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Motile cilia are slender, hair-like cellular appendages that sponta-
neously oscillate under the action of internal molecular motors
and are typically found in dense arrays. These active filaments
coordinate their beating to generate metachronal waves that
drive long-range fluid transport and locomotion. Until now, our
understanding of their collective behavior largely comes from
the study of minimal models that coarse grain the relevant bio-
physics and the hydrodynamics of slender structures. Here we
build on a detailed biophysical model to elucidate the emer-
gence of metachronal waves on millimeter scales from nanometer-
scale motor activity inside individual cilia. Our study of a
one-dimensional lattice of cilia in the presence of hydrodynamic
and steric interactions reveals how metachronal waves are formed
and maintained. We find that, in homogeneous beds of cilia, these
interactions lead to multiple attracting states, all of which are
characterized by an integer charge that is conserved. This even
allows us to design initial conditions that lead to predictable
emergent states. Finally, and very importantly, we show that,
in nonuniform ciliary tissues, boundaries and inhomogeneities
provide a robust route to metachronal waves.
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Motile cilia are thin hair-like cellular projections that serve
as fundamental building blocks of locomotion and material

transport in many eukaryotes. Each cilium is an active machine
driven by thousands of internal nanometric molecular motors
that collectively conspire to produce whip-like oscillations along
its ∼10-μm length. Cilia often coat tissues in dense carpets, with
these carpets producing collective metachronal waves (MWs)
that travel across these ciliated surfaces of length scales over
∼100 μm or more. How these waves result from the regulation
and coordination of biophysical dynamics over length scales
spanning six orders of magnitude is the question that we seek to
address in this paper.

MWs are ubiquitous in nature. In mammals, ciliated tissues cir-
culate cerebrospinal fluid in the brain (1, 2), pump mucous, and
remove foreign particles trapped in lung airways (3). In humans,
their dysfunction underlies diverse pathologies (4). MWs are
responsible for the locomotion of ciliated unicellular organisms
such as Paramecium (5) and Volvox (6) and serve as feeding
and filtering pumps for marine invertebrates (7). Additionally, in
many vertebrates, motile cilia are involved in symmetry breaking
during embryonic development (8–10).

While the appearance of MWs across various systems is ex-
tremely robust, the microscopic physics and interactions that
result in their emergence are not fully understood (11). Plausible
physical mechanisms include mechanical coupling through the
anchoring membrane (12), local steric interactions within dense
arrays (13), and large-scale fluid motion that induces long-range
coupling among cilia (14). Many models coarse grain the internal
mechanics and the fluid–structure interactions by approximating
cilia as spheres driven on compliant orbits (6, 15–22). Hydrody-
namic interactions are sufficient to explain the collective behavior
in such minimal models for ciliary arrays (23–26). These bead
models have been insightful in understanding phase transitions
between synchronized states and in understanding pumping of

fluid in ciliary carpets (27), and have highlighted the existence
of both globally ordered and complex disordered flows (18, 28).
However, it remains unclear to what extent these conclusions
are robust in the context of the intricate biophysics and hydro-
dynamics that govern actual ciliated surfaces. The few direct
simulations that resolve the beating dynamics of an individual
cilium (14, 27, 29–31) either neglect or coarse grain (32–35) the
internal biomechanics of spontaneous oscillations. The present
study aims at bridging this gap.

Here, for one-dimensional (1D) lattices of cilia, we identify
four crucial ingredients that lead to the robust emergence of
MWs. First is the spontaneous oscillation of a single cilium; for
this, we build upon a biophysical model of a single cilium (36–
38) that incorporates many essential features of the microscopic
actuation physics. Second and third are hydrodynamic and steric
interactions which lead to the coordination between cilia. Fourth
are spatial inhomogeneities, or lack thereof, that dictate the
allowable states of organization in a ciliary bed.

We show that, in homogeneous ciliary beds, hydrodynamic and
steric interactions give rise to multiple attracting states of which
MWs constitute a small portion. Guided by coarse-grained mod-
els (20, 26, 39), we find that all such states are characterized by an
invariant integer charge. We further find that heterogeneities in
the ciliary bed break charge conservation. This leads to robust
formation of MWs, independent of initial conditions, in finite
beds and patchy lattices of cilia. These results provide a rigorous
demonstration of how spontaneous beating of cilia driven by
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internal molecular motors, hydrodynamic and steric interactions,
and the morphology of ciliary beds together shape MWs.

Mathematical Modeling
Our work is centered around a detailed biophysical model of indi-
vidual active filaments (38), many of which are coupled together
hydrodynamically and sterically. To better identify and under-
stand the role of various interactions that regulate the dynamics
of ciliary arrays, we also use a hierarchy of more coarse-grained
mathematical models, the first of which is the rower model. It
shares similarities with many previously studied minimal descrip-
tions of cilia and will help us elucidate the role of long-range
hydrodynamic interactions. Next, we outline a phase dynamics
model and its continuum analog (40). This helps explain the role
of interactions that prevent sharp phase gradients on a lattice.

