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1  | INTRODUC TION

Telomeres are end fragments of chromosomes consisting of thou‐
sands of repeats of the noncoding sequence TTAGGG. Telomeres 
function to protect chromosome ends against genomic instability. 

Telomeres shorten with each cell cycle and contribute to replicative 
senescence when reaching the Hayflick limit (Hayflick & Moorhead, 
1961). Telomerase is a ribonucleoprotein complex, which replenishes 
telomere loss during replication. Telomerase is active at early devel‐
opmental stages but almost completely inactive in somatic tissues 
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Abstract
Inherited genetic variation influencing leukocyte telomere length provides a natural 
experiment for testing associations with health outcomes, more robust to confound‐
ing and reverse causation than observational studies. We tested associations between 
genetically determined telomere length and aging‐related health outcomes in a large 
European ancestry older cohort. Data were from n = 379,758 UK Biobank participants 
aged 40–70, followed up for mean of 7.5 years (n = 261,837 participants aged 60 and 
older by end of follow‐up). Thirteen variants strongly associated with longer telomere 
length in peripheral white blood cells were analyzed using Mendelian randomiza‐
tion methods with Egger plots to assess pleiotropy. Variants in TERC, TERT, NAF1, 
OBFC1, and RTEL1 were included, and estimates were per 250 base pairs increase in 
telomere length, approximately equivalent to the average change over a decade in 
the general white population. We highlighted associations with false discovery rate‐
adjusted p‐values smaller than  .05. Genetically determined longer telomere length 
was associated with lowered risk of coronary heart disease (CHD; OR = 0.95, 95% CI: 
0.92–0.98) but raised risk of cancer (OR = 1.11, 95% CI: 1.06–1.16). Little evidence 
for associations were found with parental lifespan, centenarian status of parents, 
cognitive function, grip strength, sarcopenia, or falls. The results for those aged 60 
and older were similar in younger or all participants. Genetically determined telomere 
length was associated with increased risk of cancer and reduced risk of CHD but little 
change in other age‐related health outcomes. Telomere lengthening may offer little 
gain in later‐life health status and face increasing cancer risks.
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of adults (Collins and Mitchell, 2002). Telomerase activation may 
treat aging‐related diseases and prolong human lifespan (de Jesus 
& Blasco, 2013). Previous studies on adult or old mice have shown 
successes from improving physical function and lifespan without 
increasing incidence of cancer, but the translation from mice to hu‐
mans is unknown (de Jesus & Blasco, 2013).

Telomere length is often approximated using leukocyte telomere 
length, which is easy to extract from blood and highly correlated with 
telomere length in other tissues (Daniali et al., (2013)). Measured 
telomere length has been associated with mortality and aging‐re‐
lated outcomes in humans (Mather, Jorm, Parslow, & Christensen 
2011; Sanders & Newman, 2013; Brown, Zhang, Mitchel, &  
Ailshire, 2018), including cancer (Zhang et al., 2017), cardiovascular 
disease (Haycock et al., 2014), cognitive function, physical perfor‐
mance such as grip strength, sarcopenia, and frailty (Lorenzi et al., 
2018; Zhou et al., 2018), plus biomarkers of lung function, blood 
pressure, bone mineral density, cholesterol, interleukin 6, and C‐re‐
active protein. Observational associations cannot be consistently 
replicated likely due to study populations, measurement methods, 
and statistical modelling (Sanders & Newman, 2013). In addition, a 
number of factors may confound observational associations such as 
sex and race/ethnicity, paternal age at birth, smoking, psychological 
stress, and other psychosocial, environmental, and behavioral fac‐
tors (Blackburn, Epel, & Lin, 2015; Starkweather et al., 2014).

Telomere length has a strong inherited genetic component in hu‐
mans (heritability estimates ranging from 34% to 82% (Broer, Codd, 
& Nyholt 2013). Mendelian randomization (MR) is a powerful sta‐
tistical method to evaluate the causal relationship between an ex‐
posure and an outcome, under certain assumptions (Davey Smith & 
Hemani, 2014). Analogous to randomized clinical trials, MR creates 
groups determined by genotypes, which are inherited at random and 
are independent of confounding factors. In theory, if the groups are 
associated with the outcome, the association is independent of con‐
founders and is via the exposure, assuming no pleiotropy is present. 
MR studies are more robust than observational studies to confound‐
ing effects, measurement errors or bias, and reverse causation (i.e., 
free of downstream effects appearing to be causes).

By applying MR, we were able to study the effect of telomere 
length on aging, with robustness to confounding effects. To date, 
16 inherited genetic variants from genome‐wide association stud‐
ies (GWAS) have been shown to be strongly associated with human 
leukocyte telomere length using European‐descent population sam‐
ples (Haycock et al., 2017). Many of these loci harbor telomerase 
and telomere‐protective protein genes, including TERC, TERT, NAF1, 
OBFC1, and RTEL1 (Codd et al., 2013; Haycock et al., 2017). These 
variants have been used to perform MR, but the focus was on dis‐
eases (Haycock et al., 2017; Zhan et al., 2015). Additionally, previous 
studies tend to be underpowered due to an insufficiently large sam‐
ple size for a small percent of variance (2%–3%) explained by the 
genetic variants (Haycock et al., 2017). The small percent of variance 
affects the power but not validity of the causal inference, if the ge‐
netic variants meet the Mendelian randomization assumptions: (a) 
associated with telomere length, (b) independent of all confounders 

for the association between telomere length and the outcome, and 
(c) independent of the outcome conditional on telomere length and 
all the confounders (Haycock et al., 2017).

In this study, we investigated causal relationships between telo‐
mere length and aging‐related outcomes with the focus on common 
measures of human aging such as grip strength, frailty, and cogni‐
tive function. We analyzed European‐descent participants from UK 
Biobank, with a wealth of genetic and phenotypic data. This study 
was not designed to analyze every aging trait in UK Biobank. Instead, 
we selected traits to cover different aspects of aging, using inputs 
from senior investigators in the team. Cancer, coronary heart dis‐
ease, hypertension, and pneumonia were selected as they were 
common in older adults, but we did not attempt to include every 
individual disease. Disease‐specific MR associations were reported 
elsewhere (Haycock et al., 2017). Our project is focused on aging 
traits and is not powered for diseases that require a longer time to 
accumulate sufficient cases.

2  | METHODS

2.1 | UK Biobank

UK Biobank is a prospective, population‐based study recruiting over 
500,000 participants aged 40–70  years in 2006–2010. The study 
collected extensive genetic and phenotypic data at baseline (recruit‐
ment), and the follow‐up is conducted mainly through linkages to 
death certificates, cancer registries, and hospital records (Bycroft 
et al., 2018). The DNA was extracted from blood samples and was 
genotyped using Affymetrix UK BiLEVE Axiom array for the first 
~50,000 participants and Affymetrix UK Biobank Axiom array for 
the remaining cohort—the two arrays sharing over 95% similarity.

