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Integrated intra- and intercellular signaling
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Abstract

Molecular knowledge of biological processes is a cornerstone in omics
data analysis. Applied to single-cell data, such analyses provide mech-
anistic insights into individual cells and their interactions. However,
knowledge of intercellular communication is scarce, scattered across
resources, and not linked to intracellular processes. To address this
gap, we combined over 100 resources covering interactions and roles
of proteins in inter- and intracellular signaling, as well as transcrip-
tional and post-transcriptional regulation. We added protein complex
information and annotations on function, localization, and role in
diseases for each protein. The resource is available for human, and
via homology translation for mouse and rat. The data are accessible
via OmniPath’s web service (https://omnipathdb.org/), a Cytoscape
plug-in, and packages in R/Bioconductor and Python, providing access
options for computational and experimental scientists. We created
workflows with tutorials to facilitate the analysis of cell–cell interac-
tions and affected downstream intracellular signaling processes.
OmniPath provides a single access point to knowledge spanning intra-
and intercellular processes for data analysis, as we demonstrate in
applications studying SARS-CoV-2 infection and ulcerative colitis.
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Introduction

Cells process information by physical interactions of molecules.

These interactions are organized into an ensemble of signaling

pathways that are often represented as a network. This network

determines the response of the cell under different physiological and

disease conditions. In multicellular organisms, the behavior of each

cell is regulated by higher levels of organization: the tissue and, ulti-

mately, the organism. In tissues, multiple cells communicate to

coordinate their behavior to maintain homeostasis. For example,

cells may produce and sense extracellular matrix (ECM), and release

enzymes acting on the ECM as well as ligands. These ligands are

detected by receptors in the same or different cells, that in turn trig-

ger intracellular pathways that control other processes, including

the production of ligands and the physical binding to other cells.

The totality of these processes mediates the intercellular communi-

cation in tissues. Thus, to understand physiological and pathological

processes at the tissue level, we need to consider both the signaling

pathways within each cell type as well as the communication

between them.

Since the end of the nineties, databases have been collecting infor-

mation about signaling pathways (Xenarios et al, 2000). These data-

bases provide a unified source of information in formats that users

can browse, retrieve, and process. Signaling databases have become

essential tools in systems biology and to analyze omics data. A few

resources provide ligand–receptor interactions (Kirouac et al, 2010;

Fazekas et al, 2013; Ramilowski et al, 2015; Armstrong et al, 2019;

Efremova et al, 2020). However, their coverage is limited, they do not

include some key players of intercellular communication such as

matrix proteins or extracellular enzymes, and they are not integrated

with intracellular processes. This is increasingly important as new

techniques allow us to measure data from single cells, enabling the

analysis of inter- and intracellular signaling. For example, the recent

CellPhoneDB (Efremova et al, 2020) and ICELLNET (No€el et al, 2021)

tools provide computational methods to prioritize the most likely

intercellular connections from single-cell transcriptomics data, and

NicheNet (Browaeys et al, 2019) expands this to intracellular gene

regulation. A comprehensive resource of inter- and intracellular

signaling knowledge would enhance and expedite these analyses.
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To effectively study multicellular communication, a resource

should (i) classify proteins by their roles in intercellular communi-

cation, (ii) connect them by interactions from the widest possible

range of resources, and (iii) integrate all this information in a trans-

parent and customizable way, where the users can select the

resources to evaluate their quality and features, and adapt them to

their context and analyses. Prompted by the lack of comprehensive

efforts addressing principle (i), we built a database on top of Omni-

Path (T€urei et al, 2016), a resource which has already shown the

benefits of principles (ii) and (iii). The first version of OmniPath

focused on literature curated intracellular signaling pathways. It has

been used in many computational projects and omics studies. For

example, to model cell senescence from phosphoarray data (An

et al, 2020), or as part of a computational pipeline to predict the

effect of microbial proteins on human genes (Andrighetti et al,

2020), and a community effort to integrate knowledge about the

COVID-19 disease mechanism (Ostaszewski et al, 2020). The new

OmniPath extends its scope to intercellular communication and its

integration with intracellular signaling, providing prior knowledge

for modeling and analysis methods. It combines 103 resources to

build an integrated database of molecular interactions, enzyme-PTM

(post-translational modification) relationships, protein complexes

and annotations about intercellular communication, and other func-

tional attributes of proteins.

We demonstrate with two case studies that we provide a versa-

tile resource for the analysis of single-cell and bulk omics data.

Leveraging the intercellular communication knowledge in Omni-

Path, we present two examples where autocrine and paracrine

signaling are key parts of pathomechanism. First, we studied the

potential influence of ligands secreted in severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) infection on the inflamma-

tory response through autocrine signaling. We identified signaling

mechanisms that may lead to the dysregulated inflammatory and

immune response shown in severe cases. Second, we examined

the rewiring of cellular communication in ulcerative colitis (UC)

based on single-cell data from the colon. By analyzing down-

stream signaling from the intercellular interactions, we found

pathways associated with the regulatory T cells targeted by

myofibroblasts in UC.

Results

We used four major types of resources: (i) molecular interactions,

(ii) enzyme-PTM relationships, (iii) protein complexes, and (iv)

molecule annotations about function, localization, and other attri-

butes (Fig 1A). The pypath Python package combined the resources

from those four types to build four corresponding integrated data-

bases. Using the annotations, pypath compiled a fifth database

about the roles in intercellular communication (intercell; Fig 1B).

The ensemble of these five databases is what we call OmniPath,

combining data from 103 resources (Fig 1A and Dataset EV1).

A focus on intercellular signaling

To create a database of intercellular communication, we defined the

roles that proteins play in this process. Ligands and receptors are

main players of intercellular communication. Many other kinds of

molecules have a great impact on the behavior of the cells, such as

matrix proteins and transporters (Fig 2A). We defined eight major

(Fig 2) and 17 minor generic functional categories of intercellular

signaling roles (Datasets EV6 and EV10). We also defined ten loca-

tional categories (e.g., plasma membrane peripheral), using in addi-

tion structural resources and prediction methods to annotate the

transmembrane, secreted and peripheral membrane proteins.

Furthermore, we provide 994 specific categories (e.g., neurotrophin

receptors). Each generic category can be accessed by resource (e.g.,

ligands from HGNC) or as the combination of all contributing

resources (Fig EV4). To provide highly curated annotations, we

checked every entry in each category manually against UniProt data-

sheets to exclude wrong annotations. Overall we defined 1,170 cate-

gories and provided 54,330 functional annotations about

intercellular communication roles of 5,781 proteins.

We collected the proteins for each intercellular communication

functional category using data from 27 resources (Fig 2B, Dataset

EV6). Combining them with molecular interaction networks from 48

resources (Dataset EV2), we created a corpus of putative intercellu-

lar communication pathways (Fig 2C). To have a high coverage on

the intercellular molecular interactions, we also included ten

resources focusing on ligand–receptor interactions (Figs 3 and EV1).

