscape at the new integration

site. It is now established that retrotransposons are endogenous mediators of

somatic mosaicism in the brain [4–7,10,14]. As remnants of mammalian

genome evolution, retrotransposons may occupy up to two-thirds of the

human genome [15], but most human retrotransposon copies have lost their

ability to mobilize further [16]. However, some elements are still capable of

mobilization, in the germline and in the soma. Over the past decade, several

studies have shown that retrotransposons contribute to intra-individual vari-

ation in neuronal genomes, defining a new layer of neural diversity and
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heterogeneity. Maintenance of this complex heterogeneity

may be essential for healthy brain function, while its disrup-

tion may play a role in neurological diseases [17,18]. To

provide a comprehensive understanding of the roles retro-

transposons play in neural function, and their potential

contribution to disease, we will first present an overview of

the active retrotransposon families in humans, their mobiliz-

ation mechanism, and experimental strategies for studying

neuronal retrotransposition.
 g.org
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2. Types of retrotransposons in the human
genome

Retrotransposons are the main class of transposable elements

found in most mammalian genomes. Based on the presence

of long terminal repeats (LTR) in their structure, they are

classified into LTR and non-LTR retrotransposons. The LTR

group consists of ERVs (endogenous retroviruses), which

comprise approximately 8% of the human genome and rep-

resent remnant retrovirus sequences incorporated into the

host germline after ancient viral infections [19,20]. The non-

LTR retrotransposon group is further subdivided based on

the ability of elements to mobilize independently or only

with the machinery encoded by another retrotransposon,

into autonomous and non-autonomous elements, respect-

ively. Long interspersed element 1 (LINE-1 or L1) is the

only autonomous non-LTR retrotransposon in humans. In

addition to its own mobilization in cis, L1 can mobilize in
trans non-autonomous short interspersed element (SINE) ret-

rotransposons. These include 7SL-derived Alu elements,

composite SVA (SINE–variable number tandem repeat–

Alu) elements, and cellular mRNAs, resulting in processed

pseudogenes [21–25]. L1 copies can be over 6 kb in length

and occupy the highest proportion of the human genome

by sequence of all the transposable elements (approx. 17%)

[19]. Alu copies are approximately 300 bp in size and rep-

resent the most abundant transposable element by copy

number (approx. 11% by sequence) [19,26,27]. SVAs are

approximately 2 kb in size, with far fewer copies than L1 or

Alu, and comprise only about 0.2% of the genome sequence

[19,28–30] (figure 1a).

Owing to truncation, deletion, internal rearrangement

and other mutations, the vast majority of human retrotran-

sposon sequences are incapable of further mobilization and

are considered molecular fossils [16]. Computational-,

molecular- and genomics-based studies have to date identified

and catalogued retrotransposons into evolutionary families

and subfamilies. Only a few L1, Alu and SVA subfamilies

remain mobile. Moreover, functional studies have identified

that most retrotransposition-competent L1s are part of a

small group of elements termed Ta (transcribed-active) L1s

[38]. All of the L1s reported to be highly active in vitro to

date belong to the L1-Ta and L1-preTa families [39–42]. Simi-

larly, particular Alu subfamilies, such as AluYa5 and AluYb8

[43], and SVA E, F and F1 subfamilies [19,24,29] have been

identified as the most active in humans. Human ERVs

(HERVs) are considered to be immobile in modern humans,

although a recent study revealed several polymorphic

HERV-K insertions in the global population and a full-

length, intact, insertion with potentially functional open

reading frames (ORFs) [44]. However, it remains unclear
whether this insertion is a recently integrated provirus or has

simply been lost in some individuals.
3. An overview of the retrotransposon
mobilization mechanism

All retrotransposons mobilize via a replication mechanism

involving an RNA intermediate [45]. During this process,

termed retrotransposition, the host polymerase starts the syn-

thesis of an RNA copy of the element and, subsequently, the

RNA is reverse transcribed into DNA by an element-encoded

reverse transcriptase. HERV reverse transcription takes place

in the cytoplasm and the viral DNA is then transported into

the nucleus and integrated into a viral integrase which cata-

lyses insertion of the HERV into its new target site [46]. L1

produces a bicistronic mRNA that is transported to the cyto-

plasm and translated. L1 encodes proteins that present a

strong cis-preference [47], meaning they tend to bind to

their encoding mRNA. This results in the formation of

ribonucleoprotein particles (RNPs) that may localize to cyto-

plasmic stress granules [48,49] or enter the nucleus. In the

case of L1, reverse transcription occurs in the nucleus,

where the L1-encoded endonuclease [33] makes a single-

strand cleavage at the target DNA, exposing a 3’ hydroxyl

group, which is used as a primer for reverse transcription

by the L1-encoded reverse transcriptase [34] (termed target-

primed reverse transcription, or TPRT) [36,37]. TPRT

typically results in L1 insertions with the following sequence

features: insertion at an L1 endonuclease motif (5’-TTTT/

AA), target site duplications (TSDs) and a poly(A) tail

(figure 1b) [33,50,51].

Retrotransposition does not always result in the faithful

duplication of an element, particularly in the case of L1.

Owing to errors during reverse transcription, only approxi-

mately 40% of L1 copies are identical to their source, or

donor, L1 [52]. Also, 5’ truncation, which is a common

characteristic of recent human L1 insertions [19,53], may

occur, likely because of the premature dissociation of the

reverse transcriptase from the L1 mRNA strand during

TPRT. The precise mechanism through which 5’ truncation

occurs is not clearly understood, although it has been specu-

lated that DNA repair may play a role as host DNA repair

factors, such as ATM (ataxia telangiectasia mutated), may

limit the size of L1 insertions [54].

As a result of 5’ truncations, internal inversions or del-

etions [55] and point mutations, only about 80–100 [41,42]

L1 copies are estimated to be able to retrotranspose per aver-

age human genome, with even fewer copies accounting for

most new L1 insertions [41,56–58]. One new L1 insertion is

generated per 100–200 human births [42,59]. By contrast,

3000 L1 copies [60] are estimated to be retrotransposition-

competent in the mouse genome, with at least one in eight

mice harbouring a new L1 insertion [11].
4. Detection of retrotransposon activity in
the healthy brain

Although nearly 70 years have passed since Barbara McClin-

tock’s seminal studies of transposable elements in maize

[61,62], ongoing L1 retrotransposition in modern human gen-

omes was only demonstrated in 1988 [63]. Subsequently,
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endogenous L1 retrotransposition has been described in early

embryonic development, germ cells and various diseases,

such as cancer [63–69]. Insertions arising during early devel-

opment or in cancer cells are likely to undergo clonal

expansion, resulting in a significant proportion of cells har-

bouring a particular insertion. Studying the contribution of

L1 insertions to somatic mosaicism in normal tissues,
however, presents a particular technical challenge, as these

genomic variants may be found only in a limited number

of cells.