2.2 | Selection of included samples

We focused on European‐descent participants (n  =  451,433) who 
were about 90% of the cohort and were identified using genetic 
principal components analysis, as described in our 2017 publication 
(Pilling et al., 2017). Pairwise kinship coefficients were calculated 
using genome‐wide SNP (single nucleotide polymorphism) data and 
the King software (Manichaikul et al., 2010). One in third‐degree or 
closer pairs were removed to avoid inflation of associations due to 
family correlations. Among 379,758 unrelated, European‐descent par‐
ticipants, 168,310 participants were 60 and older at baseline, which 
increased to 261,837 at the last update. The number of participants 
younger than 60 was 211,448 at baseline and 117,301 at the last up‐
date. By the end of follow‐up, 11,014 of 379,758 participants died.

2.3 | Aging‐related outcomes

We considered the following aging‐related outcomes: (a) parental 
lifespan, (b) age‐related diseases and pains, (c) cognitive function, 
(d) physiological biomarkers, and (e) physical capability. Disease 
outcomes were updated to February 2016. Other outcomes were 
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measured at baseline, including parental lifespan, pains, cogni‐
tive function, physiological biomarkers, and physical capability. 
Mechanisms underlying the studied health outcomes may differ be‐
tween middle‐aged and older adults. Age‐related diseases and con‐
ditions are more likely to be observed in older adults than in younger 
adults. We focused on 60 and older adults at measurements (at 
baseline or at the last follow‐up) for participant's aging phenotypes 
but included all participants and younger adults in sensitivity analy‐
ses. Parental lifespan outcomes were analyzed using all participants 
only, excluding premature deaths (detailed later). A summary of the 
aging‐related outcomes, overall and in 40–60 and 60 and older sepa‐
rately, is provided in Table 1.

2.3.1 | Parental lifespan

Parent's lifespan has been used as a surrogate for offspring's lifes‐
pan (Pilling et al., 2017). Previous studies have showed that offspring 
of long‐lived parents are more likely to live longer and have better 
health outcomes than offspring of short‐lived parents (Dutta et al., 
2013). Parental lifespans were collected by touchscreen survey 
questions, completed by participants at baseline and updated with 
the follow‐up data. Mother's age at death below 57 and father's age 
below 46 were considered premature deaths and set to missing in 
the derivation of parental lifespan outcomes. We used a previously 
published method (Dutta et al., 2013) to fit normal distributions to 
father's age at death and mother's age at death, and the early death 
cutoffs were determined by modal age at death minus 1 standard 
deviation, which was 57 for mothers and 46 for fathers.

We analyzed fathers who died for father's age at death and 
mothers who died for mother's age at death. We analyzed parents’ 
age at death using participants where both parents died, calculated 
as the average of z‐transformed father's age at death and moth‐
er's age at death. The z‐transformation was performed by parent's 
gender. Additionally, we analyzed “both parents top 10% survival” 
comparing participants with both parents reaching the top 10% of 
survival (father reached ≥87 years and mother reached ≥90 years) to 
those with both parents dead before the age of 80. Similarly, we an‐
alyzed “centenarian status of parents” comparing participants where 
the father reached ≥96 years or the mother reached ≥100 years (top 
1% in the 1900 U.S. birth year cohort (Sebastiani, Gurinovich, & Bae, 
2017)) to participants where the father died at <90 years and the 
mother died at <95  years. For both parents top 10% survival and 
centenarian status of parents, we analyzed participants with long‐
lived parents as defined regardless of death status and participants 
where both parents died before the age cutoff(s). Of note, we ex‐
cluded participants whose parental lifespan outcomes were not yet 
known, which may introduce selection bias.

2.3.2 | Age‐related diseases and pains

The definition of successful aging mostly includes three components: 
absence of disease, engagement in life, and maintenance of cogni‐
tive and physical functioning (Fiocco & Yaffe, 2010). We considered A
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common diseases and conditions in older adults, including any can‐
cer (excluding nonmelanoma skin cancers), coronary heart disease 
(CHD: myocardial infarction or angina), hypertension, and pneumo‐
nia. At the baseline assessment, participants self‐reported prevalent 
doctor‐diagnosed diseases. These were combined with hospital ad‐
mission data (April 1997 to February 2016) to identify participants 
with diagnoses of multiple relevant diseases. The disease status was 
confirmed regardless of prevalent cases at baseline or incident cases 
during follow‐up.

We assessed later‐life onset depression, for which there were 
no corresponding diagnosis codes, using a survey question at base‐
line that “Over the past two weeks, how often have you felt down, 
depressed or hopeless?” with the responses of “Not at all,” “Several 
days,” “More than half the days,” “Nearly every day,” and “Do not 
know.” Responses other than “Not at all” were grouped to compare 
against “Not at all.” “Do not know” and no response were excluded 
from analyses (83,460 participants excluded, about 22% of the sam‐
ple at baseline).

Back, hip, and knee pains that had lasted more than 3 months 
were assessed by the survey questions at baseline, for example, 
“Have you had back pains for more than 3  months?” with the re‐
sponses of “Yes,” “No,” “Do not know,” and “Prefer not to answer.” 
“Do not know,” “Prefer not to answer,” and no response were ex‐
cluded from analyses. The exclusion rate was low, less than 0.4% 
(<1,500 participants) across questions.

Frailty was defined as a proportion of accumulated deficits 
reflecting the health state of an individual. We derived the frailty 
index developed by Williams, Jylhava, Pedersen, and Hagg (2018) 
as a measure of frailty, which was validated using UK Biobank data. 
The frailty index (Williams et al., 2018) scores 49 deficits in a wide 
range, mostly diseases and pains (sensory, cranial, mental well‐being, 
infirmity, cardiometabolic, respiratory, musculoskeletal, immunolog‐
ical, cancer, pain, and gastrointestinal). The exact deficits and cod‐
ing can be found in the supplemental material of the original paper 
(Williams et al., 2018). We transformed the frailty index (number of 
deficits) by log(x + 1) function to correct skewness of the distribution 
where 1 was added to avoid infinite values from zero index values. 
Additionally, two items related to cancer, any cancer diagnosed and 
multiple cancers diagnosed, were excluded to create a 47‐item frailty 
index for sensitivity analyses. About 30,000 participants missed one 
or more deficits and were excluded from analyses.

2.3.3 | Cognitive function

Cognitive function can be examined from the domains including 
memory, language, visuospatial function, attention, and executive 
function (Fiocco & Yaffe, 2010). In the present study, we focused 
on reaction time and visual memory errors. The reaction time was 
assessed by a symbol matching game similar to the card game snap 
and was calculated as the average time taken to correctly iden‐
tify a match. Additionally, visual memory errors were measured 
as the number of errors that a participant made to complete a 
pairs matching task where 6 pairs of cards were presented for 3 s 

beforehand. Reaction time was log‐transformed, and visual mem‐
ory errors were log(x + 1) transformed to correct skewness of the 
distributions where 1 was added to avoid infinite values from zero 
visual memory errors.

2.3.4 | Physiological biomarkers

In physiological biomarkers, we included FEV1, FVC, FEV1/FVC 
ratio, heel bone mineral density, hemoglobin concentration, and 
blood pressure. These biomarkers have been used for disease di‐
agnoses and were previously found associated with morbidity and 
mortality. FEV1 and FVC were measured by breath spirometry using 
a Vitalograph Pneumotrac 6800. Heel bone mineral density was 
estimated based on the Quantitative Ultrasound Index through the 
calcaneus. From the index, an estimate is made of bone mineral den‐
sity in grams/cm2.

