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Abdominal aortic aneurysm (AAA) is a prevalent vascular disease with high

mortality rates upon rupture. Despite its prevalence in elderly populations,

there remain limited treatment options; invasive surgical repair, while risky,

is the only therapeutic intervention with proven clinical benefits. Dietary

factors have long been suggested to be closely associated with AAA risks,

and dietary therapies recently emerged as promising avenues to achieve

non-invasive management of a wide spectrum of diseases. However, the role

of dietary therapies in AAA remains elusive. In this article, we will summarize

the recent clinical and pre-clinical e�orts in understanding the therapeutic

and mechanistic implications of various dietary patterns and therapeutic

approaches in AAA.
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Introduction

Abdominal aortic aneurysm (AAA) is a localized, progressive weakening and dilation

of the aortic wall, primarily in the infrarenal segment. It is a common vascular disease

in elderly populations (i.e., >65-year old), and up to 8% of males and 6% of females

are estimated to develop AAA over a lifetime (1). While most cases are asymptomatic,

AAA features a highly unpredictable disease course, which could culminate in the highly

deadly rupture of the aneurysmal aorta (2). Ruptured AAAs have up to an 85%mortality

rate, and thus far no single parameter or tool can robustly predict the risk of rupture (3).

Owing to the expanded AAA screening in at-risk populations, an increasing number

of diagnosed yet asymptomatic patients have been identified, albeit the majority of

which are small-diameter AAAs. Unfortunately, these patients do not meet the criteria

for open or endovascular repairs, which remain the standard of care (4). In these

scenarios, a “watchful waiting” strategy is often employed to monitor the AAA growth

rate overtime to triage patients that are considered stable; but due to the lack of effective
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pharmacotherapies to block AAA expansion, these patients

are left unprotected from the risk of unpredictable and lethal

rupture (5). The absence of therapeutic modalities alternative

and complementary to surgical repairs has greatly hindered

the success brought about by the AAA surveillance initiative,

causing unnecessary anxiety to the patients as well as burdens

to the healthcare system (6).

Strategies to counter AAA’s modifiable risk factors have

long been recommended as secondary preventative measures

to reduce overall cardiovascular mortality risks (5). Aside from

the non-modifiable risk factors such as advanced age, male

gender, Caucasian race, and family history, modifiable risk

factors offer potential avenues for risk reduction strategies (7–

9). Tobacco smoking is arguable the strongest modifiable risk

factor associated with AAA expansion and rupture, and smoking

cessation has been widely and strongly recommended for all

patients with AAA (10, 11). Other modifiable factors, including

hypertension and atherosclerosis, have also been subjected

to extensive studies. However, at present, none of the anti-

hypertensive (e.g., beta blockers) or atherosclerosis medications

(e.g., statins) have demonstrated clear therapeutic efficacies

against AAA expansion and rupture (12).

The lack of definitive clinical benefits in the foregoing

risk reduction strategies necessitates further efforts toward

the first non-surgical treatment of AAA. Over the past two

decades, numerous FDA-approved drugs have been repurposed

for treating AAAs, yet none have yielded any clinical success

(12). The most prominent example is doxycycline, a previously

approved tetracycline antibiotic for anti-bacterial infections

that was hypothesized to possess potent anti-AAA efficacy

due to its additional benefits in inhibiting proteolytic enzyme

activities and inflammasome activation. Unfortunately, after

almost twenty years of active investigations, the two randomized

clinical trials — the N-TA3CT trial in the US and the PHAST

trial in Netherland — led to the conclusion that doxycycline had

no benefits against, if not further exacerbating the expansion

of small-diameter AAAs (13, 14). Other promising candidate

drugs, such as metformin and sirolimus, are still far from

the clinical utility at the current stage (15, 16). As such,

other alternative strategies are urgently needed to address the

unmet clinical need, that is a safe and effective non-invasive

management of AAA.