Over the past decade, three main tools have facilitated the

discovery and study of L1 retrotransposition in the brain.

Firstly, an engineered L1 reporter construct, previously devel-

oped to recapitulate L1 retrotransposition in cultured cells



Figure 1. (Opposite.) Human retrotransposon families and mobilization mechanism. (a) Types of retrotransposons, their mobilization capacity, size and number of
copies in the human genome. HERV, human endogenous retroviruses consisting of two LTRs; gag, group-specific antigen; pol, polymerase; env, envelope gene; long
interspersed element-1 (L1) structure: 50 untranslated region (UTR) with open reading frame (ORF)0 and promoter activity; ORF1 and ORF2; 30 UTR and poly(A) tail;
SVA structure: CCCTCT hexamer repeats (HR), Alu sequence in reverse orientation (Alu-like); VNTR, variable number of tandem repeats; SINE-R, a short interspersed
element of HERV origin; An, poly(A) tail; Alu structure: a left monomer with internal RNA polymerase III promoter binding sites (A, B boxes); AAA, adenosine-rich
linker; right monomer ending in poly(A) tail (An); processed pseudogene: sequence derived from cellular messenger RNA, which has been reverse transcribed into
DNA and has no introns; target side duplications are shown as white triangles. (b) L1 retrotransposition mechanism as an example of retrotransposon mobilization. A
full-length, retrotransposition-competent L1 is present at one genomic locus (blue box in the left grey chromosome). The L1 encodes two proteins essential for its
mobility, ORF1p (with nucleic acid chaperone activity [31,32]) and ORF2p (with endonuclease [33] and reverse transcriptase [34] activity), as well as an unusual
antisense ORF0 that may facilitate retrotransposition [35]. L1 transcription results in a bicistronic, polyadenylated mRNA (blue rectangle), which is transported to the
cytoplasm for translation. Upon translation, ORF1p and ORF2p (blue spheres) bind to their encoding L1 mRNA in cis and form an RNP complex. Note that the L1
proteins can retrotranspose cellular mRNAs to generate processed pseudogenes, as well as SVA and Alu retrotransposons ( purple, red and yellow wavy lines). Once
the RNP is formed, it enters the nucleus through a still poorly understood process, where a new L1 insertion occurs by target-site primed reverse transcription (TPRT)
[36,37]. During TPRT, the ORF2p endonuclease makes a first and second cleavage (red arrows) in the genomic DNA at the consensus sequence 5’-TTTT/AA [33], and
releases a 3’ hydroxyl (OH) group from which the ORF2p reverse transcriptase initiates reverse transcription of the attached L1 mRNA (indicated by the red dashed
line arrow). The DNA fragment between the two cleavages is highlighted in green to indicate the formation of TSDs. The black dashed arrow indicates completing
synthesis across the second strand of cDNA, resulting in a new L1 copy, and the TSDs, which flank the new L1 copy.
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[50,70], has been used as a functional read-out of L1 retrotran-

sposition in human embryonic stem cell (hESC)-derived

neural progenitor cells (NPCs), rodent NPC cultures and

transgenic animal models [71]. The L1 construct consists of

a human L1 sequence and a gene encoding enhanced green

fluorescent protein (EGFP) in reverse orientation to the L1

transcript. The EGFP gene is interrupted by an intron in the

same transcriptional orientation as the L1. Thus, only cells

with successful L1 retrotransposition events can express

GFP because the EGFP intron is removed from the RNA

intermediate, followed by reverse transcription and inte-

gration into a genomic location. When the L1-EGFP system

is employed in neuronal cultures, GFP co-localizes with neur-

onal markers Map2 and b-tubulin, whereas very little to no

GFP co-localizes with astrocyte or oligodendrocyte markers

[72]. Neurons obtained from transgenic L1-EGFP mouse

brain sections were positive for GFP expression, in a variety

of different brain areas, such as cortex, hypothalamus,

amygdala and hippocampus [72–74]. Although the genomic

location of the engineered L1 transgene may result in

unknown epigenetic effects that do not necessarily recapitu-

late the regulation of endogenous L1 copies, this type of

assay remains a valid tool to understand the effects of L1

and other retrotransposon activity on neural cell function.

With recent advances in genome editing technology [75],

the design of site-targeted reporter constructs, as well as con-

ditional inducible constructs for temporal and cell-specificity,

is more easily achievable and may be instrumental in

dissecting the parameters of retrotransposition in the brain.

Secondly, to estimate the number of L1 copies across

different tissues and brain areas, Coufal et al. [76] developed

a TaqMan quantitative PCR-based L1 CNV assay. This assay

estimated an enrichment of L1 copies in the human brain

when compared with other tissues, with more L1 copies

also found in the hippocampal dentate gyrus than in other

brain areas [4,74,76]. The authors [76] estimated 80 somatic

L1 insertions occurred per neuron. Owing to the high copy

numbers of L1 sequences already present in the genome

[19], this assay offers very limited sensitivity when attempt-

ing to quantify variation in the number of L1 insertions in

somatic tissues. Moreover, the assay does not discriminate

integrated copies generated by TPRT from potential extra-

chromosomal L1 DNAs or any other source of L1 CNV not
arising from retrotransposition [77]. New quantitative PCR

approaches, such as digital droplet PCR (ddPCR), may

prove a better tool to quantify retrotransposon CNV in a

more accurate but still cost-effective manner [78,79].

Thirdly, high-throughput DNA sequencing strategies

have been developed to detect, quantify and resolve L1

insertions. Whole-genome sequencing (WGS) or targeted

sequencing of retrotransposon–genome junctions has been

applied to bulk brain, pooled neurons and whole-genome

amplified (WGA) material from single neuronal nuclei

from post-mortem human brain [4–7,10,80]. Tissues from

other parts of the body, such as liver or blood, have been

used to discriminate somatic and polymorphic insertions

(i.e. insertions found in neurons and absent in non-brain

tissue are annotated as somatic). Databases of known retro-

transposon insertion polymorphisms can also be used to

discriminate novel and known insertions. To fully charac-

terize most new insertions, thorough PCR validation

followed by Sanger sequencing is required [81,82]. One of

the advantages of using high-throughput DNA sequencing

is that it allows not only for detection and quantification of

endogenous L1 variants, but also for resolving the structure

and genomic location of these insertions. Resolving

the structure of a specific insertion is paramount in under-

standing the potential functional impact of the insertion on

the genome.