2.3.5 | Physical capability

In physical capability, we selected falls in the last year, sarcopenia, 
and Fried frailty index. Falls in the last year was assessed by the 
survey question of “In the last year, have you had any falls?”. The 
responses included “No falls,” “Only one fall,” “More than one fall,” 
and “Prefer not to answer.” “Only one fall” and “More than one fall” 
were combined into “≥1 falls,” and “Prefer not to answer” and no 
response were excluded (721 participants excluded, 0.19% of the 
sample at baseline).

Sarcopenia was defined as low hand grip strength and low mus‐
cle mass using the definition from the European Working Group 
on Sarcopenia in Older People (EWGSOP; Cruz‐Jentoft et al., 
2010). The hand  grip strength in UK Biobank was measured by a 
Jamar J00105 hydraulic hand dynamometer as the maximal score 
of measurements from both hands. The skeletal muscle mass was 
measured by the skeletal muscle mass index (Janssen et al., 2000) 
where weight and bioelectrical impedance were obtained from a 
Tanita BC418MA body composition analyzer. A maximal hand grip 
strength of <30 kg for men and < 20 kg for women was considered 
low hand grip strength. Similarly, the cutoffs for low muscle mass 
were 8.87 kg/m2 and 6.42 kg/m2 for men and women, respectively.

Participants were frail according to the Fried frailty index if 
meeting three or more of the five criteria: self‐reported weight 
loss (survey question to ask weight change compared to one year 
ago), self‐reported exhaustion (survey question to ask frequency of 
feeling tired or having little energy over the past two weeks), self‐
reported slow walking pace (survey question to ask usual walking 
pace: slow walking pace defined as 3 miles per hour), low hand grip 
strength, and low physical activity. The lowest 20% of the maximal 
hand grip strength by sex were considered low hand grip strength 
and similarly for low physical activity where the total physical ac‐
tivity was assessed by the short version of International Physical 
Activity Questionnaire (IPAQ; Craig, Marshall, & Sjostrom, 2003). 
Any missing element led to a missing Fried frailty index, and as a 
result, 23,665 participants were excluded from analyses.
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2.4 | Genetic variants

We used the 16 SNPs utilized by Haycock et al. 2017 to investigate 
causal relationships between telomere length and specific diseases. 
They selected SNPs reported on the GWAS catalog with p‐val‐
ues < 5 × 10−8 including top hits from the largest GWAS for telomere 
length using Europeans (Codd et al., 2013). To supplement the list 
with additional potential instruments, they added SNPs with p‐val‐
ues < 5 × 10−8 in a meta‐analysis of six GWASs (9,190 participants of 
European ancestry from Mangino et al. (Mangino et al., 2012) with 
telomere length measured by Southern blotting), as well as other 
GWAS for SNPs with summary statistics available on the GWAS 
catalog. SNPs were excluded if they had a minor allele frequency 
less than 0.05 or significant heterogeneous associations between 
studies.

Among the 16 SNPs, two were not available in the UK Biobank 
(rs12696304 and rs9419958); however, they were in high linkage 
disequilibrium (LD) with other SNPs, which were used as proxies. 
rs1317082 was dropped because it was in perfect LD (r2 = 1) with 
rs10936599. The correlation between SNPs was modeled in associ‐
ation analyses through a correlation matrix of the square root of r2 
(r). r was estimated by LDlink (Machiela & Chanock, 2015) using the 
CEU samples from Phase 3 (version 5) of the 1,000 Genomes Project 
(CEU: Utah Residents (CEPH) with Northern and Western European 
Ancestry).

A final list of 13 SNPs is provided in Table S1 (Supplemental 
Information), including the regression coefficient estimate (Beta) and 
standard error (SE) for the association between the effect allele (EA) 
and telomere length measured by mean leukocyte telomere length in 
base pairs. Beta, standard deviation (SD) change in telomere length 
per copy of the effect allele, was estimated using the summary data 
of Mangino et al. (2012). One SD of telomere length corresponds to 
approximately 650 base pairs (see Supplemental Online Content of 
Haycock et al. (2017) and Table 1 in Mangino et al. (2012), equivalent 
to 26 years of additional aging given that the telomere shortening 
rate in adults is about 25 base pairs per year (Aviv & Shay, 2018).

2.5 | Statistical analysis

In the framework of MR, the association between telomere length 
and an outcome was evaluated using the likelihood‐based method 
by Burgess, Butterworth, and Thompson (2013). Assuming that the 
SNPs are valid instrumental variables, the association between these 
SNPs and an outcome implies a causal relationship between the out‐
come and telomere length. To be valid instrumental variables, these 
SNPs must be associated with telomere length, independent of the 
confounders, and associated with the outcome through their effects 
on telomere length.

The effect of each SNP on mean leukocyte telomere length (SD 
change in telomere length per copy of the allele associated with 
longer telomere length) was previously estimated with adjustment 
for age, sex, body mass index (BMI), and smoking history (Haycock 
et al., 2017). The effect of each SNP was estimated using a linear 

regression model for continuous outcomes and a logistic regression 
for binary outcomes. The frailty index and outcomes to assess cog‐
nitive function were log or log  +  1 transformed to meet the nor‐
mality assumption. All the continuous variables were z‐transformed 
before association analyses. Age at baseline (for outcomes measured 
at baseline) or age at the last update (for outcomes continuously up‐
dated), sex, assessment center, array type, and the first five genetic 
principal components were included in the model to adjust for. The 
adjustment was not exactly the same as that for SNP–telomere 
length associations, which adjusted for BMI and smoking history ad‐
ditionally. Inclusion of covariates not on telomere length–outcome 
pathways is not necessary when genetic variants are valid instru‐
mental variables but improves precision of the causal estimate for 
the effect of telomere length on the outcome. The difference in co‐
variate adjustment in genetic variant–telomere length and genetic 
variant–outcome associations may bias the causal estimate (Davies, 
Holmes, & Davey, 2018). However, we performed sensitivity anal‐
yses adjusting for BMI and smoking status additionally for genetic 
variant‐outcome associations and found very similar results (results 
not shown). The SNP‐exposure (here telomere length) and SNP‐out‐
come (here aging‐related outcomes) association estimates were used 
as the MR inputs, that is, log of odds ratio or SD change in the out‐
come per copy of the allele associated with longer telomere length. 
Additionally, we performed subgroup analyses by sex using men or 
women only. For interpretability, the results in terms of an odds ratio 
or SD change in the outcome were rescaled for an increase of 250 
base pairs, equivalent to the average change in telomere length over 
a decade in the general white population.

2.6 | Sensitivity analysis

For sensitivity analyses on age‐specific effects, we analyzed par‐
ticipants younger than 60 only and a combined group of mid‐age 
(40–60) and older adults (≥60). As self‐reported disease status may 
not be reliable, we analyzed incident cases only, diagnosed during 
follow‐up for diseases with good admission records, that is, cancer, 
CHD, and pneumonia. We applied the inverse‐variance weighted 
(IVW) method assuming a random effects model (Burgess et al., 
2013) and MR‐Egger method (Bowden, Davey Smith, & Burgess, 
2015) to compare to the results from the likelihood‐based method 
and to assess pleiotropy.