In light of the aforementioned challenges and obstacles,

recent years have witnessed a surging interest in pursuing

lifestyle changes for AAA management. While smoking

cessation and physical exercise both have shown promising

benefits in reducing AAA risks, there is a scarcity of

studies concerning the role of healthy dietary patterns, at

both clinical and preclinical levels (10, 17, 18). Especially

with the ever-increasing benefits of various dietary regimens

against cardiovascular diseases as recently reported (19, 20),

understanding the therapeutic and mechanistic implications

of certain dietary patterns would hold significant value in

informing the future guideline of AAA management. Herein,

we will summarize the recent progress in dietary therapies

for AAA based on epidemiological and experimental evidence,

(see Figure 1). Additionally, we will discuss the perspectives of

emerging dietary regimens and potential molecular basis.

Clinical evidence supporting dietary
regimens in AAA

In contrast to surgical repairs and drug treatments, dietary

therapies are uniquely advantageous in multiple aspects,

ranging from accessibility to the lack of invasiveness. For

the management of cardiovascular diseases and metabolic

syndromes, healthy dietary patterns have long been

recommended to patients with proven benefits (19–22).

However, in the case of AAA, the number of clinical studies

examining the role of dietary patterns is sparse, with the

epidemiological data almost exclusively derived from the

following cohort studies: the Life Line Screening study,

Atherosclerosis Risk in Communities (ARIC) study, the Malmö

Diet and Cancer Study (MDCS), the Cohort of Swedish Men

and the Swedish Mammography Cohort, and the Health In Men

Study (HIMS), andmost recently, the Brazilian Cardioprotective

Nutritional Program Trial (23).

The first epidemiological evidence concerning dietary

elements came from the Life Line Screening study in the US.

In this retrospective cohort of 3.1 million patients, Kent et al.

reported that consumption of nuts, vegetables, and fruits at

a frequency of >three times per week were associated with

reduced risk of AAA, as was the case for exercise (≥1 time per

week) and smoking cessation (7). However, in this questionnaire

study, fruits and vegetables were combined, thus their respective

link to AAA risk was not discerned.

Built upon the seminal work from Kent et al., Stackelberg

et al. continued to investigate dietary factors, particularly fruit

and vegetable consumption, using the prospective Cohort of

Swedish Men and Mammography Cohort (24). Surprisingly,

while consumption of fruit was found to be negatively associated

with the risk of AAA (particularly the ruptured ones), no link

was established for vegetable consumption. In a follow-up study,

the same team reported their finding that moderate alcohol

consumption was inversely associated with AAA (25).

The role of dietary fiber and vegetable intake in AAA was

not established until the reports from Harring et al. in 2018

and Bergwall et al. in 2019. In the former study, the ARIC

study cohort was investigated regarding the association between

AAA risk and their adherence to the Dietary Approaches

To Stop Hypertension (DASH) dietary patterns (26). In

addition to fruits, nuts, and legumes, high consumption of

vegetables, whole grains, and low-fat dairy were revealed to

be associated with decreased AAA burden, respectively. The

latter study, conducted in the MDCS cohort, showed that linear

protective associations between high intakes of fruits, berries,

vegetables with AAA. Surprisingly, potato consumption was
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FIGURE 1

Dietary therapy in abdominal aortic aneurysm (AAA). (A) Clinical AAA and (B) Experimental AAA.

positively associated with AAA risk (27). Of particular note in

both studies is the lack of statistically significant correlation

between AAA risk and salt consumption, contradicting a

prior population screening study in 11,742 elderly Australian

males (28). Considering the uncertain clinical benefits of

anti-hypertensive medications and the increasing popularity

of the DASH dietary style, further experimental and clinical

investigations are warranted to clarify the interventional value

of such dietary patterns with restricted salt intake.

Similar to the DASH diet studied in the ARIC cohort,

other similar dietary patterns have also been studied, including

the anti-inflammatory diet and Mediterranean diet (29, 30).