A Detailed Biophysical Model. The internal core of a cilium is the
axoneme with a diameter a ≈ 200 nm. This highly conserved
structure consists of nine pairs of microtubule doublets arranged
circularly about a pair of microtubules (41). Typical cilium lengths
vary from L ≈ 8 μm to 15 μm (14), and we describe this slender
structure by its centerline x(s, t), parametrized by arc length
s. In our active filament model (37), the axoneme is modeled
as two shearable, polar, planar elastic rods confined in the x–y
plane and clamped at their bases. These two rods,x± = x(s, t)±
an̂(s, t)/2, represent the microtubule doublets from the oppo-
site sides of the axoneme where n̂(s, t) is the unit normal to
the centerline x(s, t). The dynein motors together with passive
nexin cross-linkers between microtubule doublets generate shear
forces f±m (s) per unit length. This leads to a sliding displacement
Δ(s, t) = a

∫ s

0
‖xss(s

′, t)‖ds ′ between the two rods. The force
density can then be expressed as

f±m (s, t) =±xs [ρ (n+F+ + n−F−)−KΔ(s, t)] , [1]

where ρ is the line density of motors, n± is the fraction of bound
motors on x±, F± is the force exerted by an individual dynein,
and K is the stiffness of nexin links modeled as linear springs.
The force exerted by the motors follows a linear force–velocity
relation F± =±f0(1∓Δ(s, t)t/v0), where f0 is the stall force of
dynein and v0 is a characteristic velocity scale. The lack of sliding
at the base means that the sliding forces are converted into an
active bending moment

M(s, t) = Bxs × xss − ẑa

∫ L

s

‖f±m (s ′, t)‖ ds ′, [2]

where B is the bending resistance. The evolution of the centerline
x(s, t) follows from nonlocal slender-body theory (SBT) (42),

8πν
[
∂txi(s, t)− ud(xi(s, t))

]
=M · fi(s, t), [3]

where ν is the viscosity of the fluid and fi is the force per unit
length exerted by the filament on the fluid. M is an integral
operator accounting for anisotropic drag, and hydrodynamic
interactions of the filament with itself and the wall; ud

i is the dis-
turbance velocity generated by all the other filaments at xi(s, t)
and is given by

ud
i (xi(s, t)) =

N∑
j=1

∫ L

0

Gε
ij (xi(s, t),xj (s

′, t)) · fj (s ′) ds ′, [4]

where Gε
ij is the 3D regularized Blake tensor (43, 44) for flow

above a no-slip wall. The force density f exerted by the fila-
ment on the fluid has contributions from active moments, tensile
forces, and bending deformations. Along with the hydrodynam-
ics, we also account for pairwise repulsive forces that prevent

overlap between neighboring filaments on a lattice (see Materials
and Methods).

A key feature of our model is the regulation of the force-
generating dynein population through feedback from the fila-
ment deformations determined by hydrodynamic stresses. This
feedback will ultimately allow the filaments to spontaneously
beat in isolation and to coordinate their beat patterns. The bound
motor population follows a first-order kinetic equation ∂tn± =
π± − ε± with

π± = π0(1− n±), [5]
ε± = ε0n±P±(F±), [6]

where π0, ε0 are characteristic rate constants. The geometric
feedback arises from a force-dependent detachment of motors
modulated through the function P± (Materials and Methods and
Fig. 1D).

Depending on the choice of internal parameters, bending
waves on an isolated filament can propagate either from base
to tip or from tip to base (37). For base-to-tip wave propaga-
tion, we find locally in-phase oscillations and formation of MWs
(Fig. 1 A, Left). In contrast, for tip-to-base wave propagation,
we see antiphase oscillations in an array of filament (Fig. 1 A,
Right). For more details on the tip-to-base case, see SI Appendix.
Here we focus on the cases that can are consistent with MWs.
For a fixed direction of bending wave propagation (Fig. 1 C, i
and ii), an isolated cilium can have two qualitatively different
beating patterns based on the specific choices for P±. First, the
filaments can have left–right symmetric oscillations. This does
not break time-reversal symmetry (45) and so does not pump
fluid, on average (Fig. 1 C, i). This fundamentally differs from
cilia, that typically beat asymmetrically with distinct power and
recovery strokes. We build this biologically relevant behavior
by an appropriate choice of P± that amounts to introducing
phenomenological asymmetries into the axoneme (37, 38). With
this, we obtain whip-like beating and a nonzero mean flow over
one time period (Fig. 1 C, ii). We also note, from Fig. 1F, that
only a small fraction of the bound motor population, 5%, is
sufficient to drive these oscillations (36). Intrinsic to the binding
and unbinding of molecular motors is biochemical noise which,
we show in SI Appendix, is not crucial for the emergent dynamics
studied here.