In MR‐Egger plots, per allele association with an aging‐related 
outcome (y‐axis) was reported as log of odds ratio per effect allele 
for binary outcomes and SD change per effect allele for continu‐
ous outcomes, based on the allele associated with longer telomere 
length. Similarly, per allele association with mean telomere length 
was measured by SD change in mean telomere length per effect 
allele (x‐axis). The MR‐Egger method estimated the association be‐
tween telomere length and an aging‐related outcome by the slope of 
the linear regression line, reported as log of odds ratio for a binary 
outcome or SD change in a continuous outcome per effect allele. 
Additionally, the intercept estimate was compared with zero to test 
against the null hypothesis of no pleiotropy.
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The MR methods were carried out using the 
MendelianRandomization (Yavorska & Burgess, 2017) R package 
where the LD between SNPs was modeled via a correlation matrix of 
the square root of r2 (r). All the statistical analyses were performed in 
R 3.4.1. We highlight associations with FDR‐adjusted p‐values < 5% 
using adults of 60 and older. Results using 60 and older men or 
women only, participants younger than 60, and all participants are 
also provided.

2.7 | Power analysis

We used the online web tool mRnd (Brion, Shakhbazov, & Visscher, 
2013; http://cnsge​nomics.com/shiny/​mRnd/) to perform MR power 
analyses. The aging‐related outcomes included binary and continu‐
ous outcomes. For binary outcomes, we assumed that the proportion 
of variance in telomere length explained by the SNPs was 2.23%, 
which was calculated based on the percent of variance explained 
by individual, uncorrelated SNPs (Haycock et al., 2017). Power was 
calculated to detect an odds ratio of 1.2 per SD change in telomere 
length (~650 base pairs) at the 1% significance level. One percent 
significance level was used to account for multiple testing. For con‐
tinuous outcomes, we calculated the power for a 0.1 SD change in 
the outcome per SD change in telomere length. Power to detect an 
odds ratio of 1.2 per 650 base pairs is equivalent to power to detect 
an odds ratio of 1.07 per 250 pairs. Similarly, power to detect a 0.1 
SD change per 650 base pairs is equivalent to 0.038 SD change per 
250 base pairs. Aging‐related outcomes with <80% power for the ef‐
fect size were considered low‐powered, including both parents top 
10% survival, centenarian status of parents, pneumonia, depression, 
and Fried frailty (Table 1).

2.8 | Ethics

UK Biobank received an approval from the UK Biobank Research 
Ethics Committee (REC; REC reference 11/NW/0382). All the par‐
ticipants provided written informed consent to participate in the 
study and for their data to be used in future research. This research 
was conducted using the UK Biobank resource, under the applica‐
tion 14631.

3  | RESULTS

Among the unrelated Europeans (n = 379,758), 168,310 (52% women) 
participants were 60 and older at baseline (64.12  ±  2.85  years), 
which increased to 261,837 (53% women, 68.73 ± 4.61 years) by the 
end of follow‐up (February 2016). A total of 11,014 participants died 
during follow‐up (the oldest 78 years old), and the mean follow‐up 
time was 7.5 years (median follow‐up time 7.6 years). A summary of 
aging‐related outcomes, overall and in 40–60 and 60 and older sepa‐
rately, is provided in Table 1. Mother's lifespan (77.37 ± 9.83 years) 
was longer than father's lifespan (72.22 ± 11.05 years). A total of 
6,063 participants with both parents reaching top 10% of survival 

were compared to 66,280 participants with both parents dead 
before the age of 80. Diagnosed disease prevalence tended to be 
higher in men than in women, but women were more likely to suf‐
fer from chronic pains. Physiological functions were similar between 
men and women except bone mineral density level was much lower 
in women. Additionally, men had better physical capability than 
women in general.

3.1 | Mendelian randomization in participants aged 
60 and older

Genetically increased telomere length was associated with higher 
odds of cancer (OR  =  1.11, 95% CI: 1.06–1.16) and hypertension 
(OR =  1.06, 95% CI: 1.03–1.10) per 250 base pair increase in tel‐
omere length (Figure 1). Both traits had similar effect sizes in men 
and women. Genetically increased telomere length was protective 
for CHD (OR = 0.95, 95% CI: 0.92–0.98), and the effect was largely 
driven by men (OR = 0.94, 95% CI: 0.89–0.98) with weak evidence 
for an association found in women (OR = 0.99, 95% CI: 0.94–1.05; 
Figure 1). Additionally, systolic blood pressure was increased by 
0.031 SD (0.61 mm Hg, 95% CI: 0.26–0.99 mm Hg) per 250 base pair 
increase in telomere length, with very similar effect sizes in men and 
women (Figure 2).

Associations with other outcomes did not reach the FDR‐ad‐
justed significance level. Suggestive trends included the following. 
Genetically increased telomere length was associated with the 
likelihood of being depressed (OR =  1.06, 95% CI: 0.98–1.14) and 
increased longevity of parents (both parents top 10% survival with 
OR = 1.06, 95% CI: 0.99–1.14), whereas pneumonia (OR = 0.95, 95% 
CI: 0.89–1.02), hip pain (OR = 0.94, 95% CI: 0.88–1.00), and sarcope‐
nia (OR = 0.93, 95% CI: 0.85–1.02) in men were negatively associated 
with telomere length (Figure 1). Genetically determined telomere 
length was minimally associated with parental lifespan, centenarian 
status of parents, cognitive function, or physical performance in‐
cluding falls, grip strength, muscle mass, and frailty.

3.2 | Sensitivity analysis using 40 to 60 years 
old and all participants

The results using all participants or participants aged 40–60 only 
were mostly similar to the results of adults aged 60 and older 
(Figures 1 and 2). However, the associations with CHD and hyper‐
tension were stronger in older adults than younger adults (Figure 1). 
We analyzed incident cases during follow‐up only using 60 and older 
adults for the disease outcomes of cancer, CHD, and pneumonia. 
The effect sizes were very similar for CHD and pneumonia (CHD: 
OR = 0.95, 95% CI: 0.90–1.00; pneumonia: OR = 0.95, 95% CI: 0.88–
1.03). A slightly lower cancer risk was found using incident cases 
only (OR = 1.09, 95% CI: 1.04–1.13) than from participants ever di‐
agnosed with cancer (OR = 1.11, 95% CI: 1.06–1.16), compared to 
those cancer‐free.

We performed sensitivity analyses using the IVW and MR‐Egger 
methods. The likelihood‐based method and the IVW method gave 

http://cnsgenomics.com/shiny/mRnd/
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very similar results. We used the MR‐Egger method to assess plei‐
otropy (Bowden et al., 2015). There was little evidence for pleiot‐
ropy in the associations with cancer, CHD (Figure 3), or hypertension 
(MR‐Egger_plots.pdf Data S1 in Supplemental Information). The MR‐
Egger plot for systolic blood pressure (MR‐Egger_plots.pdf Data S1 
in Supplemental Information) suggested pleiotropy and little associ‐
ation between telomere length variants and systolic blood pressure. 
Regarding common aging measures, for example, hand grip strength 
and the 49‐item frailty index (Figure 4), a decreasing trend was found 
consistently across methods and there was little evidence of pleiot‐
ropy for low hand grip strength. The MR‐Egger method suggested an 
association with the 49‐item frailty index; however, the association 
came with pleiotropy, and the IVR and likelihood‐based method pro‐
duced minimal associations.