Similarly, diets high in antioxidant contents have also been

recently reported to be associated with reduced AAA risks

(23, 31). All these dietary patterns feature similar compositions,

such as high consumption of fruit, vegetables, nuts, legumes,

wholegrains, fish, and low consumption of red and processed

meat. From a utility perspective, studying dietary patterns and

eating styles may hold more translational value than focusing on

individual food item consumption, as the former can encompass

a variety of healthy dietary elements as aforementioned.

Preclinical studies concerning
dietary patterns in AAA

Dietary therapies in experimental models

Notwithstanding the growing interest and epidemiological

evidence, experimental studies concerning dietary therapies are

very limited. Based on our literature search, three types of dietary

regimens have been identified with preclinical therapeutic

efficacies in murine models of AAA, i.e., calorie restriction,

dietary phytoestrogen intake, and consumption of long-chain

Omega-3 polyunsaturated fatty acids (PUFAs).

Calorie restriction

Calorie restriction is a dietary regimen that consists of

decreased calorie intake without causing malnutrition and is

often prescribed to achieve weight loss. Experimental data

derived from rodent and non-human primate models support

a pleiotropic role of calorie-restricted diets in mediating

a myriad of health benefits, most notably in prolonging

lifespan (32, 33). Data from the calorie restriction and

cardiometabolic risk (CALERIE) study revealed a clear benefit

of calorie restriction in reducing cardiometabolic risk factors

(34). To date, only two experimental reports concerning

the impact of such dietary patterns are available. Liu et al.

observed profound mitigation of AAA formation using a

calorie-restricted diet in angiotensin II (AngII)-infused, Apoe-

/- mice (35). Additionally, they further found that sirtuin

1 (SIRT1), but not other metabolic/energy sensors such

as SIRT3, mechanistic target of rapamycin (mTOR), and

AMP-activated protein kinase α (AMPKα), was the main

mediator of the aortic benefits exerted by calorie restriction.

Such AAA-protective effect was later recapitulated using

the same murine model and dietary regimen, and an

alternative mediator, p53, was discovered to contribute to

the aforementioned phenotype, possibly through maintaining

mitochondrial bioenergetics (36).

Phytoestrogen diet

Phytoestrogens are a group of plant-derived chemicals

with structural and functional similarities to 17-β-estradiol,
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an estrogen with a presumed protective role against AAA.

The primary sources of phytoestrogen intake are through

consumption of soy and many other legumes, which have

been previously linked to reduced AAA risk. Using a murine

model with topical elastase application, Lu et al. showed that

a phytoestrogen-rich diet could effectively ameliorate AAA

development in male but not in female mice (37). In line

with this observation, supplementation with the phytoestrogen

Daidzein attenuated AngII-induced AAA in murine models

(38). However, a follow-up study by Fashandi et al. using a

modified AngII model failed to demonstrate any impact of

a high-phytoestrogen Western diet on AAA rupture rates or

survival (39). The inconsistency amongst these studies could

be potentially attributed to the different experimental models,

dietary regimens, and the phytoestrogen level/compositions

in different chows, as demonstrated in the work from Lu

et al. Considering the striking gender dimorphism in AAA,

future experimental efforts are poised to address the question

concerning the link among dietary phytoestrogen, endogenous

estrogen, and AAA risk (40).

Omega-3 PUFA-rich diet

Increased consumption of the PUFAs (e.g., Omega-3) —

often deemed as the healthy fats — is a key component of

the aforementioned diets (e.g., Mediterranean diet) featuring

high consumption of fish and nuts. Indeed, numerous Omega-3

PUFAs have been studied in murine models, in which dietary

supplementation could reduce AAA development (41–43).

While small-scale clinical studies suggest a potential correlation

between Omega-3 PUFAs and reduced AAA risk as well as

early benefits in improving pre-AAA pathologies (i.e., aortic

stiff), further studies are warranted to fully elucidate the role of

such dietary component(s) in the clinical management of AAA

(44, 45).