Providing a valuable orthogonal approach to single-cell

genomic analysis, a recent study used somatic cell nuclear

transfer to reprogramme postmitotic olfactory bulb neur-

ons into enucleated oocytes and cloned the neuronal

genome to produce enough DNA for WGS without the

need for WGA. WGS analysis of the resulting clones

revealed several de novo L1 insertions [14]. These studies

altogether demonstrate that L1-driven somatic mosaicism

can occur in the mammalian brain. However, with

single-cell genomic analysis in its infancy, methodological

variation, including the use of different cell populations as

starting material, has led to estimates ranging from one

L1 insertion per 25 neurons [5] to 13.7 L1 insertions per

neuron [10]. Therefore, although these studies offer

strong evidence of L1 retrotransposition in the brain, the

frequency of retrotransposition in neural cells requires

further investigation [83].
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5. Is there a temporal niche for
retrotransposition in the brain?

Retrotransposition in the brain could occur at any stage of

life, from early brain development to brain maintenance

and decline during adulthood, and also influence neural

diversity and survival (figure 2a). Neural diversity arises

during early embryogenesis through the spatial and temporal

patterning of neuroblasts and neuronal progenitor cells.

A complex network of gene expression determines a particular

cell type-specific progenitor domain and fate [84]. Expression

of pan-neuronal genes marks the beginning of neurogenesis

and specific TFs are required for neuronal differentiation.
Differentiating neurons migrate, grow axonal processes and

later form synapses. Various signalling molecules, TFs and

cell receptor molecules tightly control this development [85].

Although the bulk of neurons are generated during embryonic

neurogenesis, neurons are also born in specific areas of the

postnatal brain, such as hippocampus, olfactory system and

amygdala [86,87]. An estimated 700 neurons are renewed in

the human hippocampus daily [88]. Whether retrotransposi-

tion occurs during adult neurogenesis, or during embryonic

development, in neuroblasts, committed neural progenitors,

or in mature neural cells, determines the number of somatic

L1 insertions harboured by a given cell. The spatio-temporal

parameters of somatic L1 retrotransposition therefore will
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likely determine the number of cells that are mosaic for a par-

ticular insertion and, most importantly, will govern the overall

impact an individual insertion may have on brain activity

(figure 2b).
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5.1. Retrotransposition in embryonic and adult
neurogenesis

Over a decade ago, Muotri et al. [72] presented the first evi-

dence that L1 retrotransposons can mobilize during

neuronal differentiation. Using a human L1-EGFP reporter

system, L1 expression was observed both in vitro, in rodent

primary hippocampus-derived NPC cultures, and in vivo, in

transgenic mice. L1 expression in transgenic mice was

observed as early as embryonic day (E) 12.5, when the first

waves of immature differentiated neurons appear in the

brain [72]. These data were later corroborated and advanced

by Coufal et al. [76] in a study reporting L1 reporter activity

and endogenous L1 mRNA expression in human NPCs

either isolated from fetal brain or derived from hESCs. The

preference of retrotransposition for proliferating progenitor

cells may be related to the cell cycle. Several studies reported

an elevated rate of L1 retrotransposition in dividing cells

which suggests that, although non-dividing cells can accom-

modate L1 retrotransposition [12,89], the cell cycle may

promote efficient retrotransposition [90–92]. The mechanism

through which the L1 RNP enters the nucleus is not well

understood. However, live-cell imaging experiments tracking

an L1 reporter construct during cell cycle progression indicate

that L1 enters the nucleus as the cell starts to divide, presum-

ably facilitated by nuclear envelope disassembly during

mitosis [92].

Another explanation for L1 activity in proliferating NPCs

may be a more relaxed chromatin state. A relaxed chromatin

state is correlated with pluripotency and proliferation, and

differentiated cells have more condensed chromatin than pro-

genitor cells [93]. Open chromatin has been assumed to

facilitate L1 activation. By using a transcription activator-

like (TAL) effector to target different parts of a mouse L1,

which was then fused with a transcriptional activator

domain, a recent study demonstrated that L1 transcription

directly impacts global chromatin accessibility in the early

mouse embryo [94]. L1 transcriptional activity to maintain

chromatin openness may be a prerequisite for normal devel-

opment of the early embryo [94] and it will be interesting to

further extend this study into later developmental stages and

in the context of neurodevelopment.

Finally, TFs can stimulate L1 to retrotranspose during

neuronal differentiation. Sex determining region Y-box 2

(SOX2), which is expressed in stem cells and neural progeni-

tors, and is essential in maintaining a proliferative state, can

bind to the 5’ UTR of L1 and repress promoter activity [72].

During neuronal differentiation, when SOX2 is downregu-

lated, L1 can become active [72]. Concomitantly, members

of the Wnt signalling pathway such as wingless-related inte-

gration site family member 3a (WNT3a), which promotes

neurogenesis, can also stimulate and increase L1 trans-

cription, providing a window of opportunity for L1

mobilization to occur in differentiating neurons [73]. Hence,

the shifting epigenetic and transcriptional landscapes of neu-

rogenesis may provide a unique situation for somatic

retrotransposition to occur in the brain.
5.2. Retrotransposition in postmitotic neurons
If we accept that endogenous L1 mobilization can occur

during adult neurogenesis, can it also occur in postmitotic

neurons? This is a fundamental question because the lifespan

of mature neurons can be as long as a human lifespan, and

therefore, any potential for somatic retrotransposition in

this context may lead to the largest absolute accumulation

of new L1 insertions found in the brain. Crucially, Kubo

et al. [89] showed in 2006 that engineered L1 retrotransposi-

tion can occur in non-dividing human fibroblasts and

hepatocytes and, much more recently, Macia et al. [12] con-

firmed that this was also true for postmitotic neurons.

Macia et al. compared the retrotransposition of a hybrid ade-

noviral L1-EGFP vector in dividing versus non-dividing

neural cells by infecting NPC cultures with the L1 reporter

and concomitantly adding 5’-bromo-2’-deoxyuridine

(BrdU), which labels dividing cells. Immunostainings of dif-

ferentiated NPC cultures infected with L1-EGFP at 31 days

post-NPC differentiation showed the presence of neurons

expressing only EGFP but not the cycling marker, BrdU.

