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Abstract: Asthma, a chronic respiratory disease involving variable airflow limitations, exhibits two
phenotypes: eosinophilic and neutrophilic. The asthma phenotype must be considered because the
prognosis and drug responsiveness of eosinophilic and neutrophilic asthma differ. CD4+ T cells are
the main determinant of asthma phenotype. Th2, Th9 and Tfh cells mediate the development of
eosinophilic asthma, whereas Th1 and Th17 cells mediate the development of neutrophilic asthma.
Elucidating the biological roles of CD4+ T cells is thus essential for developing effective asthma
treatments and predicting a patient’s prognosis. Commensal bacteria also play a key role in the
pathogenesis of asthma. Beneficial bacteria within the host act to suppress asthma, whereas harmful
bacteria exacerbate asthma. Recent literature indicates that imbalances between beneficial and
harmful bacteria affect the differentiation of CD4+ T cells, leading to the development of asthma.
Correcting bacterial imbalances using probiotics reportedly improves asthma symptoms. In this
review, we investigate the effects of crosstalk between the microbiota and CD4+ T cells on the
development of asthma.
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1. Introduction

Asthma is a common respiratory disease involving chronic airway inflammation,
primarily caused by allergens such as house dust mites (HDMs), pollen, and animal
dander [1]. In general, the prevalence of asthma is approximately 15–20%, but this varies
by country [2]. Chronic inflammation resulting from continuous inhalation of allergens can
lead to airway remodeling, which in turn can induce various symptoms associated with
asthma, such as cough, dyspnea, and wheezing due to airway narrowing [1].

Steroids are often prescribed to control airway inflammation and represent the gold
standard for asthma treatment [3]. Although steroid use has improved the quality of life
of many asthma patients [4], some patients with severe asthma are refractory to current
steroid treatment protocols [3]. These severe asthma patients have poorer quality of life due
to a higher frequency of asthma attacks [5]. A variety of drugs for treating severe asthma
have been developed in recent years, including mepolizumab, reslizumab, benralizumab
and dupilumab [6]. However, these drugs were developed for patients with T helper
(Th)2 asthma, and unfortunately, no drugs for patients with non–Th2-asthma are currently
available. Thus, novel therapeutic targets for drugs to treat non–Th2-asthma are needed,
but the development of such drugs will require elucidation of the mechanism underlying
the role of CD4+ T cells in asthma pathogenesis.

Two asthma phenotypes have been described, Th2 and non-Th2, which are determined
by CD4+ T cells [7]. The asthma phenotype can change depending on which type of CD4 T
cell is differentiated; consequently, the response to asthma drugs can change accordingly [8].
Th2-asthma (i.e., eosinophilic asthma) is characterized by eosinophilic infiltrate in the
sputum [7]. The pathogenesis of eosinophilic asthma is characterized by secretion of high
levels of interleukin (IL)-4, IL-5 and IL-13 by Th2 cells [1]. In general, eosinophilic asthma
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is responsive to steroid treatment, and severe eosinophilic asthma is effectively treated
by various newly developed drugs [5]. Non-Th2 asthma (i.e., neutrophilic asthma), by
contrast, is characterized by neutrophilic infiltrate in the sputum [7] and secretion of high
levels of interferon gamma (IFN-γ) and IL-17 by Th1 and Th17 cells. In contrast to Th2-
asthma, non-Th2 asthma does not respond steroids or newly developed asthma drugs [7].
As the disease progression pattern and asthma treatment options differ depending on
the differentiation of CD4+ T cells, elucidating the biological roles of CD4+ T cells in the
pathogenesis of asthma is critical for developing effective asthma treatments and predicting
patient prognosis.

Although CD4+ T cells and other immune cells play key roles in the pathogenesis
of asthma, several studies have reported a relationship between the host microbiota and
asthma [9–11]. Commensal bacteria, which constitute a subtype of the microbiota, are
symbiotic bacteria [12]. An adult male weighing 70 kg reportedly harbors approximately
3.8 × 1013 commensal bacteria [13]. Approximately 29% of commensal bacteria reside
in the gastrointestinal tract, 26% in the oral cavity, 21% on the skin, 14% in the airways,
9% in the urogenital tract, and 1% in the blood [12]. Commensal bacteria perform a
variety of biological functions important to the host, including fermentation of undigested
dietary carbohydrates, synthesis of bile acids and vitamins, and immune surveillance [14].
Importantly, alterations in the composition of commensal bacteria have been associated
with various chronic inflammatory diseases, such as asthma, inflammatory bowel disease,
and obesity [15]. Recent literature indicates that the composition of beneficial and harmful
bacteria in the host determines the disease pattern of asthma [16]. The same study revealed
that various environmental factors that affect these bacteria also affect the differentiation of
CD4+ T cells, resulting in the development of asthma [16].