AAA-promoting diets in experimental
models

In stark contrast to the paucity of experimental studies

concerning dietary therapies, a plethora of literature are

available, detailing the pathophysiological/phenotypic

impacts upon experimental AAA pathogenesis. Most

notable examples include dietary patterns that recapitulate

AAA’s established risk factors, such as high-fat diets

(atherosclerosis/hypercholesterolemia) (46, 47), high-salt

consumption (hypertension), excessive supplementation with

homocysteine, or methionine (red meat consumption and

hyperhomocysteinemia), etc (48–50).

Perspectives

Emerging dietary regimens to be
explored in preclinical AAA models

Protein restriction

Similar to calorie restriction, protein restriction has also

been shown to help prolong lifespan in fruit flies and mice

(51, 52). In epidemiological studies, reduced intake of proteins,

especially red meat consumption, has been related to reduced

risk of all-cause mortality in populations aged 50–65 years.

However, in elderly populations aged above 65 years that

are also at risk of AAA, low protein intake rather increased,

whereas high protein consumption reduced all-cause mortality

(53). These observations highlight the duality behind dietary

restrictions on general nutrient intake: on the one hand, such

strategies have yielded pleiotropic benefits; but on the flip side,

concerns of malnutrition and frailty have been persistently

plaguing their widespread adoption and long-term adherence,

particularly for the AAA-prone aged populations that are more

susceptible to side effects like sarcopenia. Interestingly, recent

studies suggest that short-term dietary restrictions, such as

pre-operative protein restriction under inpatient settings, may

present an alternative, viable path as dietary preconditioning

to safely capitalize on the benefits of such dietary therapies.

Indeed, mounting preclinical evidence has pointed to the role

of pre-operative protein restriction in reducing surgical stress

as well as vascular (re)stenosis. Inspired by the safety data from

an exploratory trial in elective carotid endarterectomy patients

(54), another trial is currently underway to chart the baseline

information from healthy subjects, with the ultimate goal of

comparing with patients undergoing AAA surgical repair in a

future study (NCT03995979). However, sufficient protein intake

has also been suggested to be critical in post-operative recovery,

and hence cautions should be noted concerning the frailties

caused by protein restriction (55, 56).

Amino acid restriction

Unlike calorie or protein restriction, limiting the intake

of amino acid(s) has been shown to produce similar health

benefits in preclinical studies without significant risks of

malnutrition. Clinical studies further established the safety

profile as well as the early efficacy of a methionine-restricted

diet in healthy and cancer patients, with additional randomized

clinical trials currently ongoing (57, 58). While restrictions

of single (e.g., methionine) or multiple (e.g., branch-chained

amino acids) amino acids have been studied in experimental

models and even human subjects of other cardiometabolic

diseases, their implications in AAA have not been reported

(59–63). Considering the clinical association between certain
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amino acids/metabolites (e.g., homocysteine, methionine) and

AAA risk, it is of significant translational value to pursue

the preclinical impacts of such dietary restriction patterns in

future studies.

Intermittent fasting

Intermittent fasting is a dietary pattern that features time-

restricted eating with or without reducing calorie intake. Due

to its reduced risk of malnutrition and ease of adherence,

intermittent fasting has garnered significant popularity during

the past decade as an alternative regimen. Clinical studies

have suggested beneficial associations of intermittent fasting

with cardiometabolic risks, albeit long-term outcomes are still

pending (64, 65). In light of the aortic protection exerted by

calorie restriction in murine AAA models, it is reasonable

to postulate whether a similar effect could be observed with

intermittent fasting. However, it is worth noting that current

intermittent fasting protocols are highly variable, thus making

comparisons amongst different studies difficult. A recent murine

study further demonstrated that the circadian schedules of the

time-restricted eating could critically determine the outcomes

of different fasting protocols, which informs the challenges

and critical parameters to be considered when designing future

preclinical studies in AAA (66).