When comparing the number of integrated L1-EGFP copies

in cultures infected with the L1 reporter at day 0 (multi-

potent NPC) versus day 31 of differentiation (in mature

neurons), a sixfold increase in L1-EGFP copies was observed

by qPCR against the EGFP splice junction in mature neurons,

even when correcting for differences in proliferation rate [12].

This was an astonishing result, as it supports speculation that

not only do mature neurons support retrotransposition, but

also retrotransposition occurs at even higher rates in neurons

than in proliferating neural progenitors. The study relied

heavily on qPCR detection of EGFP copies, and used an

in vitro assay to compare dividing versus non-dividing

neural cells. Going forward, it will be interesting to address

this question in vivo, perhaps by using an inducible knock-

in reporter model. Furthermore, it would be very interesting

to explore in detail the mechanisms through which retro-

transposons escape epigenetic silencing and mobilize in

postmitotic neurons.
6. Is retrotransposition necessary for
healthy brain function?

It is not established whether retrotransposition in the neural

genome is part of normal brain function. It is however plaus-

ible that, if retrotransposons did contribute to normal brain

function, it would be via altered splicing and DNA methyl-

ation of genes, with these being routes to perturb the

transcriptional output of cells. For example, pseudogene tran-

scripts can carry microRNA (miRNA) recognition sites and

facilitate degradation of their target miRNAs, acting as com-

petitive miRNA targets to the miRNA targets of their parent

genes [95]. Such pseudogenes carrying miRNA recognition

sites are present in temporal lobe neurons, where they may

play an important role in regulating the expression of

miRNAs [96]. Somatic pseudogene insertions in the brain, if

found, may therefore regulate gene regulation as miRNA

‘sponges’ [97]. In another example, experiments using L1-

EGFP transgenic rodents, which were either sedentary or

allowed to voluntarily run, demonstrated that exercise

increased the total number of newborn hippocampal neur-

ons, which correlated with an increase in engineered L1
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retrotransposition [98]. However, it remains unclear whether

the increase in GFP was due to a greater number of insertions

in the running mice or an activation of GFP expression from

previously silenced L1-EGFP insertions, due to changes in the

epigenetic landscape. Nevertheless, as the hippocampus is an

important area for brain structural plasticity, being involved

in learning, memory as well as stress regulation, retrotranspo-

sition in hippocampal neurons could potentially contribute to

neuronal plasticity. Whether retrotransposon insertions can

actively contribute to neuronal physiology, and thus impact

behaviour, is still debatable, as to date no functional analyses

have been published in this area.
en
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7. Retrotransposition-induced genomic
alterations in neuronal genes and their
functional consequences

Retrotransposon insertions can significantly alter protein-

coding and regulatory regions of the genome, and thereby

affect gene expression and other cellular outputs [63,68,99–

103]. L1 insertions can occur within neuronal genes, and

therefore have the potential to change the structure of genes

or how highly they are expressed [4,7,10,72,99]. The conse-

quences of an intragenic L1 insertion for a cell depend on: (i)

the characteristics of the insertion (full-length or 5’ truncated

L1, sense or antisense to the gene; internally inverted and

deleted); (ii) the locus where it integrates; and (iii) the ability

of the host cell to silence or compensate for the effects of the

L1 insertion [104,105]. The various routes by which L1 inser-

tions can lead to gene expression changes have been

reviewed previously [106–108]. L1 insertions can delete

sequences at the target site [52,109]. In some cases, these del-

etions can be quite large, such as the 46 kb deletion reported

for the PDHX gene encoding pyruvate dehydrogenase,

which results in pyruvate dehydrogenase deficiency, a neuro-

degenerative disorder [110]. Genomic sequences flanking the

source L1 5’ or 3’ end can be transduced along with the L1

to the new integration site, potentially leading to exon

shuffling and new genes [111]. Recombination can occur

between retrotransposons, causing deletions, duplications or

rearrangements in genes [112]. Transcriptional stop sites and

polyadenylation signals can be introduced by new retrotran-

sposon sequences, leading to premature transcriptional

termination [99,113]. An antisense promoter located in the L1

5’ UTR can also create new transcription start sites for genes

upstream of the L1 [35,114–116], meaning that both intragenic

and intergenic L1 insertions may alter gene expression.

New L1 insertions can lead to aberrant transcriptional spli-

cing [117–121]. Two prominent examples of this are provided

by mice bearing spontaneous mutations with neurological

phenotypes: the Spastic and Orleans reeler mice. Firstly, the

Spastic mouse harbours a germline full-length L1 insertion

into a non-coding region of the glycine neurotransmitter recep-

tor b (Glyrb) gene which leads to aberrant splicing of the

pre-mRNA by exon skipping, thus resulting in reduced intact

subunit b expression in the brain [118,119]. As the b subunit

is required for glycine receptor protein assembly, this insertion

leads to a decrease in glycine receptors in the brain and a com-

plex motor deficit phenotype. Secondly, the Orleans reeler

mouse incorporates a full-length L1 insertion into a coding

region of the Reelin (Reln) gene, which also leads to exon
skipping and a frame shift, in this case generating a 220 bp del-

etion of the Reln mRNA, and leading to inefficient secretion of

Reln truncated protein [120,122,123]. As Reln is essential for

neuronal migration and cortical lamination, deficiency in its

secretion leads to a severe impairment of neuronal migration

and, as a consequence, cortical and cerebellar delamination.

Subsequent neurological symptoms in Reln mutant mice reca-

pitulate the phenotype seen in patients with lissencephaly

caused by other Reln mutations [124]. Hence, de novo L1 inser-

tions arising in the germline can alter genes expressed in the

brain and cause a neurological phenotype, suggesting that

similar mutations arising in neurons have the potential to

generate a functional change.
8. Retrotransposon regulation and
environmental factors impacting
retrotransposition