Rowers. Our first coarse-grained minimal description for hydro-
dynamically interacting active filaments is the well-known rowers
model (20, 26, 46) that exhibits a rich variety of dynamics. The
rowers model shares three key aspects of a single cilium from the
biophysical model: 1) spontaneous oscillations, 2) compliance of
filament backbone, and 3) left–right asymmetry of beating. Here
we represent each filament by a sphere of radius a, identified by
position xi moving on a 1D track above a height h from a no-slip
wall (Fig. 1B). Each sphere (or rower) also has a state σi =±1
and is driven by a horizontal force Fi = F0σ(1 + ασ)− kexi ,
such that

ẋi = ξ(h)Fi +
∑
j �=i

G(d , h) · Fj , i = 1, 2, · · ·N , [7]

where ξ(h) is the hydrodynamic mobility of the sphere, and
G(d , h) is the hydrodynamic interaction kernel. Once the rower
reaches the end of its track, σ abruptly changes its sign, reversing
the direction of the driving force and resulting in sustained
oscillations. Allowing a geometric switch mimics the geometric
feedback loop which causes the active bending moment to change
directions in the full model. Since all rowers are hydrodynam-
ically coupled, their beat periods can vary, allowing them to
spontaneously synchronize. In SI Appendix, we detail how we
quantitatively estimate the parameters.

2 of 9 PNAS
https://doi.org/10.1073/pnas.2113539119

Chakrabarti et al.
A multiscale biophysical model gives quantized metachronal waves

in a lattice of beating cilia

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2113539119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2113539119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2113539119/-/DCSupplemental
https://doi.org/10.1073/pnas.2113539119


A
PP

LI
ED

M
AT

H
EM

AT
IC

S

A

C D E

F

B

Fig. 1. Individual beating patterns, flow fields, and MWs on a lattice of active filaments and rowers. (A) (Left) Snapshot of an emergent MW from simulations
of active filaments on a 1D lattice. Identical filaments of length L are arranged with a fixed lattice spacing d above a no-slip wall. Each of these filaments
beats asymmetrically with bending waves propagating from base-to-tip. The filaments beat inside a 3D bath of an incompressible Newtonian fluid that
allows the flow to go around them. The filaments interact via long-range hydrodynamic interactions and pairwise steric repulsion. The properties of the
MWs are governed by the ratio d/L, fluid viscosity, and the internal mechanics of spontaneous oscillations. (Right) Collective dynamics in arrays of filaments
with bending waves from tip to base result in locally antiphase oscillations (SI Appendix). Within one complete time period, we can assign a unique phase
ψ(t) ∈ (0, 2π] to each filament conformation. The filaments on this figure are colored according to their instantaneous phase ψ(t). (B) Arrangements of
rowers on a 1D lattice that serve as a coarse-grained description of the active filaments. Each filament is represented by a spherical bead (rower) moving on
a 1D track at a height h above a no-slip wall. The tracks are separated by a distance d. Every rower is driven by a constant force. The arrows on the spherical
beads qualitatively represent the magnitude and direction of this force. (C) The beating patterns of individual active filaments for two different sets of
internal parameters. We overlay various filament conformations over one period. The filaments are color coded by the instantaneous motor distribution
δn(s, t) = n+ − n− along their centerlines. The activation and inhibition of the two groups of motors (n±) during the beating can be observed. Fore–aft
(i) symmetric and (ii) asymmetric beating patterns with distinct power and recovery strokes. Bending waves on these filaments propagate from base to tip
as indicated by the red arrow. In the background, we display the period-averaged velocity fields and streamlines for each of these cases. The flow field
inside the box is computed with periodic boundary conditions along the x direction. For asymmetric beating (i), it highlights a net fluid pumping in the x
direction (Movies S1 and S2). (iii) A case with bending waves propagating from tip to base. An array of such filaments does not form MWs, as seen in A, Right.
(D) Schematic of the geometric feedback loop that governs the dynamics of the active filaments. This loop results in a Hopf bifurcation leading to spontaneous
oscillations. (E) The evolution of the sliding displacement Δ(s, t) at the tip s = 1, between microtubule doublets caused by the dynein motors, is shown from
the steady state of asymmetric beating. The evolution of δn(s, t) indicates that there is a constant time delay between the action of motor proteins and the
response of a cilium. (F) Oscillations of a single rower over two time periods T are shown. Depending on the specific choice of the driving force, we can have
either left–right symmetric (α = 0) or asymmetric (α �= 0) oscillations.

Phase Dynamics Model. MWs are fundamentally related to coor-
dinated phase dynamics of limit cycle oscillators for which the
cilium is a prototypical example. An array of identical, interacting
oscillators with phase ψi and intrinsic frequency ω obeys

ψ̇i = ω + ε [f (ψi − ψi−1) + f (ψi − ψi+1)] , [8]

This description is generic in the limit of weak coupling (ε� 1),
where a formal averaging procedure (39, 40) allows one to coarse
grain any interactions in terms of coupling functions f (x ). Here
f (x ) is 2π periodic. In SI Appendix, we outline a scaling for the
coupling strength ε. While our model is a variant of the classical
Kuramoto oscillator (40), where f (ψi − ψj ) = sin(ψi − ψj ), our
subsequent discussions are independent of the specific choice of
the coupling function.

Results
Finite Beds Robustly Generate MWs. We start by looking at emer-
gent dynamics in finite beds of active filaments and rowers. In
such a setup, the boundaries of the arrays are open. In the context
of our phase dynamics model, this amounts to oscillators at the
edge (i = 1,N ) interacting with only one neighbor. Fig. 2 illus-
trates the phase dynamics of ciliary arrays with a small number
of active filaments, and rowers. Independent of initial conditions,
we find that both the active filaments and the rowers adjust their
phases and evolve to a unique state characterized by propagating
waves.