In this review, we discuss the detailed mechanism of the pathogenesis of asthma as
it relates to Th2-asthma and non-Th2 asthma, with a particular focus on CD4+ T cells. In
addition, we discuss the role of the bacterial microbiota in the induction of asthma and its
effect on CD4+ T cells in asthma.

2. Th2-Asthma with Eosinophilic Inflammation

Th2 cells play a central role in the development of Th2-asthma [17]. The hallmark of
Th2-asthma is infiltration of the airways by eosinophils. Eosinophilic asthma is diagnosed
when the proportion of eosinophils in the sputum is >3% [17]. Th2-asthma can be caused
by allergens and non-allergens, including pollutants, microbes, and glycolipids [18]. Ap-
proximately 50% of asthmatic adults have Th2-asthma [5]. Although various immune cells
are involved in the pathogenesis of Th2-asthma, the Th2, Th9, and T follicular helper cell
(Tfh) CD4+ T cell subtypes play particularly key roles (Figure 1).

2.1. Th2 Cells

Th2 cells constitute a subtype of CD4+ T cells [19]. Th2 differentiate in response to
IL-4 secreted by dendritic cells (DCs), and innate lymphoid cell group 2 (ILC2) promotes
the expression of master transcription factors such as GATA-binding protein 3 (GATA3)
and signal transducer and activator of transcription (STAT)6 [19]. Differentiated Th2 cells
defend the host against extracellular parasites and secrete various Th2 cytokines, including
IL-4, IL-5 and IL-13 [20].

Th2 cytokines play a major role in airway eosinophilic infiltration in Th2-asthma [21].
Compared with healthy control subjects, expression of the Th2 cytokine-related genes IL-5,
GPR55, and ELAVL1 is upregulated in peripheral blood mononuclear cells (PBMCs) of
asthma patients [22].



Int. J. Mol. Sci. 2021, 22, 11822 3 of 18Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 3 of 19 
 

 

 
Figure 1. Pathogenesis of eosinophilic asthma mediated by T helper (Th)2, Th9 and T follicular helper (Tfh) cells. The 
development of eosinophilic asthma is associated with the Th2, Th9 and Tfh subtypes of CD4+ T cells. Th2 cells play roles 
in eosinophilic infiltration, goblet cell hyperplasia, airway hyperresponsiveness, immunoglobulin (Ig)E production, and 
upregulation of endothelial molecules, including vascular cell adhesion molecule (VCAM)-1 and intercellular adhesion 
molecule (ICAM)-1. GATA-binding protein 3 (GATA3) and signal transducer and activator of transcription (STAT)6 are 
transcriptional factors in Th2 cells. Th9 cells mediate mast cell infiltration and IgE production. PU and Irf4 are 
transcriptional factors in Th9 cells. Bcl6-expressing Tfh cells mediate isotype switching and IgE production. Text color: 
Black, cytokine. LN, lymph node; DC, dendritic cell; IL, interleukin; Irf4, interferon regulatory factor 4; CXCR5, C-X-C 
chemokine receptor type 5. Figure created using BioRender.com (accessed on 6 September 2021). 
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Figure 1. Pathogenesis of eosinophilic asthma mediated by T helper (Th)2, Th9 and T follicular helper (Tfh) cells. The
development of eosinophilic asthma is associated with the Th2, Th9 and Tfh subtypes of CD4+ T cells. Th2 cells play roles
in eosinophilic infiltration, goblet cell hyperplasia, airway hyperresponsiveness, immunoglobulin (Ig)E production, and
upregulation of endothelial molecules, including vascular cell adhesion molecule (VCAM)-1 and intercellular adhesion
molecule (ICAM)-1. GATA-binding protein 3 (GATA3) and signal transducer and activator of transcription (STAT)6 are
transcriptional factors in Th2 cells. Th9 cells mediate mast cell infiltration and IgE production. PU and Irf4 are transcriptional
factors in Th9 cells. Bcl6-expressing Tfh cells mediate isotype switching and IgE production. Text color: Black, cytokine. LN,
lymph node; DC, dendritic cell; IL, interleukin; Irf4, interferon regulatory factor 4; CXCR5, C-X-C chemokine receptor type
5. Figure created using BioRender.com (accessed on 6 September 2021).

IL-4 secreted by Th2 cells binds to the IL-4 receptor (IL-4R) in an autocrine manner
to continuously initiate Th2 differentiation [23]. Th2-derived IL-4 also promotes allergen-
specific immunoglobulin (Ig)E class switching in B cells [24], and upregulates the expression
of intercellular adhesion molecule-1 and vascular cell adhesion molecule (VCAM)-1 in
endothelial cells in the lungs, resulting in eosinophil recruitment [24].