8.1. Locus-specific regulation of long interspersed
element 1 retrotransposition

Retrotransposition depends on a mobile element’s intrinsic

ability to ‘jump’, and its host cell’s capacity to defeat this

mobilization. Despite their significant presence in the

genome, almost all human L1 copies are 5’ truncated, or con-

tain internal mutations and rearrangements, and are not able

to mobilize. A few L1 copies are full length, remain transcrip-

tionally active and have intact ORFs and therefore have the

capacity to act as source, or donor, elements in a cycle of retro-

transposition. An even smaller subset (approx. 6 L1s per

individual genome) retrotranspose efficiently in vitro when

tagged with a fluorescent or selectable marker [50,70] and are

referred to as ‘hot’ donor L1s [41,42], although retrotransposi-

tion efficiency can vary significantly in different cell types. Hot

L1s tend to be the most recently acquired L1 copies in the

genome, have very low sequence divergence from the L1 con-

sensus sequence and are polymorphic in the population (found

in some individuals but absent in others) [41]. If a cell type sup-

ports a high L1 retrotransposition rate, is this due to the activity

of a few hot donor L1s, or is it the result of L1 mRNAs being

widely expressed in line with concerted, genome-wide dys-

regulation? To address this question, Philippe et al. [105]

recently designed an assay that discriminated near-identical

donor L1s by mapping the 5’ and 3’ genome junction

sequences of all of the potentially active donor L1s in a set of

somatic cell lines and intersecting these data with transcrip-

tional and epigenetic signatures. The authors found that

donor L1s were generally inactive, with a limited number

active in each of the cell lines examined. These results

suggested cell-type-specific activity of retrotransposition-

competent L1s, presumably as only some L1s escaped silencing

in each cell type. However, a previous study [125] identified a

large number of L1s that were actively expressed in multiple

hESC lines, suggesting that patterns of donor L1 activation

may differ in pluripotent and differentiated cells, albeit with

a different approach in each study.

8.2. Retrotransposon silencing mechanisms
As retrotransposition events can cause such large effects on

gene expression, cell function and ultimately organism
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fitness, several mechanisms exist to limit and regulate L1

mobilization in germ and neural cells. These mechanisms

have been reviewed comprehensively [126,127]. We will

focus here on mechanisms thought to regulate retrotransposi-

tion during neural cell differentiation, a process that must be

tightly regulated during critical stages of brain development,

as differences have been observed in retrotransposition effi-

ciency between proliferating NPCs and postmitotic neurons

[12,76]. It is known that different DNA methylation patterns

are present across neurodevelopmental stages [128]. Presum-

ably, dynamic methylation during developmental processes,

such as neuronal differentiation, can offer windows of oppor-

tunity for retrotransposition to occur [76]. Additionally,

different neuronal subtypes (such as GABAergic inter-

neurons and glutamatergic projection neurons from the

prefrontal cortex (PFC)) are known to present differences in

their methylation patterns [129]. A recent study investigating

methylation of the L1 5’ UTR, which is a critical predictor of

L1 promotor activity [76,130], found no differences in the

levels of methyl-cytosine and 5-hydroxy-methyl-cytosine

across frontal cortex, hippocampus, cerebellum and basal

ganglia regions in the adult mouse brain [131]. Nevertheless,

subtle differences in L1 methylation state across neuronal

types and brain areas could potentially be missed when

analysing bulk tissue samples.

Several epigenetic factors are known to repress L1. For

example, methyl-CpG-binding protein 2 (MeCP2) is present

ubiquitously in the body and in higher abundance in

mature neurons. MeCP2 binds 5-methyl-cytosine residues

in CpG dinucleotides and interacts with histone deacetylase

protein (HDAC) and transcriptional SIN3A corepressor com-

plexes to repress transcription [132–134]. MeCP2 knockout

mice show an increase in L1 promoter activity consistent

with MeCP2 functioning as an L1 repressor [74,135]. Valproic

acid inhibition of HDAC1 enhances the transcriptional

activity of L1 [136], indicating that HDAC1 is also involved

in L1 repression. Another deacetylase suggested to inhibit

L1 is mono-ADP ribosyltransferase enzyme, or Sirtuin 6

(SIRT6), that was shown to localize to the L1 promoter

[137]. SIRT6 is expressed in neurons and appears to be dis-

placed in oxidative stress conditions and during ageing

[138]. Although L1 is repressed by these epigenetic mechan-

isms, the brain appears to exhibit lower L1 methylation

than found for other tissues, such as skin [76].

In addition to epigenetic regulation, retrotransposon

activity can be regulated by specific TFs, such as yin yang 1

(YY1), runt-related transcription factor 3 (RUNX3), SOX2

and tumour protein p53 (p53). YY1 is a zinc finger protein

expressed ubiquitously in the brain. It is critical for regional

patterning of the brain and neuronal differentiation, as it

regulates genes including Otx2 and Engrailed 2 [139–141].

YY1 positively regulates L1 by directing the RNA polymerase

II complex to its proper binding site [142,143]. RUNX3, which

is involved in neurogenesis, development and survival of

proprioceptive neurons, also positively regulates the L1 pro-

moter [144–146]. Conversely, the TF SOX2, involved in the

maintenance of the multi-potent state of neural stem cells

(NSCs), has been shown to inhibit L1 transcription

[72,73,76,147–149]. This is also the case for p53, a master reg-

ulator of cell cycling that is involved in neural proliferation

and differentiation (reviewed in [150]). p53 may suppress

L1 retrotransposition through its involvement in H3K9 tri-

methylation (H3K9me3), a silencing marker, at the L1 5’
UTR [151,152]. As new L1 insertions carry TF binding sites

and potentially attract epigenetic suppression [153], the inte-

gration of an L1 into an intron or an intergenic region

immediately upstream of a protein-coding gene can alter

the expression pattern of that gene. L1 insertions are thought

to be particularly harmful if oriented in sense to the gene,

based on a depletion of these insertions from the human

population [99,154], and also the length of the insertion

may influence its impact [99]. Host factors, such as apolipo-

protein B mRNA editing enzyme catalytic subunit 3A

(APOBEC3A) [155], or DNA repair factors such as ATM

[54], can therefore counteract the impact of L1 at the insertion

site by limiting the length of L1 insertions [156]. Hence, even

if the host cell fails to prevent the integration of a new L1

copy, it may mitigate the potential consequences that

L1 insertion has upon the genome.

8.3. Environmental factors impacting retrotransposition
Numerous studies have proposed that environmental factors

may trigger hyperactivation of L1 and other retrotranspo-

sons. However, most of these studies are preliminary and

the experiments have been largely performed on cell lines.

For instance, heavy metals such as mercury, nickel and cad-

mium seem to increase L1 retrotransposition in HeLa and

neuroblastoma cells [157–159], and so does oxidative stress

[160]. Pollutants such as benzo[a]pyrene (BaP), a polycyclic

aromatic hydrocarbon ubiquitously found in grilled meats,

tobacco smoke, vehicle exhaust, domestic wood and coal

fires, have also been found to be involved in L1 retrotranspo-

sition [161]. Similarly, an L1-lacZ retrotransposition assay

showed that UV light and heat-shock induces an increase

in b-galactosidase activity in tumour cell lines [162]. The

increase in L1 activity as a result of environmental insults

may occur via an indirect pathway, for example, L1 retrotran-

sposon may leverage the DNA double-stranded breaks

induced by heavy metal toxicity to mobilize and insert at

new genomic locations. Indeed, Morrish et al. [163] described

an endonuclease-deficient engineered L1 that could readily

retrotranspose in cell lines lacking DNA repair mechanisms.