Many of the proteins in intercellular communication work as

parts of complexes. We therefore built a comprehensive database of

protein complexes and inferred their intercellular communication

roles: a complex belongs to a category if and only if all members

of the complex belong to it. We obtained 14,348 unique, directed

transmitter–receiver (e.g., ligand–receptor) connections, around

seven times more than the largest of the resources providing such

kind of data. We also mapped a textbook table (Cameron & Kelvin,

2013) of 131 cytokine–receptor interactions to the ligand–receptor

resources. As the textbook contains well-known interactions, many

of the resources cover more than 90% of them (Fig 2D). This large

coverage is achieved by not only integrating ten ligand–receptor

resources, but also complementing these with data from annotation

and interaction resources.

An essential feature of this novel resource is that it combines

knowledge about intercellular and intracellular signaling (Table 1).

Thus, using OmniPath one can, for example, easily analyze the

intracellular pathways triggered by a given ligand or check the tran-

scription factors (TFs) and microRNAs (miRNAs) regulating the

expression of such ligands.

OmniPath: an ensemble of five databases

The abovementioned intercellular database exists in OmniPath

together with four further databases (Fig 1B), supporting an inte-

grated analysis of inter- and intracellular signaling.

The network of molecular interactions
The network database part covers four major domains of molecular

signaling: (i) protein–protein interactions (PPI), (ii) transcriptional

regulation of protein-coding genes, (iii) miRNA–mRNA interactions,

and (iv) transcriptional regulation of miRNA genes (TF-miRNA).

We further differentiated the PPI data into four subsets based on the

interaction mechanisms and the types of supporting evidence: (i)

literature curated activity flow (directed and signed; corresponds to

the original release of OmniPath; T€urei et al, 2016), (ii) activity flow
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A

B

Figure 1. The composition and workflow of OmniPath.

A Database contents with the respective number of resources in parentheses.
B Workflow and design: OmniPath is based on four major types of resources, and the pypath Python package combines the resources to build five databases. The

databases are available by the database builder software pypath, the web resource at https://omnipathdb.org/, the R package OmnipathR, the Python client
omnipath, the Cytoscape plug-in and can be exported to formats such as Biological Expression Language (BEL).
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with no literature references, (iii) enzyme–PTM, and (iv) ligand–

receptor interactions (Fig 3A–C). Interaction data are extensively

used for a variety of purposes: for building mechanistic models,

deriving pathway and TF activities from transcriptomics data and

graph-based analysis methods. In total, the resource contained

103,396 PPI interactions between 12,469 proteins from 38 original

resources (Dataset EV2). The large number of unique interactions

added by each resource underscores the importance of their integra-

tion (Figs EV1 and EV2, Appendix Fig S1). The interactions with

effect signs, essential for mechanistic modeling, are provided by the

A

C D

B

Figure 2.
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◀ Figure 2. The composition and representation of the intercellular signaling network.

We assigned intercellular communication roles to proteins based on evidence from multiple resources. In all panels: —transmitter; —receiver.
A Schematic illustration of the intercellular communication roles and their possible connections. Cells are physically connected by proteins forming tight junctions (1),

gap junctions (2), and other adhesion proteins (3); they release vesicles which can be taken up by other cells (4); some receptors form complexes (5) to detect secreted
ligands (6); transporters might also be affected by factors released by other cells (8); enzymes released into the extracellular space act on ligands and the extracellular
matrix (7, 9); cells release the components of the extracellular matrix and bind to the matrix by adhesion proteins (10).

B The main intercellular communication roles (x axis) and the major contributing resources (y axis). Size of the dots represents the number of proteins annotated to
have a certain role in a given resource. The darker areas represent the overlaps (proteins annotated in more than one resource for the same role) while the lighter
color denotes those unique to that resource.

C The intercellular communication network. The circle segments represent the eight main intercellular communication roles. The edges are proportional to the number
of interactions in the OmniPath PPI network connecting proteins of one role to the other.

D Number of unique, directed transmitter–receiver (e.g., ligand–receptor) connections by resources. Bars on the right show the coverage of each resource on a textbook
dataset of 131 well-known ligand–receptor interactions.

A

D E F G

B C

Figure 3. Quantitative description of the network, complex, and enzyme–PTM databases.

A–C Networks by interaction types and the network datasets within the PPI network. (A) Number of nodes and interactions. The light dots represent the shared nodes
and edges (in more than one resource), while the dark ones show their total numbers. (B) Causality: number of connections by direction and effect sign. (C)
Coverage of the networks on various groups of proteins. Dots show the percentage of proteins covered by network resources for the following groups: cancer driver
genes from COSMIC and IntOGen, kinases from kinase.com, phosphatases from Phosphatome.net, receptors from the Human Plasma Membrane Receptome
(HPMR) and transcription factors from the TF census. Gray bars show the number of proteins in the networks. The information for individual resources is in
Figs EV1 and EV2, Appendix Fig S1.

D–G On each panel, the bottom rows represent the combined complex and enzyme–PTM databases contained in OmniPath (D, E). Number of complexes (D) and
enzyme–PTM (E) interactions by resource. (F) Enzyme–PTM relationships by PTM type. (G) Enzyme–PTM interactions by their target. Light, medium, and dark dots
represent the number of enzyme–PTM relationships targeting the enzyme itself, another protein within the same molecular complex or an independent protein,
respectively.
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activity flow resources (Appendix 1; Fig 3B). The combined PPI

network covered 53% of the human proteome (SwissProt), with an

enrichment of kinases and cancer driver genes (Fig 3C). The tran-

scriptional regulation data in OmniPath were obtained from

DoRothEA (Garcia-Alonso et al, 2019), a comprehensive resource of

TF regulons integrating data from 18 sources. In addition, six litera-

ture curated resources were directly integrated into OmniPath

(Dataset EV8). The miRNA–mRNA and TF–miRNA interactions

were integrated from five and two literature curated resources, with

6,213 and 1,803 interactions, respectively. Combining multiple

resources not only increases the coverage, but also improves qual-

ity. It makes it possible to select higher confidence records based on

the number of resources and references. Cross-checking the interac-

tion directions and effect signs between resources reveal contradic-

tory information which is either a sign of mistakes or reflects on

limitations of our data representation (Appendix 1; Appendix Figs

S4). Overall, we included 61 network resources in OmniPath

(Dataset EV2). Furthermore, pypath provides access to additional

resources, including the Human Reference Interactome (Luck et al,

2020), ConsensusPathDB (Kamburov et al, 2013), Reactome (Jassal

et al, 2020), ACSN (Kuperstein et al, 2015), and WikiPathways

(Slenter et al, 2018).