IL-5 also plays a critical role in eosinophilic inflammation [25]. Foster et al. reported
that IL-5–deficient mice exhibit reduced airway eosinophilia despite allergen-induced aller-
gic inflammation [26]. In the bone marrow, IL-5 promotes the differentiation of myeloid
precursor cells to mature eosinophils [27]. Circulating mature eosinophils that were trig-
gered to differentiate by IL-5 then adhere to VCAM-1 on endothelial cells and migrate
to the bronchial lumen [28]. Accumulation of mature eosinophils in the bronchial lumen
exacerbates eosinophilic asthma because activation of Jak2 and Raf-1 inhibits eosinophil
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apoptosis [25]. In addition, eosinophil survival is prolonged due to the upregulation of
mitogen-activated protein kinase genes [25].

IL-13 plays an important role in airway remodeling [29]. IL-13–STAT6 signaling in hu-
man epithelial cells induces goblet cell hyperplasia via the upregulation of the mucin 5AC
gene [30]. In addition, IL-13 promotes airway hyperresponsiveness, which is aggravated
narrowing of the airways in response to external stimuli, by upregulating smooth muscle
cell contractility and pulmonary fibrosis [31].

As Th2 cytokines have a marked effect on the occurrence of eosinophilic asthma,
various therapeutic agents targeting Th2 cytokines have been developed [6]. Current
Th2 cytokine–targeted therapies approved by the Food and Drug Administration can be
divided into two classes: drugs that target cytokines (e.g., mepolizumab and reslizumab),
and drugs that target cytokine-binding receptors (e.g., benralizumab and dupilumab).

Mepolizumab, an IgG1 monoclonal antibody targeting IL-5, is administered via subcu-
taneous injection of 100 mg every 4 weeks [6]. Compared with the placebo, mepolizumab re-
duced glucocorticoid and asthma exacerbation in patients with eosinophilic asthma [32,33].
Reslizumab, an IgG4 monoclonal antibody targeting IL-5, is administered via intravenous
injection of 3 mg/kg every 4 weeks [6]. Reslizumab also reduces the number of acute
exacerbations and the amount of maintenance steroids required in patients with moderate
to severe eosinophilic asthma [34].

Benralizumab, a humanized IgG1 monoclonal antibody targeting IL-5 receptor α, is
administered via subcutaneous injection of 30 mg every 8 weeks [6]. Compared with the
placebo, benralizumab decreased glucocorticoid use by 75% and decreased the number of
asthma exacerbations by 70% in patients with severe eosinophilic asthma [35]. Dupilumab,
an IL-4Rα antagonist, is administered via subcutaneous injection every 2 weeks [36].
Compared with the placebo, dupilumab decreased the number of asthma exacerbations
by 47.7% in patients with moderate to severe uncontrolled asthma [36]. Furthermore,
dupilumab improves lung function, which has not been demonstrated with the other Th2
cytokine–targeted therapies [36]. After 12 weeks of dupilumab use, an improvement in
forced expiratory volume in 1 s (FEV1) was observed, with an average increase in FEV1 of
0.32 L [36].

In addition to these cytokines and cytokine-binding receptor-targeted therapy, drugs
targeting Th2 transcription factors are also under development [37]. For example, SB010, a
GATA3-specific DNAzyme that inhibits transcription of the GATA3 gene, improved lung
function and decreased plasma IL-5 levels compared with the placebo [38]. However, that
study had several limitations, such as the small study group involving only 40 asthma
patients [38]. Large-scale studies of SB010 targeting patients with severe eosinophilic
asthma are thus needed.

2.2. Th9 Cells

Recent reports suggest that Th9 cells induce allergic reactions and inflammatory
responses [39]. Th9 cells are a subset of CD4+ T cells that secrete IL-9 and were initially
thought to be a subtype of Th2 cells [40]. However, research has revealed that Th9 cells
do not produce IL-4, Il-5, or IL-13 and only secrete IL-9 [41]. In addition, Th9 cells express
PU.1 and interferon regulatory factor 4 (Irf4) as transcription factors [42]. Th9 cells are
therefore recognized as a new subtype of CD4+ T cells due to differences compared with
conventional Th2 cells in terms of the cytokines and transcription factors produced [41].