For more details, MR association results using the likelihood‐
based and other methods were provided in Table S2 and “MR‐Egger_
plots.pdf” for 60 and older, Table S3 for 60 and older men, Table S4 
for 60 and older women, Table S5 for participants younger than 60, 
and Table S6 for all participants.

4  | DISCUSSION

We have tested associations between genetic variants linked to 
telomere length and a range of health outcomes focused on human 

aging. We studied a large sample of participants aged 60–70, fol‐
lowed up for a mean of 7.5  years, with good power to detect as‐
sociations. We found that variants associated with longer telomeres 
were associated with cancer, confirming previous findings. We also 
found associations with higher blood pressure and reduced risk of 
CHD, also previously reported. However, associations with common 
measures of human aging, including parental lifespan, two cognitive 
measures and two muscle measures, were all not significant at the 
FDR‐adjusted level.

Our results are similar to the previously reported MR associa‐
tions between genetically increased telomere length and increased 
risk of cancer, hypertension, and decreased risk of CHD (Hamad, 
Walter, & Rehkopf, 2016; Haycock et al., 2017; Helby, Nordestgaard, 
Benfield, & Bojesen, 2017). Compared to the MR associations re‐
ported by Hamad et al. (2016) using the Health Retirement Study 
(HRS) data, the OR per 100 base pairs (unit used in Hamad et al., 
2016) for cancer was 1.04 (95% CI: 1.03–1.06) in UK Biobank and 
1.04 (95% CI: 0.97–1.11) in HRS (n = 3,734); additionally, OR = 1.03 
(95% CI: 1.01–1.04) for hypertension in UK Biobank and OR = 1.04 
(95% CI: 0.96–1.12) in HRS, and OR = 0.98 (95% CI: 0.97–0.99) for 
CHD in UK Biobank and OR = 0.94 (95% CI: 0.88–1.01) for heart 
disease in HRS. Also, we compared the depression results, self‐eval‐
uated depression in UK Biobank (OR = 1.02, 95% CI: 0.99–1.05), and 
self‐reported, doctor‐told depression problems in HRS (OR = 1.00, 
95% CI: 0.97–1.03).

F I G U R E  1   Likelihood‐based Mendelian randomization results 
for the presence versus absence of an outcome: odds ratio (OR) 
per 250 base pair increase in telomere length (average change in 
telomere length over a decade in the general white population). 
Aging traits highlighted in bold if the false discovery rate‐adjusted 
p‐values < 5% using all participants for parental lifespan outcomes 
and using participants aged 60 and older for other aging‐related 
outcomes; All: all participants, 40–60:40 ≤age at measurement <60; 
60+: 60 and older at measurement, Male 60+: men 60 and older at 
measurement, Female 60+: women 60 and older at measurement

F I G U R E  2   Likelihood‐based Mendelian randomization results 
for continuous outcomes: SD change (Beta) in the outcome per 250 
base pairs (average change in telomere length over a decade in the 
general white population). Aging traits highlighted in bold if the 
false discovery rate‐adjusted p‐values < 5%, using all participants 
for parental lifespan outcomes and using participants aged 60 
and older for other aging‐related outcomes; All: all participants, 
40–60:40 ≤age at measurement <60; 60+: 60 and older at 
measurement, Male 60+: men 60 and older at measurement, 
Female 60+: women 60 and older at measurement
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Our findings echoed previous observational studies although 
the reported effect sizes may not be comparable due to scal‐
ing methods. Previous meta‐analyses showed that longer telo‐
mere length was associated with cancer risk (OR  =  1.086, 95% 
CI: 0.952–1.238; Zhang et al., 2017) and protective for coronary 
heart disease (OR  =  1.42, 95% CI: 1.17–1.73) comparing the 
shortest versus longest third of telomere length (Haycock et al., 
2014). Longer telomere length was associated with reduced risk 
of pneumonia (Helby et al., 2017) and minimal associations were 
found with chronic pains (Steward, Morgan, Espinosa, Turk, & 
Patel, 2017), anemia and other hematological parameters (Den 
Elzen et al., 2011), cognitive function (Brown et al., 2018) and 
physical measures including lung function (Brown et al., 2018), 
fracture (Sanders et al., 2009), bone mineral density (Sanders et 
al., 2009), as well as sarcopenia, and frailty (Lorenzi et al., 2018). 
The observational associations with systolic and diastolic blood 

pressures were minimal in HRS (Brown et al., 2018) and National 
Health and Nutrition Examination Survey (NHANES) study 
(Rehkopf et al., 2016). Both studies reported an increasing trend 
in systolic blood pressure with genetically increased telomere 
length. In our study, the mean change in systolic blood pressure 
per 250 base pairs was estimated to be 0.61  mm  Hg (95% CI: 
0.26–0.99 mm Hg), which appears too small to have clinical impli‐
cations, and the association may not be causal, due to pleiotropy, 
suggested by the MR‐Egger plot (Figure 3). In short, we found 
associations with cancer and CHD but not with cognitive and 
physical function. The associations with cancer may be due to 
longer telomeres allowing extended cell proliferation or delaying 
senescence (de Jesus & Blasco, 2013). Other pathways to cellu‐
lar senescence such as DNA damage may play more important 
roles than telomere shortening in aging (Anderson, Lagnado, & 
Maggiorani, 2019).

F I G U R E  3   Mendelian randomization sensitivity analysis 
results for cancer (upper) and CHD (lower). Per allele association 
with cancer: log of odds ratio for cancer per effect allele, allele 
associated with longer telomere length; per allele association with 
CHD: log of odds ratio for coronary heart disease per effect allele; 
per allele association with mean telomere length: SD change in 
mean telomere length per effect allele. Inverse‐variance weighted 
(IVW), likelihood‐based (MaxLik), and MR‐Egger (beta) p‐values 
for associations with telomere length and MR‐Egger (intercept) for 
pleiotropy

F I G U R E  4   Mendelian randomization sensitivity analysis results 
for low hand grip strength (upper) and the 49‐item frailty index 
(lower). Per allele association with low hand grip strength: log 
of odds ratio for low hand grip strength per effect allele, allele 
associated with longer telomere length; per allele association with 
log (49‐item frailty index +1): SD change in log (49‐item frailty index 
+1) per effect allele; per allele association with mean telomere 
length: SD change in mean telomere length per effect allele. 
Inverse‐variance weighted (IVW), likelihood‐based (MaxLik), and 
MR‐Egger (beta) p‐values for associations with telomere length and 
MR‐Egger (intercept) for pleiotropy
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Genetically increased telomere length was not associated with 
parents’ survival. Parental lifespan outcomes are surrogates for the 
participant's survival, as participants in UK Biobank were too young 
at the end of follow‐up (mean age 64.24 years). Early deaths tend to 
be driven by diseases rather than normal aging (58% of deaths due 
to cancer), and more work is required on mortality outcomes with 
longer follow‐ups.

The genetic variants used in MR were associated with mean leu‐
kocyte telomere length in general population samples. These genetic 
variants may not be ideal if aging is related more to shortest telo‐
mere length (Blackburn et al., 2015), although these two measures 
are likely to be correlated. There is evidence that telomere length 
at newborn is more predictive than that in adulthood for lifespan 
(Aviv & Shay, 2018). While the genetic variants were identified using 
adult samples, the associations were adjusted for demographics and 
exposures including age, sex, BMI, and smoking history (Haycock et 
al., 2017).