Enzyme-PTM relationships
In enzyme–PTM relationships, enzymes (e.g., kinases) alter specific

residues of their substrates, producing so-called post-translational

modifications (PTM). Enzyme–PTM relationships are essential for

deriving networks from phosphoproteomics data or estimating

kinase activities. We combined 11 resources of enzyme–PTM rela-

tionships mostly covering phosphorylation (94% of all) and dephos-

phorylations (3%) (Fig 3F). Overall, we included 39,201 enzyme–

PTM relationships, 1,821 enzymes targeting 16,467 PTM sites

(Fig 3E–G). Besides phosphorylation and dephosphorylation, only

proteolytic cleavage and acetylation account for more than one

hundred interactions. Most of the databases curated only phospho-

rylation, and DEPOD (Damle & Köhn, 2019) exclusively dephospho-

rylation. Only SIGNOR (Licata et al, 2020) and HPRD (Keshava

Prasad et al, 2009) contained a large number of other modifications

(Fig 3F). 60% of the interactions were described by only one

resource, and 92% of them by only one literature reference (Fig 3E).

Self-modifications, e.g., autophosphorylation and modifications

between members of the same complex comprised 4 and 18% of the

interactions, respectively (Fig 3G).

Protein complexes
Many proteins operate in complexes, for example, receptors

often detect ligands in complexes. To facilitate analyses taking

into consideration complexes, we added to OmniPath a compre-

hensive collection of 22,005 protein complexes described by 12

resources from 4,077 articles (Fig 3D). A complex is defined by

its combination of unique members. 14% of them were homo-

multimers, 54% had four or less unique components while 20%

of them had 18 or more. 71% of the complexes had stoichiome-

try information.

Table 1. Qualitative comparison of ligand–receptor and integrative databases.

Resource
Inter-
actions

Directed
inter-
actions

Signs
(positive/
negative)

Transcriptional
regulation

Intracellular
pathways

Intercellular
communication
roles

Protein
complexes

Integrative
resource

Literature
curated

Baccin2019 (e) yes yes (a) no no no yes (f) yes yes yes (g)

CellCellInteractions yes yes (a) no no no yes (l) no yes no

CellPhoneDB yes yes (a) no no no yes (d) yes yes yes

ConsensusPathDB yes no no yes yes no no yes yes (g)

EMBRACE (e) yes yes (a) no no no yes no yes (k) yes (g)

HPMR yes yes (a) no no no yes no no yes

ICELLNET yes yes (a) no no no yes yes no yes

iTALK (h) yes yes (a) no no no yes no yes yes (g)

Kirouac2010 yes yes (a) no no no yes no no yes

LRdb yes yes (a) no no no yes no yes yes (g)

PathwayCommons yes yes (m) no yes yes no yes yes yes (g)

Ramilowski2015 yes yes (a) no no no yes no yes yes (g)

SignaLink yes yes yes yes (i) yes yes no yes (j) yes (g)

OmniPath yes yes (b) yes yes yes yes (c) yes yes yes (g)

OmniPath combines resources to build a network with directions and effect signs, including intra- and intercellular signaling, transcriptional regulation, and
annotates proteins as ligands or receptors. Here, we show which of these features are covered by other databases: those specialized in ligand–receptor
interactions and two large integrative network databases (ConsensusPathDB and Pathway Commons). (a) Implicit: if we assume always the ligand affects the
receptor; (b) As in some of the constituent resources the directions are implicit, certain directions in the combined network are implicit; (c) Provides not only
ligand and receptor annotation but further categories, for example adhesion, transporter, ECM, etc; (d) Apart from secreted (mostly ligand) and receptor provides
a few further categories: integrin, collagen, transmembrane, peripheral, etc; (e) Data are for mouse, homology translation is necessary to derive human data; (f)
For ligands, provides certain classification, e.g., cytokine, ECM, secreted, etc; (g) Only in part is literature curated; (h) Ligand–receptor interactions are classified as
growth factor, cytokine, checkpoint, or other; (i) Contains transcriptional regulation but that part is not integrated by OmniPath; (j) OmniPath only integrates its
original literature curation, not the secondary resources; (k) Only builds on Ramilowski et al; (l) Besides ligand and receptor only ECM; (m) Directionality
information might be extracted from BioPAX.
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Annotations: function, structure and localization
Annotations provide information about the function, structure,

localization, classification, and other properties of molecules. We

compiled the annotations database from 49 resources. The format of

the records from each of these resources is different. The simplest

ones only define a category of proteins, like Cell Surface Protein

Atlas (CSPA) (Bausch-Fluck et al, 2015) that collects the proteins

localized on the cell surface. More complex annotation records

express a combination of multiple attributes. For example, each of

the annotations from the Cancer Pathway Association Database

(CPAD) (Li et al, 2020) contain seven attributes to describe a rela-

tionship between a protein or miRNA, a pathway, and their effect

on a specific cancer type (Fig EV3). The pathway and gene sets are

also part of the annotation database, as these are useful for func-

tional characterization of omics data and enrichment analysis.

Overall, the annotations database included 5,475,532 records

about 20,365 proteins, virtually the whole protein-coding genome,

19,566 complexes, and 182 miRNAs. The majority of the annota-

tions for complexes were the result of our in silico inference: If all

members of a complex share a certain annotation, we assign this

annotation to the complex itself.

The annotations database can be used in different ways: Select-

ing one resource, its data can be reconstituted into a conventional

data frame with attributes as columns and annotations as rows.

Alternatively, specific sets of proteins can be queried, e.g., "the

members of the Notch pathway according to SIGNOR" (Licata et al,

2020) or "the hypoxia upregulated genes according to MSigDB"

(Subramanian et al, 2005). The annotations are helpful in omics

data analysis; for example, they can be used for contextualization or

enrichment analysis.

Homology translation to rodents
OmniPath comprises human resources. We translated the network

and the enzyme–PTM relationships to mouse and rat by protein

homology using NCBI HomoloGene, covering 81 and 31% of the

interactions for mouse and rat, respectively (Dataset EV9). In addi-

tion, pypath is able to translate to other organisms.

Close connection to the analysis of omics data

The OmniPath databases are built by the pypath Python module

and are distributed by the web service at https://omnipathdb.org/.

We provide web service clients in R, Python, and Cytoscape (Cec-

carelli et al, 2019). The clients not only query the OmniPath data

but also offer convenient post-processing methods and integration

with other software (Figs 1B and 4). The OmnipathR R client

implements a full integration with NicheNet, a method for prioritiz-

ing ligands affecting cells based on transcriptomics data (Browaeys

et al, 2019): A single OmnipathR function can be used to generate

all inter- and intracellular knowledge required for NicheNet. The

omnipath Python module, together with the single-cell data

processing scanpy module (Wolf et al, 2018) and the squidpy reim-

plementation of the CellPhoneDB algorithm to infer ligand–receptor

interactions between cell types (Efremova et al, 2020), provides an

easy and efficient way to analyze intercellular communication.