For symmetric oscillators, the final state is characterized by a
wave that splits in the middle of the domain and propagates to
both sides with identical wave speeds; see Fig. 2 A, C, and D.
However, on introducing asymmetry into the beating patterns,
we find the emergence of unidirectional MWs spanning the whole

array; see Fig. 2 B, E, and F. The latter is the case which we think
is most relevant for biological cilia. Fig. 2 C and E illustrates the
coordination of molecular motors in the lattice where we have
color coded each filament centerline x(s, t) by the instantaneous
distribution δn(s, t) = n+ − n− which serves as a measure of
activity. Associated with each of these filament conformations
is a unique phase ψ(t) that can be used to characterize their
synchronization (Fig. 2 C and E, Bottom). Our results reveal that
phase dynamics in an MW is indeed a result of spatiotemporal
self-organization of motor proteins across the lattice. The waves
in our problem are symplectic as they propagate in the direction
of mean fluid transport (SI Appendix). The characteristics of
these waves are controlled by lattice spacing and the details of the
internal mechanics of the symmetry-breaking oscillations. The
rowers recapitulate all the behaviors of the complex biophysical
model, highlighting that hydrodynamic interactions alone can
sustain MWs.

MWs Are Nongeneric in Homogeneous Beds. Ciliated tissues typi-
cally contain thousands of cilia at high density (7). A commonly
used mathematical abstraction for such a large-scale system is a
bed of filaments with periodic boundaries (30). We first study this
scenario through our minimal model of rowers. The evolution
toward MWs is always characterized by the appearance of phase
defects due to locally antiphase oscillations at early times, some
of which are marked in red circles on Fig. 3B. Importantly,
Fig. 3 A and B highlights that randomly initialized rowers can
lead to both phase-locked state and MWs for an identical set of
parameters (26). Thus, unlike finite beds of cilia, MWs are not
generic in this configuration.

To gain further insight, consider the evolution of the phase
dynamics model
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Fig. 2. Asymmetric beating pumps fluid in naturally emerging MWs on finite beds of filaments. (A) We consider a lattice of 40 identical rowers with open
fluid on either side. Each rower is identified by their unique phase θi ∈ (0, 2π] (see Materials and Methods). We display a kymograph of phases from the
emergent state of rowers for symmetric (α = 0) oscillations. Irrespective of the initial conditions, the final state is characterized by a wave that splits from the
middle of the domain (red dashed line). The wave then propagates in both directions of the lattice with identical wave speeds (Movie S3). (B) For asymmetric
(α = −0.3) rowers, the final state is characterized by a symplectic MW that spans the entire domain (Movie S4). (C and D) Symmetric beats of active filaments
also result in wave splitting from the middle of the domain. (C) A snapshot of filament conformations from the final state of wave splitting. (Top) Each
filament centerline x(s, t) shows the distribution δn(s, t) = n+ − n−. This serves as a measure of activity, and highlights the coordinated action of dynein
across the lattice. (Bottom) The filaments are color coded by their instantaneous phase ψi . (D) The corresponding kymographs of phase. The arrows indicate
the direction of wave propagation (Movie S5). (E) Identical to the rower model, asymmetric beating of active filaments results in a symplectic MW. This wave
propagates along the lattice, in the direction indicated by the arrow, resulting in pumping of fluid. The filament conformations are from the emergent
steady state of wave propagation. (Top) Each filament centerline x(s, t) shows the distribution δn(s, t) = n+ − n−. (Bottom) The filaments are color coded
by their instantaneous phase ψi . (F) The associated phase kymograph (Movies S6 and S7). To make a distinction between the active filaments and rowers, we
use different color codes to represent their respective phase kymographs. Parameters are as follows: For rowers, h = 0.4, d = 1.3, ke = −0.6, and N = 40;
for active filaments shown in C, d/I = 0.8 and N = 24; for active filaments in E, d/L = 0.8 and N = 100 (of which 24 are shown).

ψ̇i = ω + εf (ψi − ψi+1) + εf (ψi − ψi−1) , [9]

In an infinite or periodic homogeneous bed, all the oscillators
are coupled identically. The model Eq. 9 has fixed points for
which the phase difference δi = ψi − ψi+1 is an arbitrary con-
stant δi = δ. The case of δ = 0 corresponds to a phase-locked
synchronous state with ψi =Ψ(t). All the other cases result in
formation of MWs with different wavelengths. Fig. 3C shows two
such potential MW states whose property is solely determined by
the initial conditions. The qualitative features of the dynamics
are unaltered for symmetric rowers (α= 0) where waves can
propagate in either direction.

Our numerical exploration suggests that many of these fixed
points are attractors, a feature that has recently been reported
in other minimal models of hydrodynamically coupled cilia (47,
48). In Fig. 3D, we characterize the basin of attraction of possible
MWs as a function of the lattice spacing d and height h of the
rowers. We find that, for a dense bed of rowers, MWs span almost
the entire space of initial conditions. However, for larger lattice
spacing, the system tends to evolve toward the synchronous fixed
point more often. The boundaries of the attractors are sensitive
to the internal parameters (SI Appendix).