Our study inevitably has limitations: We have studied Europeans 
aged 60–70 in UK Biobank, where participants tend to be relatively 
healthy volunteers, with somewhat lower health risks than the gen‐
eral population (Fry et al., 2017). As a result, prevalence estimated 
using UK Biobank data may not be generalizable to UK and other 
cohorts. The causal estimate for the effect of telomere length on 
an aging‐related outcome could potentially be biased if UK Biobank 
participation was strongly associated with telomere length and 
aging‐related outcomes (Munafo, Tilling, Taylor, Evans, & Davey, 
2018). We do not have data of those who declined to participate in 
UK Biobank. Indirectly, we tested for the association between the 
genetic risk score associated with longer telomere length and par‐
ticipation of the MRI imaging substudy or online diet questionnaires. 
We found that the genetic risk score was not associated with either 
participation, which suggested that our results may not be greatly 
impacted by selection into UK Biobank. People with shorter telo‐
meres may die earlier, introducing survivor bias into the analyses of 
60‐plus‐year‐olds, but our analyses in the 40‐ to 60‐year‐olds pro‐
duced very similar results. This study is not well powered to study 
longevity of parents and rare diseases and conditions given a short 
period of follow‐up time. Additionally, we have studied baseline 
measures of cognitive and physical function, as data on repeat mea‐
sures are available in only a small percentage of participants. Also, 
measured telomere length was not available to compare with the 
genetic variants studied, although the variants have the advantage 
of being less susceptible to confounding and reverse causation than 
observational studies.

5  | CONCLUSIONS

In European ancestry 60‐ to 70‐year‐olds followed for 7.5  years, 
those inheriting more variants linked to longer telomeres were 
protected from cardiovascular heart disease but did not have bet‐
ter healthy aging measures, with no better cognitive function, grip 
strength, sarcopenia, or falls. The presence of a risk of excess cancer 

in those with genetically longer telomeres poses a major hurdle in 
harnessing telomere lengthening to prolong human lifespan. Our 
findings thus do not suggest advantages in lengthening telomeres to 
improve human aging outcomes.

ACKNOWLEDG MENTS

This work is supported by an IPA agreement with Dr. Luigi Ferrucci at 
the National Institute on Aging (#20170526). We wish to thank the 
UK Biobank participants and coordinators for this unique dataset, Dr. 
Andrew R. Wood for his work identifying the UK Biobank participants 
of European descent, the group of Dr. Sara Hägg for sharing codes to 
create the 49‐item frailty index and Dr. Janice Atkin's efforts for the ac‐
tual implementation. Lastly, we thank the reviewers' for their comments.

CONFLIC T OF INTERE S T

None declared.

ORCID

Chia‐Ling Kuo   https://orcid.org/0000-0003-4452-2380 

R E FE R E N C E S

Anderson, R., Lagnado, A., Maggiorani, D., et al. (2019). Length‐inde‐
pendent telomere damage drives post‐mitotic cardiomyocyte senes‐
cence. The EMBO Journal, 38(5), e100492. https​://doi.org/10.15252/​
embj.20181​00492​

Aviv, A., & Shay, J. W. (2018). Reflections on telomere dynamics and 
ageing‐related diseases in humans. Philosophical Transactions of the 
Royal Society B: Biological Sciences, 373(1741), 20160436. https​://doi.
org/10.1098/rstb.2016.0436

Blackburn, E. H., Epel, E. S., & Lin, J. (2015). Human telomere biology: A 
contributory and interactive factor in aging, disease risks, and pro‐
tection. Science, 350(6265), 1193–1198. https​://doi.org/10.1126/
scien​ce.aab3389

Bowden, J., Davey Smith, G., & Burgess, S. (2015). Mendelian random‐
ization with invalid instruments: Effect estimation and bias detection 
through egger regression. International Journal of Epidemiology, 44(2), 
512–525. https​://doi.org/10.1093/ije/dyv080

Brion, M. J., Shakhbazov, K., & Visscher, P. M. (2013). Calculating statisti‐
cal power in mendelian randomization studies. International Journal of 
Epidemiology, 42(5), 1497–1501. https​://doi.org/10.1093/ije/dyt179

Broer, L., Codd, V., Nyholt, D. R., et al. (2013). Meta‐analysis of telomere 
length in 19,713 subjects reveals high heritability, stronger maternal 
inheritance and a paternal age effect. European Journal of Human 
Genetics, 21(10), 1163–1168. https​://doi.org/10.1038/ejhg.2012.303

Brown, L., Zhang, Y., Mitchel, C., & Ailshire, J. (2018). Does telomere 
length indicate biological, physical and cognitive health among older 
adults? evidence from the health and retirement study. The Journals 
of Gerontology: Series A, 73(12), 1626–1632. https​://doi.org/10.1093/
geron​a/gly001

Burgess, S., Butterworth, A., & Thompson, S. G. (2013). Mendelian ran‐
domization analysis with multiple genetic variants using summarized 
data. Genetic Epidemiology, 37(7), 658–665. https​://doi.org/10.1002/
gepi.21758​

Bycroft, C., Freeman, C., Petkova, D., Band, G., Elliott, L. T., Sharp, 
K., … Marchini, J. (2018). The UK biobank resource with deep 

https://orcid.org/0000-0003-4452-2380
https://orcid.org/0000-0003-4452-2380
https://doi.org/10.15252/embj.2018100492
https://doi.org/10.15252/embj.2018100492
https://doi.org/10.1098/rstb.2016.0436
https://doi.org/10.1098/rstb.2016.0436
https://doi.org/10.1126/science.aab3389
https://doi.org/10.1126/science.aab3389
https://doi.org/10.1093/ije/dyv080
https://doi.org/10.1093/ije/dyt179
https://doi.org/10.1038/ejhg.2012.303
https://doi.org/10.1093/gerona/gly001
https://doi.org/10.1093/gerona/gly001
https://doi.org/10.1002/gepi.21758
https://doi.org/10.1002/gepi.21758


     |  11 of 12KUO et al.

phenotyping and genomic data. Nature, 562(7726), 203–209. https​://
doi.org/10.1038/s41586-018-0579-z

Codd, V., Nelson, C. P., Albrecht, E., Mangino, M., Deelen, J., Buxton, J. 
L., … Samani, N. J. (2013). Identification of seven loci affecting mean 
telomere length and their association with disease. Nature Genetics, 
45(4), pp. 422–7, 427e1‐2. https​://doi.org/10.1038/ng.2528

Collins, K., & Mitchell, J. R. (2002). Telomerase in the human organism. 
Oncogene, 21(4), 564–579. https​://doi.org/10.1038/sj.onc.1205083

Craig, C. L., Marshall, A. L., Sjostrom, M., et al. (2003). International 
physical activity questionnaire: 12‐country reliability and validity. 
Medicine & Science in Sports & Exercise, 35(8), 1381–1395. https​://doi.
org/10.1249/01.MSS.00000​78924.61453.FB