These applications and further examples are available as detailed

tutorials at https://workflows.omnipathdb.org/. Here, a number of

guides are available demonstrating various features of OmniPath,

presenting the query parameters of the databases and showcasing

downstream workflows.

Case studies

OmniPath provides a single-access point to resources covering

diverse types of knowledge. Thus, it can be used as an input to

many analysis tools and is particularly useful for applications that

span over molecular processes typically considered separately

(Fig 4). To illustrate this, we used two examples where we extracted

Figure 4. Examples of tools for omics data analysis that can be applied with the prior knowledge available in OmniPath.
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from OmniPath different types of intra- and intercellular knowledge

for computational analysis of bulk and single-cell RNA-Seq data.

Analysis of intra- and intercellular processes in
SARS-CoV-2-infected lung epithelial cancer cells
NicheNet is a recently developed method to prioritize ligand–target

relationships between interacting cells by combining their expres-

sion data with prior knowledge on interaction networks (Browaeys

et al, 2019). For this purpose, NicheNet explores the most consistent

inter- and intracellular protein interactions in accordance with a

given gene expression dataset. In the NicheNet publication, the

authors collected different types of interactions from more than 20

databases to build a ligand–receptor network, a signaling network,

and a gene regulatory network. Here, we built a network for analy-

sis with NicheNet using exclusively OmniPath.

We used the OmniPath built network to investigate the mecha-

nistic processes leading to the excessive inflammatory response and

dysregulated adaptive host immune defense that may occur in

severe COVID-19 cases (Catanzaro et al, 2020). We studied the auto-

crine regulatory effect of ligands secreted in SARS-CoV-2 infection of

epithelial lung cancer cells (Calu3; Methods and Appendix 2; data

from Blanco-Melo et al, 2020). Out of 117 ligands over-expressed in

SARS-CoV-2 infection, we selected for subsequent analysis the 12

best predictors of inflammatory response genes according to the

distribution of correlation values (Fig EV5B) and nichenetr guideli-

nes (Methods and Appendix 2).

Among them, we found various cytokines: interleukins (IL23A and

IL1A), tumor necrosis factors (TNF and TNFSF13B), and chemokines

(CXCL5, CXCL9, and CXCL10), known to be involved in the inflamma-

tory response. NicheNet scores describing the potential influence of

the 12 selected ligands on the set of inflammatory genes are signifi-

cantly higher than on sets of randomly selected genes (average P-

value = 3.25e-08 from Fisher’s exact tests after 10 cross-validation

rounds). Then, we explored the signaling events linking these ligands

to their target genes (Fig 5A, Methods and Appendix 2). We identified

several key proteins of the JAK-STAT pathway (JAK2, STAT1, STAT3,

and STAT4), a main regulator of the inflammatory response, that has

been suggested as a potential target to treat COVID-19 (Bagca & Avci,

2020). We also found ligands that potentially trigger the MAPK path-

way that has also been reported to be promoted by SARS-CoV-2 infec-

tion (Bouhaddou et al, 2020; Treveil et al, 2021). To further

characterize the potential medical relevance of these results, we inves-

tigated the drugs targeting the genes shown in Fig 5A (Dataset EV14).

Among the most interesting results, we identified minocycline, an

antibiotic, and anti-inflammatory drug targeting CASP3 and TNF.

Minocycline has been very recently proposed to alleviate the effects of

SARS-CoV-2 severe infection in the central nervous system (Oliveira

et al, 2020) (see extended results in Appendix 2).

In summary, we found mechanistic insights about inflammatory-

related signaling cascades triggered by SARS-CoV-2 infection. The

underlying interactions spanned different curated (and thus

supported by literature) individual inter- and intracellular resources

that we could leverage as they are all integrated in OmniPath

(Fig 5A in Dataset EV13).

Alteration of intercellular communication in ulcerative colitis
As a second case study, we used single-cell RNA-Seq data (Smillie

et al, 2019) from ulcerative colitis (UC) to investigate paracrine

signaling using OmniPath’s intra- and intercellular knowledge. UC

is an inflammatory bowel disease (IBD) driven by an interplay of

epithelial cells and resident mucosal immune cells. Hence, it would

be desirable to investigate it with considering both cell type-specific

intracellular signaling and cell–cell communication.

We limited our analysis to five cell types relevant in UC:

dendritic cell (DC), macrophage, regulatory T cell (Treg),

myofibroblast, and Goblet cell. We combined the cell type and

condition-specific expression data with OmniPath to build intracel-

lular and intercellular signaling networks (Appendix Fig S5). The

total number of cell–cell connections was similar (Table EV1), while

their identity and distribution were different between healthy and

UC conditions. In healthy condition, all cell types were tightly

connected to DCs while in UC to Treg cells (Fig 5B).

Using the intercell annotation database of OmniPath, we exam-

ined the type of intercellular interactions between these cell types.

We found that in both healthy state and UC the ligand–receptor and

adhesion connections were dominant and the cell junction type

connections were less abundant in UC—which was expected due to

the pathophysiology of the disease. Also in UC, we found a higher

amount of ligand–receptor and adhesion connections between Treg

cells and the other four cell types, supporting previously described

alteration of Treg signaling in UC (Yamada et al, 2016).

To analyze the changes in Treg signaling more in detail, we

combined the intercellular and intracellular databases from Omni-

Path and focused on the connection between myofibroblasts and

Treg cells. The total number of intercellular connections are nearly

the same in healthy and in UC conditions 472 and 478, respectively.

However, the actual interacting proteins and their downstream

effects are remarkably different (Fig 5C). This is mainly due to

ligands from myofibroblasts or receptors on Treg cells expressed

uniquely in one of the conditions. For example TGF-beta signaling is

a known regulatory input of Treg cells (Wan & Flavell, 2008), and

we found BMPR1A and ACVRL1, two receptors for the TGF-beta

pathway, to be specific for healthy and UC conditions, respectively.