Th9-derived IL-9 plays an important role in the development of eosinophilic asthma
by assisting the action of Th2 cells [21]. For example, IL-9 enhances IgE production by B
cells in conjunction with Th2-derived IL-4. Petit-Frere et al. reported that simultaneous
administration of IL-4 and IL-9 exhibited synergistic effects that resulted in upregula-
tion of IgE production [43]. McLane et al. reported that serum IgE levels were elevated
in IL-9 transgenic mice compared with normal mice [44]. Analyses of PBMCs isolated
from patients with allergen-induced asthma revealed a positive correlation between the
number of Th9 cells and plasma IgE level [45]. Other studies found that IL-9 exacerbates
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eosinophilic inflammation by amplifying the effects of Th2 cytokines. Temann et al. found
that compared with normal mice, transgenic mice overexpressing IL-9 exhibited increased
production of Th2 cytokines, including IL-5 and IL-13 [46]. The increased levels of IL-5 and
IL-13 resulting from IL-9 stimulation increase eosinopoiesis in the bone marrow and en-
hance goblet cell metaplasia of epithelial cells [47,48]. Chang et al. reported that mice with
T cell-specific deletion of PU.1 exhibit reduced OVA-induced eosinophilic inflammation
compared with wild-type mice [49].

A unique role of IL-9 compared with Th2 cytokines is the effect on the infiltration
of mast cells in lungs. It was previously thought that Th2 cytokines, including IL-4 and
IL-13, were responsible for mastocytosis [50]. However, Sehra et al. demonstrated that IL-9
derived from Th9 cells regulates mast cell infiltration in the lungs [51]. Using adoptive Th9
transfer, they found that only IL-9 blockade—and not IL-13 blockade—effectively reduced
the infiltration of mast cells in the lungs [51].

Several murine studies examining IL-9 blockade demonstrated effective improve-
ment in eosinophilic asthma factors such as inflammation, suggesting that IL-9 is a novel
therapeutic target for treating eosinophilic asthma [52,53]. Unfortunately, however, a ran-
domized controlled trial involving over 300 asthma patients did not find any beneficial
improvement in asthma symptoms and lung function compared with the placebo group in
patients treated with MEDI-528, a humanized IgG1 monoclonal antibody that inhibits the
function of IL-9 [54]. JQ1, a bromodomain-containing protein 4 inhibitor that suppresses
chromatin looping, resulting in reduced IL-9 transcription, has attracted recent attention
for its potential in Th9 cell-targeted therapies [55]. In a murine study performed by Xiao
et al., JQ1 alleviated OVA-induced allergic inflammation [56]. However, the short half-life
of JQ1 currently poses an obstacle to clinical use [57]. Therefore, it will be necessary to
develop improved Th9 cell-targeted drugs that can be used in asthma patients.

2.3. Tfh Cells

Tfh cells constitute a subset of CD4+ T cells that localize primarily in lymphoid
tissues and function as key regulators of B-cell functions, including proliferation, cytokine
production, and isotype switching [58]. When DCs secrete IL-6 in lymphoid tissues after
allergen binding, naïve CD4+ T cells differentiate into C-X-C chemokine receptor type 5
(CXCR5)-expressing Tfh cells [59]. Regulated by the transcription factor B-cell lymphoma 6
(Bcl6), Tfh cells then secrete IL-4 and IL-21 [60].

Tfh-derived cytokines are major stimulators of IgE production by B cells. Previous
studies indicated that IL-4 and IL-9 are involved in IgE production [61]. Kobayashi et al.
reported reduced levels of serum IgE in T cell-specific Bcl6-depleted mice compared with
control mice, despite no changes in levels of Th2 cytokines such as IL-4, IL-5, and IL-13 [62].
Noble and Zhao reported abnormalities in class switching of IgG as well as IgE in T cell-
specific IL-6R mutant mice [63]. A study in humans reported a positive correlation between
circulating Tfh cells and HDM-specific IgE [64]. These results suggest that Tfh cells—but
not Th2 cells—play an important role in IgE production.

Tfh cells also play a role in amplifying the effects of Th2 cytokines during the induction
of Th2-asthma. Two hypotheses have been proposed to explain this phenomenon. The first
hypothesis holds that peripheral Tfh cells, which do not express CXCR5, migrate directly
from the mediastinal lymph nodes to the lungs. The second hypothesis holds that Tfh cells
are transformed into pathogenic Th2 cells. Using IL-21–green fluorescent protein reporter
mice, Coquet et al. concluded that IL-21–producing cells presumed to be of Tfh origin
localize in lungs and amplify Th2 cell responses via the binding of IL-21 to IL-21R on Th2
cells [65]. In contrast, Ballesteros-Tato et al. reported that IL-4–producing Tfh cells can
differentiate into precursors of pathogenic Th2 cells [66].

Two types of therapeutics targeting Tfh cells have been developed: an inducible
T-cell costimulatory (ICOS) ligand–targeted antibody, and a CXCR5-targeted therapy.
Uwadiae et al. reported that the ICOS ligand–targeted antibody alleviated HDM-induced
eosinophilic inflammation in a murine model [67]. Using PBMCs isolated from asthma
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patients and healthy controls, Zhang et al. reported that miR-192, a small, non-coding
RNA that regulates CXCR5 expression, inhibits the function of Tfh cells [68]. Because
Tfh cell-targeted therapies are still in the experimental stage, clinical trials of the ICOS
ligand–targeted antibody and miR-192 are in progress.