Coarse-Grained Model Predicts Quantized States. To better un-
derstand this, let us consider the continuum limit of our phase
dynamics model where we assume that phases ψi vary smoothly
along the lattice. When the spacing between the oscillators
Δx → 0 with ε(Δx )2 ≡ ε̃ finite, it is possible to obtain a coarse-
grained partial differential equation by expanding the coupling
function f (x ) (39). The phase evolution is governed by

∂tψ = ω + γ∂2
xψ + β (∂xψ)

2 , [10]

where γ = ε̃f ′(0), and β = ε̃f ′′(0). It follows from Eq. 10 that
the phase gradient ∂xψ obeys a diffusive Burgers’ equation. This
coarse-grained description is strictly valid for wavelengths larger
than Δx .

In a periodic lattice of length �B , the phase satisfies ψ(x ) =
ψ(x + �B + 2πn), where n ∈ Z. Under the evolution described
by Eq. 10, we have a conserved quantity, namely, the charge Q
defined as

Q=
1

2π

∫ �B

0

∂xψ dx . [11]

The charge is an integer and characterizes the winding number
of the phase (49) in the box. Using the definition of the charge Q
along with Eq. 10, we find that dQ/dt = 0, and thus the charge
is conserved during the evolution of the phase. Importantly, for
our continuum description, this means that an initial state with
charge Q will generate a steady-state solution that conserves
this charge. We next ask to what extent this insight translates to
our rower model, and then to our biophysical model of active
filaments.

As shown in Fig. 3B, the transient dynamics of hydrody-
namically interacting rowers can develop regions where nearby
oscillators are antiphase. This violates the assumptions of
the continuum theory developed above, and the charge Q
is no longer conserved (SI Appendix). In contrast, we find
that pairwise steric repulsion and hydrodynamic interactions
mediated by contact of filaments in our biophysical model
prevent the appearance of sharp phase gradients and suggest
charge conservation.
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Fig. 3. Multiple attracting states and their basin of attraction in a homogeneous bed of rowers. (A–C) We consider identical internal parameters for rowers
interacting on a lattice with periodic boundary conditions. We study the evolution of their phase starting from different random initial conditions. (A) The
rowers evolve toward a phase-locked state where all the oscillators are phase synchronized and have an identical frequency. (B) Symplectic MWs emerge on
the lattice. Formation of the MW is characterized by transient phase defects at an early time. Some of these defects are marked with red circles. (C) Multiple
MW solutions are possible for the final state. We show two such final states with different wave speeds and wavelengths. The properties of the MWs depend
on the initial conditions of rowers (Movie S8). (D) We characterize the basin of attraction of MW solutions as a function of lattice spacing d and height h. To
this end, we compute the probability of formation of MWs (PMW) by averaging over 50 initial conditions for each pair of (d, h). In a dense lattice of rowers,
MWs are the dominant attractor. However, PMW decreases with increasing lattice spacing. The basin of attraction is sensitive to the internal parameters of
the model, and MWs constitute a relatively small portion of the entire parameter space (see SI Appendix for another example). Parameters are as follows:
In all simulations, α = −0.3, ke = −0.6, and N = 40. For A–C, we chose h = 0.4 and d = 1.3.

Designing Waves in Periodic Filament Lattices. We propose a
method of “cut out and stitch in” to test conservation of charge.
If charge in the biophysical model is conserved, we should be able
to design initial conditions that give rise to predictable emergent
states. In Fig. 4A, we start with an array of 40 filaments with
symmetric beating patterns. We leverage filament conformations

from emergent waves on finite beds to design initial states
with different charges. For symmetric beating, we cut out two
waves that propagate in opposite directions and stitch in with
them additional regions where filaments are synchronous. The
kymograph associated with this initial state is shown in Fig. 4B,
where we have indicated the charge carried by the different

A C

F

B

D

E

Fig. 4. Attractors in homogeneous beds of active filaments are quantized by an integer charge. (A and D) We first illustrate our method of “cut out and
stitch in” to design initial conditions. The subplots indicate the initial filament conformations where every filament is colored by its instantaneous phase ψi .
The vertical lines are the boundaries of different regions that are stitched together to form the initial state. The green arrows show the initial direction of
wave propagation by the stitched regions. We also indicate the charge carried by the different parts of the initial state. (B and E) We show the evolution of
the kymographs of filament phases. On the initial kymograph, we have shown the charge from different stitched regions. We notice that, as time progresses,
the phase fronts are smoothed out. This is indicative of the diffusive dynamics of the phase. (C and F) Evolution of the charge Q over time. The charge is
approximately conserved during the evolution, and the emergent state is characterized by its integer value indicated by the dashed line. Parameters are as
follows: In all the examples, d/L = 0.8; A corresponds to symmetric and D to asymmetric oscillations.
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regions of the lattice. The net charge in the initial state is close to
zero. As the system evolves, we note that the initially sharp phase
fronts in the kymograph are smoothed out. This is a signature
of diffusive dynamics. Finally, the system evolves into a phase-
locked state with synchronous beating. The charge Q shown in
Fig. 4C is seen to be approximately conserved and is close to
zero as the system evolves and reaches the synchronous beating
state. Fig. 4 D and E showcases another example for asymmetric
beating of filaments relevant to ciliary beds. In Fig. 4D, we have
stitched together an MW carrying unit charge with synchronous
states to create a state with Q≈ 1. The diffusive dynamics is
evident in the smoothing of the phase kymographs, and Q is
approximately preserved during the evolution as seen in Fig. 4F.
These examples elucidate the existence of multiple attracting
states in homogeneous beds of filaments and highlights that such
states are quantized by the charge Q. Fig. 5A shows a traveling
wave characterized by Q≈ 3. The filament conformations from
the final state are overlaid on an instantaneous flow field that
features large-scale vortical structures. We conclude, from
these numerical explorations, that, in the full system, charge
is, to a good approximation, conserved. We attribute the slight
differences to our definition of phase and the finite size of the
system. Above, we speculate that charge conservation in the
biophysical system is a consequence of short-range interactions
that prevent sharp phase gradients. This seems plausible since
these interactions give rise to the same phenomena in a different
internal mechanics model of active filaments (SI Appendix). Thus
it should be possible to break the conservation law by introducing
controlled spatial inhomogeneities into the ciliary bed. We next
test this assertion numerically.