Although there is no evidence for the role of ACVRL1 in Treg cells,

the knockout of Bmpr1a contributes to gut inflammation (Shroyer &

Wong, 2007). The changes in intercellular connections lead to major

downstream signaling difference in Treg cells. To map the down-

stream effect, we built an intracellular network of Treg cells includ-

ing two steps downstream of all recipient proteins targeted by

myofibroblast effectors (Fig 5B). There were roughly two times

more affected downstream proteins in Treg cells in UC than in

healthy condition (835 versus 1,971), suggesting a wider regulatory

impact of myofibroblasts on Treg cells. Using Reactome (Jassal

et al, 2020) pathway enrichment analysis (Dataset EV11), we identi-

fied the main pathways in Treg cells affected differently by

myofibroblasts in the two conditions. In healthy state, the MAPK,

Toll-like receptor (TLR) 2/6, and TLR7/8 pathways were enriched

that are known as key processes regulating immunosuppressive

functions and suppressing the proinflammatory Th17 cells (Forward

et al, 2010; Nyirenda et al, 2015; He et al, 2018). Meanwhile in UC,

TLR4 and TLR3 pathways were affected by myofibroblasts, and

these pathways are relevant in UC as they regulate inflammatory

cytokine expression and decrease the abundance of Treg cells (Xiao

et al, 2009; Cao et al, 2014).

Our analysis supports the fact that the normally anti-inflammatory

effect of Treg cells in UC is deteriorated partially by myofibroblasts
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Figure 5. Illustrations of the integrated analysis of inter- and intracellular signaling.

A Inter- and intracellular signaling interactions linking the top predicted ligands over-expressed after SARS-CoV-2 infection to their potential immune response targets
in the Calu3 cell line. Top ranked ligands (orange) connect to their potential receptors (turquoise) that trigger an intracellular cascade until reaching TFs (purple), that
in turn regulate the expression of the target genes (blue). Signaling intermediates (gray) connect receptors to TFs across their shortest path.

B Intercellular connections and their downstream effect in UC compared with healthy control. Top: communication network of five cell types reconstructed from
scRNA-Seq; the thickness of the edges is proportional to the number of intercellular connections. Bottom: condition-specific ligand–receptor connections between
myofibroblasts and regulatory T cells trigger an immunosuppressive versus an inflammatory signaling in T cells, in healthy and UC, respectively.

C Condition-specific connections between myofibroblast ligands (upper semicircles, black) and Treg cell receptors (lower semicircles, colored by pathways) in ulcerative
colitis (right) and healthy control (left). Pathway annotations from SignaLink. Immune—innate immune response, RTK—receptor tyrosine kinase, TLR—Toll-like
receptor.
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(Takahashi et al, 2006; West, 2019). We found key intercellular mech-

anisms leading to well-defined differential pathway activation profiles.

This was achieved via our novel approach to: (i) determine cell–cell

interactions both in a healthy and in disease states and (ii) map

affected downstream intracellular signaling processes based on the

proteins interacting between cells.

Comparing Omnipath to other resources for cell–cell interaction
analysis
The UC use case provided an opportunity to compare OmniPath

against alternative sources of prior knowledge. We chose two

widely used resources, Pathway Commons (PC) (Cerami et al, 2011)

for network and Ramilowski et al (Ramilowski et al, 2015) for

ligand–receptor annotations. Using the same workflow and expres-

sion data (Table 2), we investigated the myofibroblast–Treg cell

interaction in three different network–annotation combinations

(Appendix Fig S3): (i) PC-Ramilowski; (ii) PC-OmniPath; and (iii)

OmniPath-OmniPath (i.e., as we presented in the use case).

Using the undirected PC network with the Ramilowski and the

OmniPath annotation resulted in 523 and 3,136 ligand–receptor

connections, respectively. The OmniPath PPI network with Omni-

Path annotations revealed 4,473 ligand–receptor connections indi-

cating that this combination provides the largest coverage and more

detailed data with directionality. In the intracellular network of Treg

cells, using the Ramilowski annotation with PC network we found

around 20 times less condition-specific receptors, compared with

using OmniPath for both network and annotation, leading to a

subsequent loss of downstream pathways in the former case. At the

same time, the PC network with OmniPath annotations provided a

large Treg cell downstream network containing ~ 50% of the PC

network, while using the OmniPath network resulted in a three

times smaller network, covering ~ 30% of the total OmniPath

network. This is mainly due to the fact that PC provides a denser

network than OmniPath, but undirected. Overall, OmniPath

provides a high number of ligand–receptor interactions and directed

interactions for downstream intracellular pathway analysis, comple-

menting other meta-resources.

Discussion

In the first version of OmniPath (T€urei et al, 2016), we built a

comprehensive knowledge of intracellular signaling pathways with

the aim of providing prior knowledge for modeling methods. Here,

we present a major redesign and extension of this resource, offering

a single-access point to over 100 resources containing prior knowl-

edge of not only intra- but also intercellular processes. To achieve

this, we developed versatile annotations of intercellular communica-

tion roles, combined with a network covering intra- and intercellular

signaling as well as gene regulation. By defining the transmitter,

receiver, and mediator roles, we layed out a new conceptual frame-

work to describe intercellular communication and generalized the

terms of ligand and receptor (Dataset EV10). This framework allows

OmniPath to combine diverse resources in a uniform way. In Omni-

Path, the intercellular annotations and the network connections are

independent from each other, achieving together a great flexibility.

As intercellular communication becomes increasingly popular

thanks to single-cell technologies, we believe that supporting it with

database knowledge deserves a dedicated effort instead of doing ad

hoc data integration within each study.

While integrative resources such as STRING (Szklarczyk et al,

2019), PathwayCommons (Cerami et al, 2011), ConsensusPathDB

(Kamburov et al, 2013), PathMe, and ComPath (Domingo-Fern�andez

et al, 2019) use mostly the major process description resources (e.g.,

Reactome (Jassal et al, 2020) and ACSN (Kuperstein et al, 2015)) and

resources with undirected interactions (e.g., IntAct (Orchard et al,

2014) and BioGRID (Oughtred et al, 2019)), the network database of

OmniPath focuses on activity flow representation, providing a conve-

nient input for multiple analysis techniques (Tour�e et al, 2020);

Appendix 1). OmniPath is not limited to literature curated interac-

tions and it also includes activity flow, kinase–substrate, and ligand–

receptor interactions without references as separate datasets, so that

the users can decide which ones to use according to their purposes

(Dataset EV2). The rich annotations allow users to dive into specific

knowledge and extract information across resources. The knowledge

in OmniPath is general in terms of cell type or physiological condi-

tion. In the process of data analysis and modeling, omics data help to

make the database knowledge more context specific. As an alterna-

tive, one can use for example Human Protein Atlas (Uhl�en et al,

2015) in the OmniPath annotations database to build tissue specific

networks (https://workflows.omnipathdb.org/).

As we demonstrated here, OmniPath is able to deliver the input

knowledge for different data analysis tools, such as CellPhoneDB

(Efremova et al, 2020), NicheNet (Browaeys et al, 2019), CellChat

(Jin et al, 2021), ICELLNET (No€el et al, 2021), NATMI (Hou et al,

2020), cell2cell (preprint: Armingol et al, 2020a), and CARNIVAL

(Liu et al, 2019) to infer communication between (Armingol et al,

2020b) and within cell types. For some of the analysis tools, we

provide dedicated software integration and workflows (https://

workflows.omnipathdb.org/).