However, Farkash et al. [164] reported no increase in

retrotransposition of an endonuclease-deficient L1 after appli-

cation of gamma radiation, which is known to induce DNA

double-strand breaks. It therefore remains unclear whether

L1 can easily integrate, through an endonuclease-indepen-

dent mechanism, at preformed DNA double-strand breaks.

Alternatively, the cellular machinery could use L1 to induce

apoptosis or repair DNA damage through a compensatory

mechanism [161,163,165]. Although these environmental

insults are known to impact neurogenesis and brain function,

a link between these factors and an increase in retrotranspo-

sition in neurons or brain tissue has not been formally

demonstrated in vivo.
9. Retrotransposition in neurological
disease

Retrotransposition in the early embryo and committed germ-

line can result in heritable mutations that cause genetic

disease [11,63]. Several retrotransposon insertions involved

in genetic neurologic diseases have been reported to date

(table 1). As stress-responsive elements, retrotransposons



Table 1. Studies associating retrotransposons with neurological disease. Here, we consider association as a study having shown that a retrotransposon insertion,
or insertions, may cause a disease, or the study having reported elevation of retrotransposon copy number or mRNA level in the brain tissue of affected
individuals when compared with healthy individuals.

retrotransposon

neurological disease

insertions activity (mRNA levels, CNV, biomarkers)

HERV multiple sclerosis [166 – 168]

3q13.31 microdeletion syndrome [169]

amyotrophic lateral sclerosis [170,171]

multiple sclerosis [166 – 168,172]

schizophrenia [173 – 176]

bipolar disorder [173,175,177]

HIV-associated dementia [178]

major depression [177]

autism [179]

ADHD [180]

L1 pyruvate dehydrogenase complex deficiency [110]

Fukuyama-type congenital muscular dystrophy [181]

neurofibromatosis type I [182]

ataxia with oculomotor apraxia 2 [183]

glioblastoma [184,185]

schizophrenia [176]

ataxia telangiectasia [54]

Coffin Lowry syndrome [186]

major depression [187,188]

schizophrenia [187 – 189]

Rett syndrome [74]

autism [190]

cocaine addiction [191]

post-traumatic stress disorder [192]

Alu autosomal dominant optic atrophy [193]

adrenoleukodystrophy [194]

neurofibromatosis type I [182,195]

lipoprotein lipase deficiency [196]

spastic paraplegia [197,198]

Hunter disease [199]

Menkes disease [200]

Walker – Warburg syndrome [201]

Lesch – Nyhan disease [202]

glycogen storage disease type II [203]

post-traumatic stress disorder [192]

SVA neurofibromatosis type I [204]

X-linked dystonia-parkinsonism [101 – 103,205]

Fukuyama muscular dystrophy [206]

n.a.

processed pseudogenes spinal muscular atrophy [207] n.a.
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could be activated by an abnormal neural cell environment,

and thereby generate somatic insertions with the potential

to influence neurological diseases of developmental and

degenerative origin. Early developmental stress factors, as

well as environmental insults occurring later in life, are

major risk factors for developing neuropsychiatric and neuro-

degenerative disorders [208]. Although many studies report

elevated retrotransposon copy numbers, mRNA levels or ret-

roviral markers in neurological diseases, to date there are

essentially no confirmed causative links established between

any neurological condition and somatic retrotransposition.

Here, we present an overview of the most relevant findings

in this area from L1 and Alu data. The implication of

HERVs in neurological disease, such as multiple sclerosis,

schizophrenia and bipolar disorder, has been recently
reviewed [178,209,210]. The involvement of SVA retrotran-

sposons in neurological disease has also been recently

reviewed [211,212]. Processed pseudogenes in the context of

neuropathology have not been studied extensively, to our

knowledge.

9.1. Neurodevelopmental and psychiatric disease
A prominent example of a neurodevelopmental disorder that

has been linked to retrotransposon activity is Rett syndrome

(RTT). RTT is a progressive, severe neurodevelopmental dis-

ease associated with a mutation in the MeCP2 gene [213].

MeCP2 globally regulates methylated DNA and, as men-

tioned above, has been shown to repress L1 transcription

and retrotransposition [74,135]. Mice lacking functional
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MeCP2 exhibit elevated L1 mRNA expression and L1 copy

number in brain [74]. Increased retrotransposition of the L1-

EGFP reporter has been observed in MeCP2 mutant rat

NSC cultures and transgenic mice [74]. Elevated L1 mRNA

abundance and L1-EGFP reporter activity were also found

in NPCs differentiated from induced pluripotent stem cells

(iPSCs) derived from RTT patient fibroblasts [74]. However,

it remains unclear whether susceptibility to increased L1 ret-

rotransposition in RTT patients can act as a driving force for

disease phenotype or progression, or is a peripheral outcome

of MeCP2 mutation.

Psychiatric diseases, such as autism, schizophrenia and

bipolar disorder, have also been linked with retrotransposon

activity [177,179,187,188,190–192]. The aetiology of these dis-

orders involves polygenic and environmental risk factors.

Recreational drugs that cause addiction, such as meth-

amphetamines (METH) and cocaine, are major risk factors

for the development of psychiatric disorders [214,215] and

have been reported to affect L1 retrotransposition in cell

lines and rodent brains [216,217]. One study reported elev-

ated L1 mRNA and ORF2p levels after METH exposure in

rat neurogenic areas [217]. Both METH and cocaine can

induce L1 retrotransposition in cultured neuroblastoma cell

lines, as determined by L1-EGFP [217] and L1-neomycin

reporter assays [216]. In cell culture, METH and cocaine do

not induce DNA breaks, as revealed by the absence of

gamma H2A histone family X (H2AX) phosphorylation at

serine 139, a marker for double-strand DNA breaks [216].