Fig. 5C depicts a specific design of a periodic ciliary lattice,
in which active filaments are distributed nonuniformly to intro-
duce systematic heterogeneity (26). It is important to emphasize
that such spatial heterogeneity is distinct from more commonly
studied quenched disorders like detuning of oscillators in syn-
chronization problems (18, 50). Similar to finite beds of cilia, this
configuration robustly gives rise to MWs from arbitrary initial
conditions. Importantly, this means that charge conservation can
be broken in a controlled way by introducing spatial inhomo-
geneities. We next test this in a biologically plausible morphology.

Ciliary carpets in airways of vertebrates are characterized
by patchy distribution of cilia (51, 52). Recent experiments on
mouse trachea have revealed that this heterogeneous arrange-
ment of cilia is crucial for long-range transport (53). In the
context of our problem, this patchiness provides a natural way
to introduce heterogeneity which hints at an additional role of
nonuniformities. Like in the case shown in Fig. 5C, a patchy
filament distribution in a periodic lattice results in a generic
attracting state of MWs. We show this in Fig. 5 E and F, where
we consider three patches of ciliated surface, each containing
33 filaments and placed inside a periodic lattice. For a cilia of
L ≈ 12 μm and d/L= 0.8, this lattice spans distances of O(mm).
As highlighted by the kymograph from the final state in Fig. 5 F,
Left, each of these patches develops its own MW that eventually
coordinates across the patches over long time scales. Finally, we
want to emphasize that our simulations rigorously bridge length
scales spanning six orders of magnitude in a biologically relevant
morphology. In Fig. 5 F, Right, we show the strong correlation
between the coordination at the nanometric length scales that
result in emergent dynamics spanning millimeters.

A B

C D

E F

Fig. 5. Self-organization of dynein and robust MWs in heterogeneous ciliary beds. (A) Instantaneous filament conformations from the final state of steady
MWs in a periodic lattice with N = 62 active filaments. The arrow indicates the direction of wave propagation. This particular state is characterized by charge
Q ≈ 3. In the background, we have displayed the instantaneous flow field that contains large-scale vortical structures. (B) The associated kymographs of
the phases from the final state (Movie S9). (C and D) Periodic lattice with a nonuniform arrangement of N = 70 active filaments. This leads to the robust
formation of MWs. We display the filament conformations from the final state, and the associated kymographs of the phase. The arrow indicates the direction
of wave propagation (Movie S10). (E) Emergent MWs in patches of ciliated cells inside a periodic lattice. Each patch of 33 active filaments generates its own
MW. These waves subsequently coordinate over a long time. The filament conformations are from the final steady state of wave propagation. (F) (Left)
The associated kymographs of phase. The white lines indicate the boundaries of individual patches. (Right) A kymograph of the fraction of bound motor
population n+ at the tip of the filaments. We note that the kymograph of n+ has the same structure as the phase. This highlights the self-organization
of nanometric machines to coordinate and drive MWs across millimetric length scales (Movie S11). Parameters are as follows: d/L = 0.8 for A and E, and
d/L = 0.4 for C.
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Discussion
We have used three mathematical models of varying complexity
to elucidate the microscopic physics underlying the emergence
of MWs on a 1D lattice of cilia (see SI Appendix for a tabulated
summary). Our detailed biophysical model provides us a unique
insight into the role of dynein motors in the collective dynamics.
Fig. 5 F, Right shows the fraction of bound motors n+ at the tip
of every filament as a function of time. Since the spontaneous
oscillations of these filaments are driven by the action of dynein,
they share the same structure as the kymographs of the phase. At
the nanometric length scale, hydrodynamic interactions through
the chemomechanical feedback loop coordinate the operation of
these motors, resulting in self-organization at millimetric length
scales.