As our case studies illustrate, OmniPath can replace the tedious

collection of information from many different databases. The first

case study pointed to potential signaling mechanisms of autocrine

origin in SARS-CoV-2 infection which can contribute to the dysregu-

lated inflammatory and immune response characteristic of severe

COVID cases. Our study is limited to the relationship of autocrine

signaling and inflammatory response and hence it does not cover the

complete process of viral infection. In the second study, we illustrated

Table 2. Number of unique receptors and their first two neighbors in each comparison.

Conditions

Pathway Commons network OmniPath network

Ramilowski annotations OmniPath annotations

Unique receptors First two neighbors Unique receptors First two neighbors Unique receptors First two neighbors

Healthy 2 receptors 7553 proteins 13 receptors 9371 proteins 36 receptors 2476 proteins

Uninflamed UC 2 receptors 10138 proteins 6 receptors 11441 proteins 41 receptors 2879 proteins
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how conveniently OmniPath supports a combined analysis of inter-

and intracellular signaling from single-cell transcriptomics data. While

multiple studies mapped intracellular signaling pathways to intestinal

tissue, only a few of them were able to do it in a cell type-specific

manner using single-cell transcriptomics data (Smillie et al, 2019).

Due to the lack of integrated resources, combined intra- and intercel-

lular studies have been so far challenging and not standardized. This

is currently a major bottleneck to understand better conditions such

as gut inflammation, which is modulated by the interplay of epithelial

cells and resident mucosal immune cells. The results of the case stud-

ies can guide designing co-culture experiments by prioritizing the

most relevant cell types and pointing out the key cell–cell interaction

types. For example, testing the role of CASP3 in the autocrine signal-

ing we pointed out in the first study, and the specific ligand–receptor

connections that altered the intestinal paracrine signaling in diseased

condition in the second case study. In general, the outcome of Omni-

Path-based analyses can define key candidates for more in depth

investigations.

Over the past 4 years, we have kept developing OmniPath,

adding new features and resources regularly. One of our main

objectives for the future is to add more context information, e.g.,

cell type and physiological condition to the signaling network, and

use scores to prioritize interactions and paths which contribute

stronger to indirect causal relationships. Toward these aims, we

plan to leverage text mining methods (Gyori et al, 2017; Kveler

et al, 2018). We are also working on benchmarking the intercellular

communication knowledge by deriving ground truth from experi-

mental data (Armingol et al, 2020b). Furthermore, we envision to

extend OmniPath with pathogen–host interactions (Treveil et al,

2021) and microbiome–host interactions (Andrighetti et al, 2020) in

the near future.

In summary, we provide a new integrated resource of biological

knowledge particularly valuable for network analysis and modeling

of bulk and single-cell omics data. We anticipate that this knowl-

edge will also be valuable to analyze the emergent spatially resolved

omics data (Asp et al, 2020). To understand tissue architecture and

function, it is crucial to study the spatial arrangement of the dif-

ferent cell types. Spatial transcriptomics technologies provide this

information and hence help to prioritize the most likely ligand–

receptor interactions. Fundamental questions about cell communi-

cation in tissues, such as how secreted ligands act on neighboring

cells, can be addressed by analyzing spatially resolved data,

combining data-driven (Sun et al, 2020; preprint: Tanevski et al,

2020) with prior knowledge-based (Browaeys et al, 2019; Liu et al,

2019; Efremova et al, 2020) approaches. OmniPath provides a

framework to support these endeavors.

Materials and Methods

Terminology

In the manuscript, we use consistently the following three defi-

nitions to describe the structure of OmniPath:

• Database: collection of similar records in a uniform format inte-

grated from multiple resources (network, enzyme-PTM,

complexes, annotations, intercell).

• Dataset: a subset or variant of a database, e.g., the transcriptional

interaction network is a dataset of the network database.

• Resource: any data source we use for building the databases.

Database build

To build OmniPath, we developed a free software, the pypath

Python module (https://github.com/saezlab/pypath, version

0.11.39). We built each segment of the database by the corre-

sponding submodules and classes in pypath. In addition to the

database building process, all modules rely on common utility

modules from pypath such as the identifier translator or the down-

loading and caching service. Pypath downloads all data from the

original sources. Many resources integrate data from other

resources, we call these secondary resources and their relation-

ships are listed in Dataset EV7.

Network
For the OmniPath network, we converted the identifiers of the dif-

ferent molecules and merged their pairwise connections, preserving

the literature references, the information about the direction, and

effect sign (activation or inhibition).

In OmniPath, we included nine network datasets built from 61

resources (Dataset EV2). The first four datasets provide PPI

(“post_translational” in the web service) while the others transcrip-

tional and post-transcriptional regulation. At each point below, we

highlight the label of the dataset in the web service.

1 We compiled the “omnipath” network as described in T€urei et al

(T€urei et al, 2016). Briefly, we combined all resources we could

get access to, that are literature curated and are either activity

flow, enzyme–PTM, or undirected interaction resources. We also

added network databases with high-throughput data. Then, we

added further directions and effect signs from resources without

literature references.

2 The "kinaseextra" network contains additional kinase–

substrate interactions without literature references. The direc-

tion of these interactions points from the enzyme to the

substrate.

3 In the "pathwayextra" network, we combined further activity

flow resources without literature references. However, they are

manually curated and many have effect signs.

4 In the "ligrecextra" network, we provide additional ligand–

receptor interactions from large, comprehensive collections.

5 The "dorothea" network comes from DoRothEA database, a

comprehensive resource of transcription factor–gene promoter

interactions from literature curated databases, high-throughput

experiments, binding motif and gene expression-based in silico

inference, overall 18 resources(Garcia-Alonso et al, 2019). We

included the interactions from DoRothEA subclassified by con-

fidence levels from A to D, excluding the lowest confidence

level E. In OmniPath, users are able to filter the TF–target

interactions by confidence level.

6 Transcriptional regulation (“tf_target”) directly from 6 litera-

ture curated resources. We show the size of the TF–target

network at different settings in Dataset EV8.

7 In the "post_transcriptional" network, we combined 5 litera-

ture curated miRNA–mRNA interactions.
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8 Transcriptional regulation of miRNA (“tf_mirna”) from 2 liter-

ature curated resources.

9 lncRNA–mRNA interactions from 3 literature curated resources

(“lncrna_mrna”).

Enzyme–PTM interactions
After translating the identifiers, we merged enzyme-PTM interac-

tions from 11 databases (Dataset EV3) based on the identity of the

enzyme, the substrate and the modified residue and its position. In

addition, we discarded the records where the residue could not be

found in any of the isoform sequences from UniProt (UniProt

Consortium, 2019). For each enzyme–PTM interaction, we included

the original sources and the literature references. We also kept the

records without literature support, e.g., from high-throughput

screenings or in silico prediction.