Instead, L1 mobilization in response to METH and cocaine

treatment may occur via the cyclic AMP response element-

binding protein pathway mediating ORF1p access to chroma-

tin [216]. In a recent study, Doyle et al. [191] sought to further

test the potential link between L1 insertions and cocaine in

brain tissue of cocaine addicts and controls. The authors

employed a TaqMan ddPCR assay and found no significant

increase in the L1 mRNA transcript levels in the cocaine

group [191]. WGS performed on pools of neuronal and

non-neuronal nuclei, as well as blood samples from cases

and controls, revealed no significant increase in the number

of L1 insertions in cocaine samples compared with controls

[191]. The authors reported gene ontology terms, potentially

important for cocaine signalling pathways, to be enriched for

genes harbouring L1 insertions found in the cocaine group

and not observed in the control. However, the study had sev-

eral caveats which could be addressed in future research.

Samples were pooled across control or case individuals, rely-

ing on a ddPCR assay to determine the allele frequency of

insertions in each individual. Furthermore, insertions were

detected based only on the 3’ end of L1 and 100 nt single-

end Illumina reads, and therefore were not fully resolved

and characterized. How and whether these new insertions

ultimately contribute to addiction is still very much unclear.

The relevant studies have to date not incorporated single-

cell genomic analysis with full characterization of candidate

somatic insertions.

Increased retrotransposon copy number and mRNA

levels have been reported in schizophrenia and depression

[187,192]. Bundo et al. [187] revealed a significant increase

in L1 ORF2 copy number in neurons isolated from schizo-

phrenia PFC when compared with matched control

neurons. This result was replicated in iPSC-derived neurons

from patients affected by 22q11 deletion, a mutation found

in a number of schizophrenia patients and considered a
high genetic risk factor [218]. A consistent increase in L1

copy number was also observed in the PFC tissue of two

established schizophrenia animal models (i.e. maternal

immune activation induced by polyinosinic : polycytidylic

acid (PolyI : C) and epidermal growth factor (EGF)) [187].

WGS performed on neuronal nuclei and liver samples

revealed no increase in L1 insertion number in patients

when compared with controls. The authors reported that

the L1 insertions in schizophrenia patients were more fre-

quently present in genes important for synaptic function

and schizophrenia-related genes [187]. However, the inser-

tions were not validated and characterized. Moreover,

many of the brain-specific insertions appeared from inactive,

old L1 subfamilies, which could not have accounted for de

novo retrotransposition. Another study reported significant

L1 promotor hypomethylation in the PolyI : C model of

maternal immune activation, which could explain elevated

L1 transcription [219]. Very recently, Bedrosian et al. [79] pro-

posed that low maternal care, another risk factor for

schizophrenia and other psychiatric disorders, may elevate

L1 retrotransposition in the hippocampus. This study,

based largely on a qPCR L1 CNV assay, estimated higher

L1 copy number and transcript levels in mice after low

maternal care when compared with those reared in high

maternal care conditions. The authors reported no change

in neurogenesis between the two groups. However, the elev-

ated L1 transcript levels correlated with hypomethylation of

L1 at a YY1 TF binding site [79]. As a qPCR assay cannot

prove L1 integration, it remains unclear whether the differ-

ence in L1 copy number and transcript abundance was

reflected by an increase in retrotransposition. Consistent L1

upregulation across various schizophrenia experimental

systems indicates a strong association between disease

phenotype and L1 activity, although it remains unclear

whether L1 is a driver or a passenger with respect to

neuropathology and, again, single-cell genomic analyses sup-

porting elevated L1 mobilization, as opposed to L1 CNV,

have yet to be published.

Even if elevated somatic retrotransposition ultimately is

not found to occur in a given neurological condition, a mol-

ecular signature of L1 regulatory disruption may indicate a

wider landscape of epigenome abnormality, and prove

useful as a diagnostic tool. For example, altered L1 and

Alu epigenetic regulation has been reported in post-

traumatic stress disorder (PTSD), an anxiety condition

characterized by persistent re-experiences of a past trau-

matic event or events [192]. PTSD patients within a cohort

of military personnel assessed post-deployment showed

hypermethylation of L1 and Alu in serum when compared

with healthy individuals [192]. Non-PTSD post-deployment

individuals also exhibited a hypermethylation pattern when

compared with the same individuals pre-deployment. These

two observations are intriguing and might suggest an adap-

tive stress response mediated by retrotransposon repression

or pre-existing methylation in PTSD cases compared with

controls [220]. These findings could be buttressed by

experiments performed using animal models where L1

methylation and CNV could be analysed in brain tissue.

Overall, a theme has emerged of L1 activation in a wide

range of neurological disorders. More research is required

in this area to understand whether there is a functional con-

sequence of L1 mobilization in schizophrenia and other

psychiatric disorders.
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9.2. Neurodegeneration
Neurodegenerative conditions, such as Parkinson’s disease,

Huntington’s disease and Alzheimer’s disease, represent a

group of nervous system disorders characterized by the selec-

tive death of neuronal subsets in particular brain regions

[221]. Experimental data showing somatic retrotransposition,

or even the broad involvement of retrotransposons, in neuro-

degeneration are quite scarce. To speculate, dysfunctional

epigenetic silencing, deficient DNA repair and oxidative

stress could all lead to retrotransposon activation associated

with neuronal degeneration or to the progression of degen-

erative processes. As an instructive example, L1 copy

number was found via a qPCR-based assay to be elevated

in hippocampal neurons from ataxia telangiectasia patients

[54]. These patients presented a loss of function mutation in

the ATM gene encoding a serine/threonine kinase [222],

which leads to neuronal degeneration [223]. ATM responds

to double-stranded DNA breaks by phosphorylating down-

stream factors and activating DNA damage checkpoints,

thus leading to cell cycle arrest and to the repair of damaged

DNA or p53-mediated apoptosis [223]. ATM mutation in cul-

tured human NPCs and ATM knockout in L1-EGFP mice

significantly increased L1-EGFP retrotransposition, measured

by the number of GFP-positive cells, without affecting L1

promoter activity or endogenous ORF1p levels, and with

no change in cell division rates or survival [54]. Notably,

longer L1 insertions appeared to occur in ATM mutant cells

[54], potentially owing to the role of ATM in cellular DNA

repair, which may interfere with host defences against L1 ret-

rotransposition under wild-type conditions. Further analysis,

preferably in vivo, is required to corroborate these results, and

identify the role of ATM in controlling L1 integration.

As many neurodegenerative conditions are associated

with ageing, retrotransposition in neurodegenerative con-

ditions may, in general, reflect conditions encountered in

senescent cells. Accumulation of oxidative DNA damage

and unrepaired DNA, as well as changes in methylation pat-

terns commonly associated with ageing, might lead to

reduced silencing of retrotransposition in the brain. As an

example of this, TAR DNA-binding protein 43 (TDP-43) is a

nucleic acid binding protein involved in transcriptional

repression and RNA metabolism during stress response.