Cruz‐Jentoft, A. J., Baeyens, J. P., Bauer, J. M., Boirie, Y., Cederholm, T., 
Landi, F., … Zamboni, M. (2010). Sarcopenia: European consensus on 
definition and diagnosis: Report of the european working group on 
sarcopenia in older people. Age and Ageing, 39(4), 412–423. https​://
doi.org/10.1093/agein​g/afq034

Daniali, L., Benetos, A., Susser, E., Kark, J. D., Labat, C., Kimura, M., … 
Aviv, A. (2013). Telomeres shorten at equivalent rates in somatic 
tissues of adults. Nature Communications, 4, 1597. https​://doi.
org/10.1038/ncomm​s2602​

Davey Smith, G., & Hemani, G. (2014). Mendelian randomization: Genetic 
anchors for causal inference in epidemiological studies. Human 
Molecular Genetics, 23(R1), R89–98. https​://doi.org/10.1093/hmg/
ddu328

Davies, N. M., Holmes, M. V., & Davey, S. G. (2018). Reading mendelian 
randomisation studies: A guide, glossary, and checklist for clinicians. 
BMJ, 362, k601. https​://doi.org/10.1136/bmj.k601

de Jesus, B. B., & Blasco, M. A. (2013). Telomerase at the intersection 
of cancer and aging. Trends in Genetics, 29(9), 513–520. https​://doi.
org/10.1016/j.tig.2013.06.007

Den Elzen, W. P. J., Martin‐Ruiz, C., von Zglinicki, T., Westendorp, R. G. 
J., Kirkwood, T. B. L., & Gussekloo, J. (2011). Telomere length and 
anaemia in old age: Results from the newcastle 85‐plus study and 
the leiden 85‐plus study. Age and Ageing, 40(4), 494–500. https​://doi.
org/10.1093/agein​g/afr048

Dutta, A., Henley, W., Robine, J. M., Langa, K. M., Wallace, R. B., & 
Melzer, D. (2013). Longer lived parents: Protective associations with 
cancer incidence and overall mortality. Journals of Gerontology. Series 
A, Biological Sciences and Medical Sciences, 68(11), 1409–1418. https​
://doi.org/10.1093/geron​a/glt061

Fiocco, A. J., & Yaffe, K. (2010). Defining successful aging: The impor‐
tance of including cognitive function over time. Archives of Neurology, 
67(7), 876–880. https​://doi.org/10.1001/archn​eurol.2010.130

Fry, A., Littlejohns, T. J., Sudlow, C., Doherty, N., Adamska, L., Sprosen, T., 
… Allen, N. E. (2017). Comparison of sociodemographic and health‐
related characteristics of UK biobank participants with those of the 
general population. American Journal of Epidemiology, 186(9), 1026–
1034. https​://doi.org/10.1093/aje/kwx246

Hamad, R., Walter, S., Rehkopf, D. H. (2016). Telomere length and health 
outcomes: A two‐sample genetic instrumental variables analysis. 
Experimental Gerontology JID – 0047061, 82:88‐94. https​://doi.
org/10.1016/j.exger.2016.06.005

Haycock, P. C., Burgess, S., Nounu, A., Zheng, J., Okoli, G. N., Bowden, J., 
… Davey Smith, G. (2017). Association between telomere length and 
risk of cancer and non‐neoplastic diseases: A mendelian randomiza‐
tion study. JAMA Oncology, 3(5), 636–651. https​://doi.org/10.1001/
jamao​ncol.2016.5945

Haycock, P. C., Heydon, E. E., Kaptoge, S., Butterworth, A. S., Thompson, 
A., & Willeit, P. (2014). Leucocyte telomere length and risk of car‐
diovascular disease: Systematic review and meta‐analysis. BMJ, 349, 
g4227. https​://doi.org/10.1136/bmj.g4227​

Hayflick, L., & Moorhead, P. S. (1961). The serial cultivation of human 
diploid cell strains. Experimental Cell Research, 25, 585–621. https​://
doi.org/10.1016/0014-4827(61)90192-6

Helby, J., Nordestgaard, B. G., Benfield, T., & Bojesen, S. E. (2017). Shorter 
leukocyte telomere length is associated with higher risk of infections: 
A prospective study of 75,309 individuals from the general popu‐
lation. Haematologica, 102(8), 1457–1465. https​://doi.org/10.3324/
haema​tol.2016.161943

Janssen, I., Heymsfield, S. B., Baumgartner, R. N., & Ross, R. (2000). 
Estimation of skeletal muscle mass by bioelectrical impedance anal‐
ysis. Journal of Applied Physiology (1985), 89(2), 465–471. https​://doi.
org/10.1152/jappl.2000.89.2.465

Lorenzi, M., Bonassi, S., Lorenzi, T., Giovannini, S., Bernabei, R., & 
Onder, G. (2018). A review of telomere length in sarcopenia and 
frailty. Biogerontology, 19(3), 209–221. https​://doi.org/10.1007/
s10522-018-9749-5.

Machiela, M. J., & Chanock, S. J. (2015). LDlink: A web‐based appli‐
cation for exploring population‐specific haplotype structure 
and linking correlated alleles of possible functional variants. 
Bioinformatics, 31(21), 3555–3557. https​://doi.org/10.1093/bioin​
forma​tics/btv402

Mangino, M., Hwang, S.‐J., Spector, T. D., Hunt, S. C., Kimura, M., 
Fitzpatrick, A. L., … Aviv, A. (2012). Genome‐wide meta‐analysis 
points to CTC1 and ZNF676 as genes regulating telomere homeosta‐
sis in humans. Human Molecular Genetics, 21(24), 5385–5394. https​://
doi.org/10.1093/hmg/dds382

Manichaikul, A., Mychaleckyj, J. C., Rich, S. S., Daly, K., Sale, M., & Chen, 
W. M. (2010). Robust relationship inference in genome‐wide as‐
sociation studies. Bioinformatics, 26(22), 2867–2873. https​://doi.
org/10.1093/bioin​forma​tics/btq559

Mather, K. A., Jorm, A. F., Parslow, R. A., & Christensen, H. (2011). Is telo‐
mere length a biomarker of aging? A review. Journals of Gerontology. 
Series A, Biological Sciences and Medical Sciences, 66(2), 202–213. 
https​://doi.org/10.1093/geron​a/glq180

Munafo, M. R., Tilling, K., Taylor, A. E., Evans, D. M., & Davey, S. G. (2018). 
Collider scope: When selection bias can substantially influence ob‐
served associations. International Journal of Epidemiology, 47(1), 226–
235. https​://doi.org/10.1093/ije/dyx206

Pilling, L. C., Kuo, C.‐L., Sicinski, K., Tamosauskaite, J., Kuchel, G. A., 
Harries, L. W., … Melzer, D. (2017). Human longevity: 25 genetic loci 
associated in 389,166 UK biobank participants. Aging (Albany NY), 
9(12), 2504–2520. https​://doi.org/10.18632/​aging.101334

Rehkopf, D. H., Needham, B. L., Lin, J., Blackburn, E. H., Zota, A. R., 
Wojcicki, J. M., & Epel, E. S. (2016). Leukocyte telomere length in 
relation to 17 biomarkers of cardiovascular disease risk: A cross‐sec‐
tional study of US adults. PLoS Med, 13(11), e1002188. https​://doi.
org/10.1371/journ​al.pmed.1002188