Complexes
We combined 12 databases to build a comprehensive set of protein

complexes (Dataset EV4). Seven of these databases provide informa-

tion about the stoichiometry of the complexes while three contain

only the lists of components. We translated the names of the compo-

nents to UniProtKB accession numbers. We defined the complexes

by their unique combination of members regardless of how the orig-

inal resource processed the underlying experimental data. We

merged the complexes based on their identical sets of components

and preserved the stoichiometry if available. We represent each

complex by the UniProt IDs of their components sorted alphabeti-

cally, separated by underscores and prefixed with “COMPLEX:”.

From the original sources, we kept the literature references, the

human readable names (synonyms) and the PDB structure identi-

fiers if available.

Annotations
Annotation resources provide diverse information about the local-

ization, function, or other characteristics of the molecules. We

obtained annotations from 49 databases (Dataset EV5). For these

databases, we translated IDs and extracted the fields with relevant

information. Due to the heterogeneous nature of the data, in the

annotation database, the content of the resources is not merged, but

rather all entries are provided independently.

Each annotation record assigns one or more attributes to a mole-

cule. One protein might have more than one annotation record from

the same database. For example, Vesiclepedia (Pathan et al, 2019)

provides two attributes: the vesicle type and the tissue where the

protein has been detected. We combined the annotation resources

into a uniform table where one column is the name of the attribute

and the other is the value. As one record might have multiple attri-

butes, the records are identified by unique numbers (Fig EV3).

Providing the data in this format in our web service, it can be easily

reconstituted to conventional tables with standard tools like tidyr

(https://tidyr.tidyverse.org) in R or pandas (https://pandas.pydata.

org) in Python.

Complex annotations
Only four resources curate annotations of protein complexes; from

these, we processed the complex annotations as we did for proteins.

Furthermore, we inferred annotations for complexes based on the

annotations of their components. We assigned the annotations to

the complex if all components agreed in all attributes that we

considered relevant, e.g., if all members of a complex belong to the

WNT pathway then the complex is also annotated as a member of

the WNT pathway.

Intercellular signaling roles
From the resources used in annotations, we selected 26 with func-

tion, location, or structure information relevant in intercellular

signaling. The relevant attributes we processed and combined to

account for main roles in intercellular communication (e.g., ligand,

receptor, ECM proteins) as well as the locational and topological

properties (e.g., secreted, transmembrane). In addition, we built

Boolean expressions from Gene Ontology terms to define the same

categories. Overall we created 25 functional and 10 locational cate-

gories (Dataset EV6). Each category carries the attributes described

in Dataset EV10 (Fig EV4). We manually checked the members of all

the annotation groups, relying on literature knowledge and UniProt

datasheets (UniProt Consortium, 2019), discarding the wrong anno-

tations. We provide the classification of proteins and complexes by

these categories in the intercell query of the web service.

Identifier translation
For each type of molecule, we chose a reference database: for proteins

the UniProtKB ACs while for miRNAs the miRBase (Kozomara et al,

2019) mature Acs. From these databases, we obtained a reference set

of identifiers for each type of molecular entity and organism. We then

used translation tables provided by them to map other kinds of identi-

fiers to the reference set. For UniProt, we corrected for deprecated or

secondary Acs by translating to primary gene symbol and then to

primary UniProt AC. We applied corrections to handle non-standard

notations (e.g., extra dashes, Greek letters). We also accounted for the

ambiguity in the mapping, i.e., if one foreign identifier may corre-

spond to multiple reference identifiers we keep all target identifiers in

OmniPath.

Translation by homology to rodent species
The homology translation in pypath uses the NCBI HomoloGene

database (NCBI Resource Coordinators, 2018). Because HomoloGene

uses RefSeq IDs, the translation takes three steps: from UniProt to

RefSeq, then to the homologous RefSeq and finally from RefSeq to

UniProt. The success rate of this translation is around 80% for

mouse and roughly 30% for rat (Dataset EV9). We translated the

network data and the enzyme–PTM interactions from human to

mouse and rat, the two most popular mammalian model organisms.

In addition, we looked up PTMs in PhosphoSite (Hornbeck et al,

2015) which provides homology data for PTM sites. Then, we

checked the residues in the UniProt sequences (UniProt Consortium,

2019) and discarded the ones that did not match. The homology-

translated data are included also in the OmniPath web service.

Data download and caching
At the database build, we download all input data directly from the

original sources (Dataset EV1). Certain databases either temporarily

or ultimately went offline; we deposited their data in the OmniPath

Rescued Data Repository (https://rescued.omnipathdb.org/). Pypath

contains the URLs for all resources used including the identifier

translation tables. It automatically downloads, extracts, and prepro-

cesses the data for each operation. Then, it stores the downloaded
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data in a local cache directory which belongs to the user account on

the computer. Once cache is created, pypath reads from it and

performs the download only if requested by the user.

Joint analysis of intra- and intercellular processes in SARS-CoV-2
infection

The NicheNet method (Browaeys et al, 2019) was built, trained, and

applied to a case study using interactions and annotations from

OmniPath resources. This information was downloaded via our R

package, OmnipathR.

Network construction
NicheNet generates a model based on prior knowledge to describe

potential regulatory effects of ligands on target genes. To reproduce

their procedure, we first built three networks accounting for protein

interactions of different categories retrieved from OmniPath:

1 Ligand–receptor network: We downloaded the "ligrecextra"

network which specifically contains known interactions

between ligands and receptors. In addition, we selected

proteins annotated as ligands or receptors as their main “inter-

cellular signaling role”. Then, we extended this network with

PPI whose source is a ligand and its target a receptor.

2 Signaling network: we retrieved PPI from the original Omni-

Path network (T€urei et al, 2016), the "kinaseextra" network

and the "pathwayextra" network.

3 Gene regulatory network: We selected the most reliable TF–

target interactions from the DoRothEA dataset (confidence

levels A, B, and C) and the literature curated “tf_target” dataset

of the "transcriptional" network of OmniPath to be in line with

the curation level of the ligand–receptor and signaling networks.

Then, we computed ligand–target regulatory potential scores

based on the topology of our aforementioned networks, following

the protocols described in the NicheNet original study and using its

associated nichenetr package (Browaeys et al, 2019). Briefly, Person-

alized PageRank was applied on the union of the ligand–receptor

and signaling networks considering every individual ligand as start-

ing node. To estimate the impact of every ligand in the expression

of target genes, a matrix containing the PageRank scores is multi-

plied by the weighted adjacency matrix of the gene regulatory

network.