3. Non-Th2 Asthma with Neutrophilic Inflammation

Non–Th2 asthma refers to asthma involving <3% eosinophilic infiltration in the spu-
tum [7]. Fewer than 50% of asthma patients are diagnosed with non–Th2 asthma, which
primarily occurs in adulthood [69]. Non–Th2 asthma is induced by non-allergenic factors
such as smoking, air pollution, inhaled ozone, and infection [7]. Patients with non–Th2
asthma suffer from poor asthma control and experience frequent exacerbations of asthma
symptoms due to the development of medication resistance [70]. Neutrophil infiltration is
a key characteristic of patients presenting with non–Th2-asthma. Among the CD4+ T cell
subsets, Th17 and Th1 cells reportedly play important roles in neutrophil infiltration of the
airways (Figure 2) [7].
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Figure 2. Pathogenesis of neutrophilic asthma mediated by Th1 and Th17 cells. The development of neutrophilic asthma is
associated with subtypes of CD4+ T cells including Th1 and Th17 cells. Th1 cells are involved in mediating the infiltration of
neutrophils and the formation of emphysematous lung. T-bet, STAT1, and STAT4 are transcriptional factors in Th1 cells. Th17
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SLPI, secretory leukocyte peptidase inhibitor. The figure was created using BioRender.com (accessed on 6 September 2021).
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3.1. Th17 Cells

Th17 cells exert a significant effect on neutrophilic inflammation during the devel-
opment of asthma [7]. Th17 cells secrete IL-17A, IL-17F, and IL-22 as part of the response
against extracellular pathogens and fungi. In addition, Th17 cells express the transcrip-
tion factors STAT3, RAR-related orphan receptor gamma (RORγt), and RORα [20]. To
differentiate Th17 cells, IL-6, IL-23, and TGF-β are required [19].

Th17 cytokines such as IL-17A, IL-17F, and IL-22 promote neutrophil recruitment
in the airways. Studies in human cell lines reported that exposure to IL-17 enhances the
secretion of neutrophil chemotaxis factors such as C-X-C motif chemokine ligand (CXCL)1
and CXCL8 by stimulating epithelial cells and fibrocytes [71–73]. Newcomb et al. found
reduced neutrophil infiltration in the airways of IL-17A–knockout mice [74]. Camargo
et al. reported that blockade of IL-17 reduces lipopolysaccharide-induced neutrophilic
inflammation in the airways of mice [75].

Th17 cytokines are also involved in airway remodeling and hyperresponsiveness via
binding to IL-17RA and IL-17RC on airway smooth muscle cells [76–78]. In an animal
model study of airway remodeling, Ramakrishnan et al. demonstrated that IL-17-induces
autophagy in fibroblasts, which initiates mitochondrial dysfunction that results in collagen
deposition [79]. In a study examining hyperresponsiveness, Chiba et al. reported that the
complex formed by the binding of IL-17A to the IL-17R on smooth muscle cells stimulates
increased production of RhoA protein, which plays a role in upregulating intracellular
calcium concentrations, resulting in enhanced smooth muscle cell contractility [80]. These
data from murine studies suggest that antibodies targeting IL-17A would reduce airway
remodeling and airway hyperresponsiveness [75,81].

Several other studies have reported a link between steroid resistance and Th17 [82,83].
Two hypotheses have been proposed to explain this possible relationship. The first hy-
pothesis involves the steroid resistance of Th17 cells, whereas Th2 cells are sensitive to
steroids. The second hypothesis suggests that steroids promote Th17 cell differentiation.
Nanzer et al. examined PBMCs of asthma patients and showed that steroids did not inhibit
cytokine synthesis by Th17 cells, in contrast to PBMCs of healthy controls [82]. However,
Chambers et al. reported that steroid dose-dependent Th17 cytokine synthesis plays a role
in in vitro activation of human PBMCs [83]. These data explain the high proportion of Th17
cells in asthma patients with steroid resistance.

Unfortunately, antibody-based therapy targeting IL-17A did not improve asthma
symptoms in clinical trials [84]. However, treatment of a patient with chronic psoriasis
and asthma with ustekinumab, a humanized IgG1 monoclonal antibody targeting both
IL-12 and IL-23, resulted in improvement in asthma symptoms and a reduction in asthma
maintenance medication [85]. Collectively, the above results suggest that alleviating Th17-
related asthma requires the control of not just one Th17 cytokine pathway but all pathways
that simultaneously regulate Th17 cytokines.