Mutant TDP-43 is usually associated with neurodegenerative

disorders, but it can also be present in healthy elderly people

[224]. Accumulation of TDP-43 in tau-negative and ubiquitin-

positive cytoplasmic inclusions is a neuropathological

hallmark in neurodegenerative conditions, such as amyotrophic

lateral sclerosis (ALS) and frontotemporal lobar dementia

(FTLD) [225]. Transcriptomic analyses performed on brain

tissue obtained from TDP-43 mutant mice and mice expres-

sing human mutant TDP-43 showed an overall increase in

retrotransposon expression [226]. Moreover, surveys of

protein–RNA interactions and gene expression performed

on FTLD brain samples versus matched controls found a sig-

nificantly reduced association of mutant TDP-43 at its target

retrotransposons in patients [226]. Another recent study,

wherein human TDP-43 was expressed in Drosophila brains,

recapitulated these results from patients and mouse models,

demonstrating that TDP-43 dysfunction results in de-repression

of retrotransposons [227]. Interestingly, the expression of

human TDP-43 specifically in fly glial cells led to an early

and significant increase in gypsy ERV transcript levels as
previously reported to be elevated in ageing flies [228].

Human TDP-43 in the fly glia resulted in a high number of

apoptotic nuclei, very significant motor impairment and

shortened lifespan. Knockdown of gypsy ameliorated this

phenotype, suggesting that gypsy may be involved in cell

death, potentially by mediating DNA damage [227].

Many neurodegenerative disorders are strongly linked

with mitochondrial dysfunction. In intriguing recent work,

Larsen et al. [229] put forward the hypothesis that retrotran-

sposons were involved in mitochondrial gene dysfunction

observed in neurodegeneration. Analysis of the retrotranspo-

son sequence content in over a thousand mitochondrial

genes, in conjunction with randomly selected protein-

coding genes, showed an enrichment for Alu within and

adjacent to mitochondrial genes [229]. Previous studies

have identified L1 and Alu retrotransposon insertions in a

number of translocase of outer mitochondrial membrane

genes [4,230,231]. Moreover, Alu insertions in two genes

involved in mitochondria stabilization and function led to

disorders with a neurodegenerative component [193,194].

More studies, in cell culture and animal models, are required

to test if Alu activity can preferentially insert into and induce

mitochondrial gene disruption.
10. Concluding remarks
It is now well established that retrotransposon-driven mosai-

cism can occur in the mammalian brain. Dynamism in TF

activity, and that of other regulatory mechanisms described

to act during embryonic and adult neurogenesis, provides a

temporal and spatial niche amenable to retrotransposition.

Additionally, retrotransposition may not be limited to

NPCs; it may also take place in postmitotic neurons. Further

proof is required to be certain that this can occur in vivo, and

the regulatory mechanisms involved in allowing L1 retrotran-

sposition in mature neurons require further investigation.

Environmental stress, as well as genetic dysfunction in L1

silencing factors, can result in high retrotransposition levels,

and possibly lead to neurological disease. This also requires

extensive investigation, as we lack even basic understanding

of the pathways on which stress factors or dysfunction

in silencing factors can act to impact retrotransposition in

neural cells. Our understanding of retrotransposition in the

brain is still very much in its infancy.

Further advances in single-cell genomics (and perhaps

taking Eric Kandel’s reductionist approach of ‘one cell at a

time’ to focus on very well-defined neuronal subtypes

[232]) to understand the precise timing of retrotransposition,

and its regulation, are required at this point, and will also

advance our knowledge of which neuronal types and

contexts best support endogenous L1 retrotransposition.

Genome-editing tools, such as the CRISPR–Cas9 system

[233], may be employed in the near future to resolve L1

insertions identified in patient samples and introduce

these faithfully into neuronal cultures or animal models, to

evaluate their impact on gene expression and, potentially,

neurobiological phenotype. This approach may prove to be

a viable alternative to the current transgenic approaches

used to study engineered L1 mobilization in the brain, and

would bring us closer to understanding whether endogenous

retrotransposition has an impact upon neurobiology and

neurological disease.
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Torrey EF, Yolken RH. 2001 Retroviral RNA identified
in the cerebrospinal fluids and brains of individuals
with schizophrenia. Proc. Natl Acad. Sci. USA 98,
4634 – 4639. (doi:10.1073/pnas.061021998)

175. Perron H et al. 2012 Molecular characteristics of
human endogenous retrovirus type-W in
schizophrenia and bipolar disorder. Transl.
Psychiatry 2, e201. (doi:10.1038/tp.2012.125)

176. Guffanti G et al. 2016 LINE1 insertions as a genomic
risk factor for schizophrenia: preliminary evidence
from an affected family. Am. J. Med. Genet. B
Neuropsychiatr. Genet. 171, 534 – 545. (doi:10.1002/
ajmg.b.32437)

177. Weis S, Llenos IC, Sabunciyan S, Dulay JR, Isler L,
Yolken R, Perron H. 2007 Reduced expression of
human endogenous retrovirus (HERV)-W GAG
protein in the cingulate gyrus and hippocampus in
schizophrenia, bipolar disorder, and depression.
J. Neural Transm. 114, 645 – 655. (doi:10.1007/
s00702-006-0599-y)

178. Christensen T. 2016 Human endogenous retroviruses
in neurologic disease. APMIS 124, 116 – 126.
(doi:10.1111/apm.12486)

179. Balestrieri E et al. 2012 HERVs expression in autism
spectrum disorders. PLoS ONE 7, e48831. (doi:10.
1371/journal.pone.0048831)

180. Balestrieri E et al. 2014 Human endogenous
retroviruses and ADHD. World J. Biol. Psychiatry 15,
499 – 504. (doi:10.3109/15622975.2013.862345)
181. Kondo-Iida E et al. 1999 Novel mutations and
genotype – phenotype relationships in 107 families
with Fukuyama-type congenital muscular dystrophy
(FCMD). Hum. Mol. Genet. 8, 2303 – 2309. (doi:10.
1093/hmg/8.12.2303)

182. Wimmer K, Callens T, Wernstedt A, Messiaen L.
2011 The NF1 gene contains hotspots for L1
endonuclease-dependent de novo insertion. PLoS
Genet. 7, e1002371. (doi:10.1371/journal.pgen.
1002371)

183. Bernard V, Minnerop M, Bürk K, Kreuz F, Gillessen-
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