Emerging diet-mediated mechanisms
potentially implicated in AAA

There is no pathway or molecular basis that could

completely account for the health benefits of a given diet.

Past studies have unveiled various mechanisms implicated in

the aforementioned dietary regimens, such as overall energy

expenditure reduction, antioxidant supplementation, increased

production of hepatokines (e.g., FGF21) (67–71), etc. Due to

the scarcity of relevant literature on AAA, we will focus on two

emerging dietary mechanisms that are recently implicated in

AAA pathophysiologies while more in-depth investigations are

still needed.

Metabolism/nutrient sensors

Studies from other disciplines have uncovered a series

of sensor proteins and pathways for cellular metabolism,

energy expenditure, and certain nutrient cues. Amongst

the sensors known thus far, the NAD+-dependent protein

deacetylase sirtuin family member SIRT1 is the most notable

example. Not only has SIRT1 been established to negatively

modulate AAA pathogenesis (35, 72), experimental evidence

further revealed its critical role in mediating the benefits

of calorie restriction in mitigating AAA risk. Similarly,

deletion of SIRT3, another sirtuin member, exacerbated,

whereas its overexpression mitigated aneurysmal formation

and progression (73). Another kinase commonly associated

with dietary restriction is AMPKα, the activation of which

has been the presumed mode of action behind established

therapeutic regimens such as calorie restriction and metformin.

Indeed, although no definitive link has been made between

AMPKα and any diet-mediated AAAmitigation, data in murine

models did suggest a protective role of AMPKα against AAA

formation (74, 75); and while metformin, a calorie restriction

mimetic therapy recapitulated the therapeutic benefits, AMPK

blockade effectively abolished the protection against AAA (15,

74, 76).

mTOR and general control non-derepressible 2 (GCN2)

constitute the only two identified sensors for amino acids

(77). While mTOR is activated by recognizing the presence

and intracellular level of amino acids, GCN2, on the other

hand, senses amino acid starvation (78, 79). Both mTOR

(inactivation) and GCN2 (activation) have been implicated in

the cardiometabolic benefits of dietary restrictions (60, 80, 81).

While chronic activation of mTOR was recently reported to

drive aortic degeneration and hence aneurysmal formation,

the specific role of GCN2 remains unknown in AAA (82).

Further studies concerning GCN2 and amino acid restriction

are poised to determine the clinical utility of such innovative

dietary therapies.

Gut microbiome

You are what you eat. This is particularly true for the

gut microbiome, as all the aforementioned diets have been

shown to modulate gut microbiota (83–88). Although largely

neglected as “bystanders” for a long time, the gut microbiome

has been increasingly recognized to contribute to a wide

range of biological and pathological processes (89). Only

very recently were alterations of gut microbiota reported in

experimental and clinical subjects with AAA, suggesting a

microbial dysbiosis that is yet to be elucidated in aneurysm

(90, 91). Although no studies thus far have investigated the exact

role of diet-induced microbiota in AAA, it is highly plausible

that certain dietary regimens could impact AAA pathogenesis

via cultivating distinct microbiome compositions and hence

driving a shift toward beneficial microbiota-derived metabolic

compositions. In fact, some microbiota-derived metabolites

that are profoundly inhibited upon dietary restrictions (57, 92,

93), such as trimethylamine N-oxide (TMAO), were recently

revealed to contribute to AAA development (94).

Closing remarks

The past decade has witnessed tremendous progress in

dietary therapies for the management of cardiometabolic
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diseases and cancer, yet their therapeutic and mechanistic

implications in AAA are still elusive. The current study

provides the first comprehensive review of preclinical and

clinical evidence supporting the potential adoption of

certain dietary patterns in preventing and managing AAA.

Also discussed are selected emerging dietary regimens

as well as diet-mediated mechanisms, in which further

investigations are still pending. We envision that future

research efforts will be increasingly dedicated to a better

understanding of as well as translational development of

the first non-surgical management of AAA in the form of

dietary therapies.
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