3.2. Th1 Cells

Th1 cells are also major inducers of neutrophilic inflammation in non–Th2-asthma.
Th1 cells function in protecting host tissues against intracellular bacteria and viruses [20].
Th1 transcription factors include STAT1, STAT4, and T-bet (T-box protein expressed in T
cells) [86]. Th1 cells, which differentiate in response to IL-12, secrete IFN-γ [20].

According to the hygiene hypothesis, Th1 cells inhibit the development of eosinophilic
asthma, whereas Th2 cells promote the development of eosinophilic asthma [87]. However,
recent studies reported that Th1 cells play an important role in the pathogenesis of severe
non–Th2-asthma. Cui et al. reported that administration of OVA-specific Th1 aggravated
neutrophilic inflammation in the lungs [88]. Raundhal et al. reported increased levels of
the Th1 cytokine IFN-γ in bronchoalveolar lavage fluid of non–Th2-asthma patients [89].
Additionally, increased neutrophilic infiltration and IFN-γ mRNA expression in the spu-
tum were observed in patients with severe asthma compared with patients with mild to
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moderate asthma [90]. These data suggest that Th1 cells play a role in the pathogenesis of
severe non–Th2-asthma.

Th1 cell-derived IFN-γ is associated with airway hyperresponsiveness and pathologic
changes in the lungs. Raundhal et al. found that IFN-γ reduces the expression of secretory
leukocyte peptidase inhibitor, which neutralizes proteases in epithelial cells, thus aggra-
vating airway hyperresponsiveness [89]. IFN-γ transgenic mice expressing high levels of
IFN-γ developed emphysematous lungs, which is frequently observed in asthma–chronic
obstructive pulmonary disease (COPD) overlap [91]. In the future, it will be necessary to
develop new asthma treatments targeting Th1 cells.

4. Beneficial and Harmful Bacteria in the Pathogenesis of Asthma

Many species of bacteria live in symbiosis with hosts and play an important role in
the development of asthma [92]. Beneficial species of bacteria suppress asthma, whereas
harmful bacteria induce asthma [93]. In this section, we summarize the roles of these two
types of bacteria in the pathogenesis of asthma.

4.1. Beneficial Bacteria with Anti-Asthmatic Effects

Beneficial bacteria include symbiotic species of the genera Lactobacillus, Bifidobacterium,
Lachnospira and Akkermansia. Fermented foods such as yogurt and kimchi contain numerous
beneficial bacteria [94,95]. Recently, probiotic products incorporating these beneficial
bacteria have been used to reduce the risk of asthma [16].

Members of the genus Lactobacillus are gram-positive anaerobic bacteria that play
a protective role in the pathogenesis of asthma. Spacova et al. reported that intranasal
administration of Lactobacillus rhamnosus alleviated pollen-induced eosinophilic inflam-
mation in the lungs [96]. According to Li et al., butyrate, a short-chain fatty acid (SCFA)
generated from the fermentation of fiber by L. reuteri, exhibits anti-inflammatory activity in
patients with asthma [97]. In a randomized, placebo-controlled study, the asthma patients
group who received L. gasseri A5 daily for 2 months exhibited higher lung function scores
(peak expiratory flow rate) and lower clinical symptom scores, indicating improvement in
asthma compared with patients who received the placebo [98].

Members of the genus Bifidobacterium are Gram-positive anaerobic bacteria that exert
immunomodulatory effects that suppress the development of asthma. In a study by Raftis
et al., Bifidobacterium breve strain MRx0004 suppressed HDM-induced inflammation and the
number of eosinophils and neutrophils [99]. Administration of Bifidobacterium upregulates
IL-10–producing regulatory T cells (Tregs), a type of CD4+ T cell that suppresses hyper-
activation of immune responses [100]. In a randomized controlled study of pediatric asthma
patients, administration of a Bifidobacterium mixture resulted in improvement in clinical
symptoms and quality of life compared with patients who received the placebo [101].

Members of the genus Lachnospira are gram-positive anaerobic bacteria that function
as major producers of SCFAs such as acetate, propionate, and butyrate [102]. These SCFAs
bind to G-protein–coupled receptor (GPR) 43 on the surface of naïve CD4+ T cells [103]. The
SCFA-GPR43 complex, in turn, promotes acetylation of the Treg transcription factor Foxp3
by suppressing histone deacetylase (HDAC) in naïve CD4+ T cells [104]. Arrieta et al. found
that fecal transplantation with a mixture of Lachnospira reduced OVA-induced neutrophilic
inflammation to a greater degree than the control [105]. It is possible that increased levels
of SCFAs produced by Lachnospira enhance Treg differentiation and suppress pathogenic
immune cells.