Both our rower and biophysical models point at the existence
of multiple steady-state solutions in homogeneous beds, com-
monly used to model large systems. In our active filament simula-
tions, there are both steric and strong hydrodynamic interactions
mediated through contact or near-contact of the filaments in
dense arrays. In contrast to the rowers, these interactions in our
biophysical model prevent sharp phase gradients on the lattice
(Movie S12). This allows us to test the predictions of the contin-
uum phase dynamics model which assumes smooth variation of
the phase along the lattice and predicts that all allowable states
should be characterized by an invariant integer charge Q. We
indeed find that the phase evolution of the biophysical model
on periodic lattices yield states quantized by the charge Q. This
provides us with a method to control and design final attracting
states.

An important question in biology is how ciliated tissues control
their collective beat patterns. In ref. 48, the authors argue that
biochemical noise might determine the emergent states. Our
work points at another possibility. We show that spatial inhomo-
geneities establish a robust pathway for waves to arise on patchy
ciliated surfaces. This also has further important biological im-
plications. Our findings imply that patched ciliated tissues are
not only better at generating flow fields that help in long-range
transport (53), but they also help individual patches to become
better pumps by self-organizing into MWs.

The extension of our predictions to 2D sheets of cilia is
a natural and important question. Our preliminary results
(SI Appendix) suggest that the ideas that we have developed here
for 1D arrays translate to orthoplectic rows (34) and 2D carpets
of cilia. It remains to be explored how the emergent dynamics
is altered once we account for nonplanar beating patterns of
individual cilium. Moreover, realistic ciliated tissues pose several
sources of randomness, ranging from uneven cilia spacing and
variation in beating planes (53) to deviations in intrinsic ciliary
beat frequency (2). Collective dynamics in these biologically
relevant arrangements and the stability and existence of MWs
in the presence of such quenched disorder, that are known
to destabilize synchronization phenomena (18), remain to be
understood.

Our simulation framework incorporates the full microscopic
details of beating cilia. Here it has allowed us to understand
how ciliary bed morphology, beating patterns, and steric and
hydrodynamic interactions work together to shape the emergent
dynamics on 1D lattices. We believe that this is a foundational
step toward understanding how the properties of motor pro-
teins shape ciliary beats and collective dynamics in their natural
settings.

Materials and Methods
Active Filament Model and Simulations. Our model for the spontaneously
beating cilium closely follows refs. 37, 38, and 54. Here we provide a concise
summary of the model and relevant equations for consistency. Each filament
is indexed by i, and its centerline is identified by a Lagrangian marker xi(s, t)
which is parameterized by the arc length s. The end s = 0 is clamped against

a no-slip wall, and s = L is free. The centerline dynamics of the ith filament
in the array follows from SBT as

8πν
[
∂txi(s, t) − ud

(xi(s, t))
]
= M · fi(s, t), [12]

where ν is the viscosity of the fluid and fi is the force per unit length exerted
by the filament on the fluid. M is the operator for SBT (38, 42) which can
be written as

M[f] = Λ[f] + K[f]. [13]

The first term accounts for local anisotropic drag that depends on the
aspect ratio of the filament (37), and the second term accounts for nonlocal
interactions (42). In Eq. 12, ud

i is the disturbance velocity generated by all the
other filaments at xi(s, t). This accounts for the long-range hydrodynamic
interactions and is given by

ud
i (xi(s, t)) =

N∑
j=1

∫ L

0
Gε

ij(xi(s, t), xj(s
′, t)) · fj(s

′
) ds′, [14]

where Gε
ij is the 3D regularized Blake tensor (43, 44) for flow above a no-slip

wall. The force per unit length fi can be written as

fi(s, t) = fe
i (s, t) +

i+1∑
j=i−1

fR
ij(s, t). [15]

It has two contributions: fe
i , from the elastic response of the filament

backbone, and fR
ij = −fR

ji , which accounts for short-range repulsion between
two neighboring filaments. We first focus on the elastic forces fe. For a
shearable, inextensible, planar rod, the elastic force density is given by

fe
= ∂s

(
σt̂ + Nn̂

)
, [16]

where σ is the force in the tangential direction, and N is the force in
the normal direction; t̂ and n̂ are, respectively, unit tangent and normal
vectors to the filament centerline. Since we restrict ourselves to planar
deformations of this filament, it is convenient to work in a tangent angle
formulation. We describe the filament by the angle φ(s, t) made by the
centerline with the positive x axis. The unit tangent and normal vectors are
then given by t̂ = cos φx̂ + sin φŷ and n̂ = − sin φx̂ + cos φŷ. We model the
filament as an Euler elastica in its passive response to bending deformation.
It also experiences active bending moments generated by the sliding of
microtubules caused by axonemal dynein. The net out-of-plane bending
moment is given by

M(s, t) = Bxs × xss − ẑa
∫ L

s
‖f±m (s′, t)‖ ds′, [17]

where B is the bending rigidity, a is the diameter of the axoneme, and f±m
is the active sliding force per unit length that involves contributions from
dynein motors and passive nexin cross-linkers modeled as linear springs. The
sliding force is given as

f±m (s, t) = ±xs [ρ (n+F+ + n−F−) − KΔ(s, t)] , [18]

where ρ is the mean motor density along the filament, n± are the two
antagonistically operating bound motor populations, F± are the associated
loads carried by them, K is the stiffness of the nexin links, and Δ(s, t) =
a(φ − φ(s = 0)) is the relative sliding displacement between two micro-
tubule doublets. Moment balance in the out-of-plane direction results in
a single scalar equation,

N = −Bφss − afm. [19]

In the above equation, we have used the fact that, for a planar filament,
xs × xss = φsẑ. The elastic force density in the problem is then given by

fe
= ∂s

[
σt̂ − (Bφss + afm) n̂

]
. [20]

The tension σ(s, t) acts as a Lagrange multiplier to enforce the constraint of
inextensibility. We solve for the tension using the fact ∂t(xs · xs) = 0 (37, 42).