Analysis of altered ligands and pathways
We applied our OmniPath-based version of NicheNet analysis on

RNA-Seq data of a human lung cell line, Calu3 (GSE147507) (Blanco-

Melo et al, 2020). In this study, differential expression analysis at the

gene level between controls and SARS-CoV-2-infected cells was carried

out using the DESeq2 package(Love et al, 2014). We selected over-

expressed ligands (adjusted P-value < 0.1 and Log2 fold-change > 1)

after SARS-CoV-2 infection for further analysis. Then, we executed

Gene Set Enrichment Analysis (GSEA) taking the Wald statistic and

the hallmark gene sets from MSigDB (Liberzon et al, 2011) as inputs

using the fgsea package (preprint: Korotkevich et al, 2016). Inflamma-

tory response appeared as one of the top enriched sets. We therefore

selected the leading edge genes of inflammatory response, i.e., genes

contributing the most to the enrichment of this particular set, as

potential targets of the over-expressed ligands. We chose the

inflammatory response genes, similarly to the original NicheNet study

investigating the epithelial–mesenchymal transition-related genes

(Browaeys et al, 2019), because these processes are likely to be regu-

lated by extrinsic signals.

Ligand activity analysis on the aforementioned samples was

conducted using the nichenetr package (Browaeys et al, 2019). We

then selected the shortest paths between receptors (the ones inter-

acting with the top predicted ligands) and transcription factors (the

ones regulating the expression of the inflammatory target genes).

These paths were exported to Cytoscape (Shannon et al, 2003) to

generate Fig 5A.

Intercellular communication in ulcerative colitis

Intercellular interactions from OmniPath
We downloaded intercellular interactions using the “import_inter-

cell_network()” method in OmnipathR and filtered for direct cell–

cell connections: We discarded extracellular matrix proteins, extra-

cellular matrix regulators, ligand regulators, receptor regulators, and

matrix adhesion regulators and kept only membrane-bound (trans-

membrane or peripheral site of the membrane) proteins on the

receiver side. This resulted in connections involving ligands, recep-

tors, junction, adhesion, ion channel, transporter, and cell surface

or secreted enzyme proteins.

Single-cell RNA-Seq data processing
We downloaded the raw scRNA-Seq data and processed it according

to Smillie et al (Smillie et al, 2019). 51 cell types have been charac-

terized by average gene expressions in healthy (n = 12) state and

non-inflamed UC (n = 18). A gene was considered expressed if its

log2 expression value was above the mean minus 2 standard devia-

tions of the expressed genes within the cell type.

Specific interactions between cell types
We examined all possible connections among the selected 5 cell

types. We considered interactions condition specific if they appeared

either only in healthy or in UC, i.e., at least one member was

expressed only in the given condition. We counted the unique PPIs

between each cell pair in the two conditions separately (Fig 5B). We

visualized the condition-specific connections from myofibroblasts to

T cells on circos plots using the circlize R package (Gu et al, 2014).

On these figures, we grouped similar ligands (e.g., CCR2 and CCR5)

and merged the connections within groups. Then, we grouped the

receptors by pathways defined in SignaLink (Fazekas et al, 2013) to

improve biological insight and visual clarity (Fig 5C).

Cell type-specific network of regulatory T cell and downstream
pathway analysis
To highlight the downstream effect connections from myofibroblasts

to regulatory T cells, we created a cell-specific signaling network

and we carried out a pathway enrichment analysis. We used the

OmniPath Cytoscape application (Ceccarelli et al, 2019) to combine

the gene expression data with the OmniPath network. We limited

the network to genes expressed in regulatory T cells. We selected

the receptors targeted by condition-specific ligand–receptor connec-

tions in regulatory T cells. Finally, we pruned the network to the

two steps neighborhood of the T cell-specific receptors. We
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performed a pathway enrichment analysis on the network described

above, using the online interface of the Reactome database with its

default settings (hypergeometric test, Benjamini–Hochberg FDR

correction, the human genome as the universe).

Comparing OmniPath to other resources for cell–cell
interaction analysis
For the protein interaction network, we downloaded Pathway

Commons (Cerami et al, 2011), which is an integrated resource

containing undirected protein–protein connections from public path-

ways and interaction databases. Pathway Commons was downloaded

from the version https://www.pathwaycommons.org/archives/PC2/

v12/PathwayCommons12.All.hgnc.sif.gz. Ligand, receptor annota-

tions were derived from Ramilowski et al and were downloaded from

https://fantom.gsc.riken.jp/5/suppl/Ramilowski_et_al_2015/data/Pa

irsLigRec.txt. We run our pipeline for three different network–annota-

tion combinations: (i) Pathway Commons network with Ramilowski

annotations; (ii) Pathway Commons network with OmniPath ligand,

receptor annotations; and (iii) OmniPath network with OmniPath

ligand, receptor annotations.

Data availability

OmniPath is available via the Python package pypath (https://

github.com/saezlab/pypath), the web resource (https://omnipathdb.

org), the R/Bioconductor package OmnipathR (https://saezlab.

github.io/OmnipathR), the omnipath Python client (https://github.c

om/saezlab/omnipath), and the OmniPath Cytoscape plug-in (Cecca-

relli et al, 2019). In addition, pypath is able to export the network and

the enzyme–PTM databases in BEL (Biological Expression Language)

format (Hoyt et al, 2018b), as well as to generate input files for Cell-

PhoneDB. The BEL format databases are available in BEL Commons

(Hoyt et al, 2018a). Code is licensed open source (GPLv3 or MIT).

Pypath builds the OmniPath databases directly from the original

resources, hence it gives the highest flexibility for customization and

the richest API for queries and manipulation among all access options.

Furthermore, it is possible to convert each database to a plain data

frame and export in a tabular format. Pypath also generates the web

resource’s contents which is accessible for any HTTP client at https://

omnipathdb.org. Information about the resources is available at

https://omnipathdb.org/info. OmnipathR and the OmniPath Cytos-

cape plug-in work from the web resource data with convenient post-

processing features. All data in OmniPath carry the licenses of the

original resources (Dataset EV12), for profit users can easily limit their

queries to fit the legal requirements. We maintain a directory of work-

flows and tutorials at https://workflows.omnipathdb.org/.

Apart from the figures presented in this paper, further regularly

updated statistics and visualizations are available at https://

insights.omnipathdb.org.

A Python and R package for producing the figures and tables of

this paper is available at https://github.com/saezlab/omnipath_ana

lysis. The code to build and train the NicheNet method (Browaeys

et al, 2019) exclusively using OmniPath resources as well as to

reproduce the SARS-CoV-2 case study is freely available at https://

github.com/saezlab/NicheNet_Omnipath. The code for building the

cell type-specific inter- and intracellular networks is available at

https://github.com/korcsmarosgroup/uc_intercell.

Expanded View for this article is available online.
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