Members of the genus Akkermansia are gram-negative anaerobic bacteria that in-
hibit the development of asthma by promoting differentiation of Treg [106]. In a study
by Kuczma et al., Akkermansia-derived antigenic peptide-induced anergy of T cells and
increased the peripheral Treg population [107]. Michalovich et al. showed that oral ad-
ministration of A. muciniphila reduced OVA-induced eosinophilic inflammation [106]. In a
cross-sectional case-controlled study, A. muciniphila was decreased in the stool of asthma
patients compared to healthy controls [108]. In addition, the fecal concentration of A.
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muciniphila was negatively correlated with asthma severity [106]. These results suggest
that Akkermansia plays a protective role in the development of asthma.

Other bacteria also reportedly exert beneficial effects in inhibiting the induction of
asthma, including members of the genera Veillonella, Faecalibacterium and Rothia [93].

4.2. Harmful Bacteria with Pro-Asthmatic Effects

Bacteria that exert harmful effects with respect to asthma include pathogens of the
genera Clostridium, Staphylococcus and Pseudomonas. Under certain conditions, these harm-
ful bacteria reportedly exacerbate enterocolitis and pneumonia [109,110]. Additionally,
colonization by harmful bacteria reportedly increases the risk of asthma development [16].

Members of the genus Clostridium are gram-positive anaerobic bacteria that reportedly
aggravate asthma. Nimwegen et al. reported that colonization by Clostridium difficile
within 1 month after birth is associated with an increased risk of developing childhood
asthma [111]. In a pediatric cohort study, asthma patients exhibited higher numbers of C.
neonatale [112]. Colonization by Clostridium species was positively correlated with fecal IgE
levels in a childhood asthma study, indicating that the presence of Clostridium increases
the risk of asthma [113]. Although the detailed mechanism of the role of Clostridium in
asthma pathogenesis has not been elucidated, infections involving Clostridium could cause
excessive inflammation and increase the pathologic immune cells, thereby worsening
asthma.

Members of the genus Staphylococcus are gram-positive bacteria that induce eosinophilic
asthma. Stentzel et al. demonstrated that serine protease–like proteins (Spls), extracel-
lular proteases expressed by Staphylococcus aureus, exacerbate eosinophilic asthma [114].
Proteases such as Spls bind to the protease-activated receptor-2 on epithelial cells, which
then secrete alarmins such as IL-33 and TSLP, which in turn activate ILC2 and induce a
Th2 response [115]. According to the National Health and Nutrition Examination Survey
(NHANES), nasal colonization by S. aureus is associated with increased severity of asthma
symptoms [116].

Members of the genus Pseudomonas are gram-negative bacteria known as opportunis-
tic pathogens that cause respiratory diseases such as asthma, COPD, and bronchiectasis.
Pseudomonas aeruginosa is the second most common bacteria in sputum cultures of patients
with severe asthma [117]. According to Tuli et al., planktonic exo-proteins isolated from
P. aeruginosa damage the mucosal barrier, thereby exacerbating asthma and chronic rhi-
nosinusitis [118]. Flagellin isolated from P. aeruginosa was shown to increase secretion of
the potent neutrophil chemoattractants IL-6 and IL-8 in human epithelial cells [119]. In a
human study conducted by Green et al., asthma patients in which P. aeruginosa was the
dominant pathogenic bacteria exhibited more severe neutrophilic inflammation and steroid
resistance than patients in which other species were dominant [120].

In addition, nasopharyngeal colonization by members of the genera Streptococcus,
Moraxella, and Haemophilus within the first year of life is associated with an increased risk
of childhood asthma [121].

5. Dysbiosis-Induced Asthma

Dysbiosis is a disruption of the immune system caused by a dysregulation of mi-
crobiota homeostasis [122]. Several factors can initiate dysbiosis, including the use of
antibiotics in the prenatal or neonatal periods, cesarean section, consumption of a low-fiber
diet by the mother, or formula feeding [123]. Dysbiosis reportedly aggravates asthma by
decreasing the number of Tregs and increasing the numbers of pathologic Th2 and Th17
cells [108,124]. In this section, we discuss how alterations in CD4+ T cells during dysbiosis
affect the pathogenesis of asthma (Figure 3).
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Figure 3. Development of dysbiosis-induced asthma. Beneficial bacteria suppress asthma, whereas harmful bacteria induce
asthma. Dysbiosis can be caused by many factors, such as antibiotic use, cesarean section, low-fiber diet, and formula
feeding. Dysbiosis influences the differentiation of T cells, resulting in asthma development. Tregs, regulatory T cells; Tfhs,
T follicular helper cells; IgE, immunoglobulin E; iNKT, invariant natural killer T; IFN-γ, interferon gamma. The figure was
created using BioRender.com (accessed on 6 September 2021).