The bound motor population evolves according to the first-order kinetics
∂tn± = π± − ε±, where π± and ε± are attachment and detachment rates,
respectively, of the relevant group of motors. The attachment rate is propor-
tional to the fraction of unbound motors and the detachment rate depends
exponentially on the carried load. We use a linear force–velocity relationship
for the carried load F± = ±f0(1 ∓ Δt/v0), where f0 is the stall force of the
dynein motor and v0 is the characteristic velocity at which the load-carrying
capacity is reduced to zero. With this, the attachment and detachment rates
can be written as
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π± = π0(1 − n±), [21]

ε± = ε0n±P± exp
[ |F±|

fc

]
, [22]

where π0 and ε0 are characteristic time scales for attachment and detach-
ment, respectively, and fc is a characteristic force scale above which the
motors detach exponentially fast. We also introduce two phenomenological
coefficients P± that are periodic functions of dynamical variables of the
problem. These coefficients are necessary to break the structural symmetry
of the axoneme and generate asymmetric beating patterns of cilia. For all
the simulations presented in the paper with asymmetric beating pattern,

we choose P+ = exp
(

ãΔ̇ sin φs/v0

)
and P− = exp

(
b̃Δ̇ sin Δ/v0

)
, where

ã = 0.8f̄ and b̃ = −0.6f̄ with f̄ = f0/fc. For symmetric oscillations, we set
P± = 1. We emphasize that the precise choice of the phenomenological
coefficients does not change any of our findings as long as they break the
structural symmetry of the axoneme (SI Appendix). Scaling lengths by L,
sliding displacement by a, time by the correlation time scale τ0 = 1/(π0 +

ε0), elastic forces by B/L2, and motor loads by ρf0 reveals four dimensionless
groups, of which two are of primary interest: 1) the sperm number Sp =

L (8πν/Bτ0)
1/4, which compares the relaxation time of a bending mode

to the motor correlation time, and 2) the activity number μa = aρf0L2/B,
which compares motor-induced sliding forces to characteristic elastic forces.
The two other dimensionless groups are μ = Ka2L2/B and ζ = a/ (v0τ0) (37).
The dimensionless parameter values used for the simulations are provided
in SI Appendix. With these scalings, the dimensionless force density is given
by

fe
= [∂sσ + φs (φss + μafm)] t̂ + [σφs − (φsss + μa∂sfm)] n̂. [23]

The dimensionless evolution equation for the filament centerline follows

Sp4
∂txi(s, t) − ud

(xi(s, t)) = M · fi(s, t). [24]

Finally, the short-range repulsion force between two neighboring filaments
in contact has the following form:

fR
ij(s) = A

(
εd

d

)12

n̂ijδε(s), [25]

where A = 0.05, εd = 3Δs, d is the distance between the two points in
contact, n̂ij is the unit vector joining the two points, and δε is a regularized
delta function that spreads the force over four neighboring nodes. The pair
repulsion is only activated when d ≤ εd .

We discretize the governing equations using a second-order accurate
finite difference scheme and solve it using an implicit–explicit second-order
accurate time marching scheme that follows ref. 37. For all the simulations
presented here, we use n = 64 discretization points for the arc length, which
means Δs ≈ 0.0153. The time step is set to Δt = 8 × 10−4 and is adaptively
changed, checking for close contacts of filaments. The regularization pa-
rameter for the interaction kernel is set to ε = 0.005 to 0.01. To facilitate
fast computations, the interactions between filaments in a periodic box are
computed using the fast multipole method (55, 56).

Rower Model and Simulations. We use a third-order Runge–Kutta method to
integrate Eq. 7. To ensure the rowers stay within their tracks, we use a stiff
harmonic potential at the switching points. This ensures minimal deviations
of the rowers.

Phase Definition. To compute the phase of an active filament, we first
define a continuous, periodic time series β(t) = x(s = 1/2, t), where x is the
horizontal position of the filament. We obtain an analytic continuation of
the series as ζ(t) = β(t) + iβ̂(t), where

β̂(t) =
1

π
p.v

∫ ∞

−∞

βτ

t − τ
dτ [26]

is the Hilbert transform of the time series. We then define the filament phase
as ψ(t) = arctan(β̂/β). For the rowers, we define the phase θi following ref.
20 as

θi = 2πni +
π

2
σixi +

⎧⎨
⎩

0 if xi ∈ [0, 0.5) ∧ σi = 1
π if xi ∈ [0.5,−0.5) ∧ σi = −1
2π if xi ∈ [−0.5, 0) ∧ σi = 1.

[27]

We increase ni ∈ Z by unity after each complete oscillation.

Data Availability. All study data are included in the article and/or sup-
porting information. The simulation code is available upon request to the
authors.
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