Sanders, J. L., Cauley, J. A., Boudreau, R. M., Zmuda, J. M., Strotmeyer, 
E. S., Opresko, P. L., … Newman, A. B. (2009). Leukocyte telomere 
length is not associated with BMD, osteoporosis, or fracture in older 
adults: Results from the health, aging and body composition study. 
Journal of Bone and Mineral Research, 24(9), 1531–1536. https​://doi.
org/10.1359/jbmr.090318

Sanders, J. L., & Newman, A. B. (2013). Telomere length in epidemiol‐
ogy: A biomarker of aging, age‐related disease, both, or neither? 
Epidemiologic Reviews, 35, 112–131. https​://doi.org/10.1093/epire​v/
mxs008

Sebastiani, P., Gurinovich, A., & Bae, H. et al. (2017). Four genome‐
wide association studies identify new extreme longevity variants. 
The Journals of Gerontology. Series A, Biological Sciences and Medical 
Sciences, 72(11):1453‐1464. https​://doi.org/10.1093/geron​a/glx027

Starkweather, A. R., Alhaeeri, A. A., Montpetit, A., Brumelle, J., Filler, 
K., Montpetit, M., … Jackson‐Cook, C. K. (2014). An integrative re‐
view of factors associated with telomere length and implications for 
biobehavioral research. Nursing Research, 63(1), 36–50. https​://doi.
org/10.1097/NNR.00000​00000​000009

Steward, A. M., Morgan, J. D., Espinosa, J. P., Turk, D. C., & Patel, K. V. 
(2017). Chronic pain and telomere length in community‐dwelling 

https://doi.org/10.1038/s41586-018-0579-z
https://doi.org/10.1038/s41586-018-0579-z
https://doi.org/10.1038/ng.2528
https://doi.org/10.1038/sj.onc.1205083
https://doi.org/10.1249/01.MSS.0000078924.61453.FB
https://doi.org/10.1249/01.MSS.0000078924.61453.FB
https://doi.org/10.1093/ageing/afq034
https://doi.org/10.1093/ageing/afq034
https://doi.org/10.1038/ncomms2602
https://doi.org/10.1038/ncomms2602
https://doi.org/10.1093/hmg/ddu328
https://doi.org/10.1093/hmg/ddu328
https://doi.org/10.1136/bmj.k601
https://doi.org/10.1016/j.tig.2013.06.007
https://doi.org/10.1016/j.tig.2013.06.007
https://doi.org/10.1093/ageing/afr048
https://doi.org/10.1093/ageing/afr048
https://doi.org/10.1093/gerona/glt061
https://doi.org/10.1093/gerona/glt061
https://doi.org/10.1001/archneurol.2010.130
https://doi.org/10.1093/aje/kwx246
https://doi.org/10.1016/j.exger.2016.06.005
https://doi.org/10.1016/j.exger.2016.06.005
https://doi.org/10.1001/jamaoncol.2016.5945
https://doi.org/10.1001/jamaoncol.2016.5945
https://doi.org/10.1136/bmj.g4227
https://doi.org/10.1016/0014-4827(61)90192-6
https://doi.org/10.1016/0014-4827(61)90192-6
https://doi.org/10.3324/haematol.2016.161943
https://doi.org/10.3324/haematol.2016.161943
https://doi.org/10.1152/jappl.2000.89.2.465
https://doi.org/10.1152/jappl.2000.89.2.465
https://doi.org/10.1007/s10522-018-9749-5.
https://doi.org/10.1007/s10522-018-9749-5.
https://doi.org/10.1093/bioinformatics/btv402
https://doi.org/10.1093/bioinformatics/btv402
https://doi.org/10.1093/hmg/dds382
https://doi.org/10.1093/hmg/dds382
https://doi.org/10.1093/bioinformatics/btq559
https://doi.org/10.1093/bioinformatics/btq559
https://doi.org/10.1093/gerona/glq180
https://doi.org/10.1093/ije/dyx206
https://doi.org/10.18632/aging.101334
https://doi.org/10.1371/journal.pmed.1002188
https://doi.org/10.1371/journal.pmed.1002188
https://doi.org/10.1359/jbmr.090318
https://doi.org/10.1359/jbmr.090318
https://doi.org/10.1093/epirev/mxs008
https://doi.org/10.1093/epirev/mxs008
https://doi.org/10.1093/gerona/glx027
https://doi.org/10.1097/NNR.0000000000000009
https://doi.org/10.1097/NNR.0000000000000009


12 of 12  |     KUO et al.

adults: Findings from the 1999 to 2002 national health and nutrition 
examination survey. The Journal of Pain, 18(12), 1517–1525. https​://
doi.org/10.1016/j.jpain.2017.08.006

Williams, D. M., Jylhava, J., Pedersen, N. L., & Hagg, S. (2018). A frailty 
index for UK biobank participants. The Journals of Gerontology: Series 
A, 74(4), 582–587. https​://doi.org/10.1093/geron​a/gly094

Yavorska, O. O., & Burgess, S. (2017). MendelianRandomization: An R 
package for performing mendelian randomization analyses using 
summarized data. International Journal of Epidemiology, 46(6), 1734–
1739. https​://doi.org/10.1093/ije/dyx034

Zhan, Y., Song, C. I., Karlsson, R., Tillander, A., Reynolds, C. A., Pedersen, 
N. L., & Hägg, S. (2015). Telomere length shortening and alzheimer 
disease–A mendelian randomization study. JAMA Neurology, 72(10), 
1202–1203. https​://doi.org/10.1001/jaman​eurol.2015.1513

Zhang, X., Zhao, Q., Zhu, W., Liu, T., Xie, S.‐H., Zhong, L.‐X., … Zhang, 
B. O. (2017). The association of telomere length in peripheral 
blood cells with cancer risk: A systematic review and meta‐anal‐
ysis of prospective studies. Cancer Epidemiology, Biomarkers & 
Prevention, 26(9), 1381–1390. https​://doi.org/10.1158/1055-9965.
EPI-16-0968

Zhou, J., Wang, J., Shen, Y., Yang, Y., Huang, P., Chen, S., … Dong, B. 
(2018). The association between telomere length and frailty: A sys‐
tematic review and meta‐analysis. Experimental Gerontology, 106, 
16–20. S0531-5565(17)30532-6

SUPPORTING INFORMATION

Additional supporting information may be found online in the 
Supporting Information section at the end of the article.       

How to cite this article: Kuo C‐L, Pilling LC, Kuchel GA, 
Ferrucci L, Melzer D. Telomere length and aging‐related 
outcomes in humans: A Mendelian randomization study in 
261,000 older participants. Aging Cell. 2019;18:e13017. https​
://doi.org/10.1111/acel.13017​

https://doi.org/10.1016/j.jpain.2017.08.006
https://doi.org/10.1016/j.jpain.2017.08.006
https://doi.org/10.1093/gerona/gly094
https://doi.org/10.1093/ije/dyx034
https://doi.org/10.1001/jamaneurol.2015.1513
https://doi.org/10.1158/1055-9965.EPI-16-0968
https://doi.org/10.1158/1055-9965.EPI-16-0968
S0531-5565(17)30532-6
https://doi.org/10.1111/acel.13017
https://doi.org/10.1111/acel.13017