5.1. Antibiotics

Several reports have indicated that antibiotic use can induce asthma [125–127]. The use
of antibiotics before and after pregnancy reportedly increases the incidence of childhood
asthma [128]. The functions of CD4+ T cells can be altered by antibiotic use, subsequently
provoking the development of eosinophilic asthma. Murine studies demonstrated that
antibiotic-induced dysbiosis exacerbates Th2-driven allergic inflammation by reducing
numbers of Tregs in the colon [129] and lungs [129,130]. Hong et al. reported abnormal
immune responses to undigested food in antibiotic-treated mice, resulting in increases in
food antigen-driven IL-4–producing Tfhs and IgE production [131]. In a prospective cohort
study, infants who received antibiotics between birth and 1 year of age had a 50% increased
risk of childhood asthma [127].

5.2. Cesarean Section

Children delivered by cesarean section are reportedly at increased risk of asthma.
According to Shao et al., delivery mode is the most influential factor in the formation of the
neonatal gut microbiota [132]. Babies born via vaginal delivery obtain commensal bacteria
from the mother’s vagina, whereas babies born via cesarean section receive commensal
bacteria from the mother’s skin [133]. Kim et al. reported that infants born via cesarean
section harbor fewer asthma-suppressing Bifidobacterium, Lactobacillus, and Lachnospira and
more asthma-promoting Pseudomonas in the gut [134]. In a murine study conducted by
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Zachariassen et al., mice born via cesarean section had fewer Tregs and increased numbers
of IL-4–producing invariant natural killer T cells in mesenteric lymph nodes [135]. As
a result, cesarean section–induced dysbiosis increases the risk of childhood asthma by
3-fold [136].

5.3. Low-Fiber Diet

A high-fiber diet protects against asthma. Fiber, a component of plants, is a complex
carbohydrate structure composed of β-glycoside–linked glucose monomers [137]. Plant
fibers are degraded into SCFAs, including acetate, via fermentation by gut bacteria [138].
Thorburn et al. reported that pregnant mother mice fed a high-fiber diet exhibited increased
acetate production, which in turn increased the number of Tregs via HDAC9 inhibition; this
led to alleviation of HDM-induced eosinophilic inflammation [139]. Fetal mice provided
increased acetate via the placenta exhibited asthma-resistant lung maturation [139]. On
the other hand, a low-fiber diet increased Th2 differentiation which led to eosinophilic
airway inflammation [140]. Trompette et al. showed that reduction of SCFA by low-fiber
diet affected hematopoiesis and increased Th2 cell response [140]. Using data from the
2007–2012 NHANES, Saeed et al. showed that low fiber intake is associated with a higher
incidence of asthma as compared with high fiber intake [141].

5.4. Formula Feeding

Breast milk contains a variety of components that suppress the development of asthma
in children. Mosconi et al. reported that allergen-specific IgG contained in breast milk binds
to the Fc receptor of intestinal epithelial cells of the fetus, resulting in allergen-specific Treg
induction and reduction of Th2 response [142]. Other breast milk components, including
IL-7, cortisol, and microRNAs, aid in thymus development [143]. Ultrasound analyses
comparing the size of the thymus of breastfed infants with that of formula-fed infants, the
thymus size was reduced by >50% in 4-month-old formula-fed infants [144]. A murine
study conducted by Nakajima et al. showed that SCFAs contained in breast milk bind
to GPR41 in the fetal thymus and enhance Treg differentiation in both the thymus and
peripheral organs [145]. Analyses of PBMCs from formula-fed and breastfed babies showed
that formula feeding leads to a reduction in the number of Tregs, resulting in increased
levels of pro-inflammatory cytokines such as IFN-γ and IL-17 [146]. A cross-sectional study
including 31,049 children reported that formula-fed children had a higher incidence of
asthma than breastfed children [147].

6. Conclusions

Asthma is a heterogenous disease that can be largely classified as either eosinophilic
asthma or neutrophilic asthma. CD4+ T cells play important roles in determining the
asthma phenotype. Th2, Th9, and Tfh cells are involved in the development of eosinophilic
asthma, whereas Th1 and Th17 cells are involved in the development of neutrophilic
asthma. Proper classification of the asthma phenotype based on CD4+ T cells is essential to
determine the optimal asthma treatment and accurately predict the prognosis.

Crosstalk between the microbiota and host immune system is another important factor
in asthma development. Beneficial bacteria play a protective role in the pathogenesis of
asthma, whereas harmful bacteria exacerbate asthma symptoms. Dysbiosis caused by an
imbalance in the microbiota homeostasis alters the differentiation of CD4+ T cells, resulting
in asthma aggravation. Dysbiosis can be corrected using various probiotic products that
were developed to improve asthma symptoms [148,149]. However, these probiotics still
play an adjuvant role in the treatment of asthma. To evaluate the microbiota as a potential
therapeutic target in greater detail, a precise mechanistic study will be necessary to fully
elucidate the effects of the microbiota and CD4+ T cells on the pathogenesis of asthma.
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