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INTRODUCTION 
 

Elders have an increased prevalence of coronary artery 

disease placing them at increased risk of acute 

myocardial infarction [1]. Despite successful guideline-

based reperfusion treatment, elders nonetheless sustain 

larger infarcts with greater mortality from ST elevation 

myocardial infarction [2, 3]. The greater susceptibility 

to ischemia-reperfusion injury is also observed in 

animal models [4, 5]. The increased cardiac 

susceptibility with aging in experimental models is due 

largely to age-induced mitochondrial dysfunction [6]. 

Oxidative phosphorylation (OXPHOS) is decreased in 

aged heart mitochondria due to impairment of the 

mitochondrial respiratory chain [7–10]. The 

dysfunctional respiratory chain increases reactive 

oxygen species (ROS) production [11] that sensitizes to 

mitochondrial permeability transition pore (MPTP) 

opening that in turn leads to cell death during ischemia-

reperfusion [7, 12–14].  

 

There are two populations of cardiac mitochondria that 

consist of subsarcolemmal mitochondria (SSM) and 

interfibrillar mitochondria (IFM). SSM exist underneath 
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ABSTRACT 
 

Aging impairs mitochondrial function that leads to greater cardiac injury during ischemia and reperfusion.  
Cardiac endoplasm reticulum (ER) stress increases with age and contributes to mitochondrial dysfunction.  
Metformin is an anti-diabetic drug that protects cardiac mitochondria during acute ER stress. We hypothesized 
that metformin treatment would improve preexisting mitochondrial dysfunction in aged hearts by attenuating 
ER stress, followed by a decrease in cardiac injury during subsequent ischemia and reperfusion. 
Male young (3 mo.) and aged mice (24 mo.) received metformin (300 mg/kg/day) dissolved in drinking water with 
sucrose (0.2 g/100 ml) as sweetener for two weeks versus sucrose vehicle alone. Cytosol, subsarcolemmal (SSM), 
and interfibrillar mitochondria (IFM) were isolated. In separate groups, cardioprotection was evaluated using ex 
vivo isolated heart perfusion with 25 min. global ischemia and 60 min. reperfusion.  Infarct size was measured. 
The contents of CHOP and cleaved ATF6 were decreased in metformin-treated 24 mo. mice compared to 
vehicle, supporting a decrease in ER stress. Metformin treatment improved OXPHOS in IFM in 24 mo. using a 
complex I substrate. Metformin treatment decreased infarct size following ischemia-reperfusion. Thus, 
metformin feeding decreased cardiac injury in aged mice during ischemia-reperfusion by improving pre-
ischemic mitochondrial function via inhibition of ER stress. 
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the sarcolemmal membrane whereas IFM are found 

between myofibrils and in the perinuclear region  

[7, 15, 16]. Mitochondrial defects mainly occur in IFM 

during aging [7, 17]. Contributing mechanisms of 

mitochondrial dysfunction with age include oxidative 

modifications and deletions in mitochondrial DNA [18], 

oxidative modification of proteins [19], activation of 

mitochondrial proteases [20], the impaired removal of 

damaged mitochondria via mitophagy [21, 22] and an 

increase in endoplasmic reticulum stress [17]. Many of 

these mechanisms imply that aging-mediated 

mitochondrial dysfunction is irreversible. Previous work 

from our laboratory supported the intriguing finding 

that the defects in aged heart mitochondria can be 

reversed [6, 17]. Furthermore, treatment of animals 

during the progression of aging can lead to the 

attenuation of age-related cardiac mitochondrial 

dysfunction [8]. Thus, the aged heart is not condemned 

to sustain greater injury due to the presence of 

dysfunctional mitochondria. Treatment of aged rats with 

the small molecule metabolite acetylcarnitine in the 

baseline condition improved mitochondrial function [6], 

supporting that the aging-induced mitochondrial defect 

is potentially reversible. Following an improvement in 

the previously established age-related mitochondrial 

dysfunction, aged rat hearts sustained substantially less 

injury during a subsequent ischemia-reperfusion stress 

[6]. These results indicate that reversing mitochondrial 

defects in aged hearts is possible and could be a 

promising strategy to attenuate cardiac injury during 

ischemia and reperfusion [6, 23].  

 

Mitochondria are in close contact with the endoplasmic 

reticulum (ER) [24, 25]. ER dysfunction (ER stress) is 

one of the factors that induces mitochondrial defects in 

adult hearts [26, 27]. Induction of acute ER stress using 

thapsigargin (a calcium-ATPase inhibitor) impairs 

mitochondrial function in adult hearts as shown by 

decreased oxidative phosphorylation and decreased 

respiratory enzyme activities [26, 28], and a greater 

sensitization to MPTP opening [17, 26, 27, 29]. 

Interestingly, aging leads to increased ER stress that 

occurs earlier than the onset of mitochondrial 

dysfunction during aging [17]. These results suggest 

that the ER stress leads to mitochondrial dysfunction in 

aged hearts [17].  

 

Metformin, an anti-diabetic drug, reduces heart injury 

during ischemia-reperfusion by activating AMP-

activated protein kinase (AMPK) signaling [26, 30, 31]. 

The activation of AMPK reduces cell injury during 

oxidative stress via decreased MPTP opening [26, 32]. 

Treatment with metformin in higher dose decreases 
cardiac injury through inhibition of complex I during 

early reperfusion [33]. Metformin treatment also 

decreases ER stress. Angiotensin II-induced ER stress is 

decreased with metformin treatment by activating 

AMPK [26, 34]. Metformin decreases β-cell lipotoxicity 

by a decrease in ER stress [35]. Metformin  

treatment improved mitochondrial function following 

thapsigargin-induced acute ER stress [26]. Thus, we 

tested the hypothesis that preexisting ER stress in the 

aged hearts can be attenuated with chronic metformin 

treatment. If ER stress was indeed decreased, then the 

contribution of a reduction in ER stress to an 

improvement in the preexisting age-induced cardiac 

mitochondrial dysfunction was evaluated. Finally, the 

relationship of the reversal of mitochondrial defects in 

aged hearts to the extent of cardiac injury during 

subsequent ischemia and reperfusion in the high-risk 

aged heart was challenged. 

 

RESULTS 
 

Metformin increased the phosphorylation of AMPK 

in aged hearts 

 

Metformin treatment increases the phosphorylation of 

AMPK (Thr172) in adult mice compared to vehicle 

[26]. Compared to vehicle treatment, metformin 

treatment increased the phosphorylation of AMPK and 

acetyl-CoA carboxylase (Ser70) (ACC) in 24 mo. hearts 

(Figure 1B). ACC is phosphorylated by activated 

AMPK and is an index of functional AMPK activation 

[31]. Thus, metformin treatment also activates AMPK 

in the aged hearts [26]. 

 

Metformin decreased mTOR activation in 24 mo. 

mice 

 

The AMPK activation by metformin decreases the 

activity of mTOR (mechanistic target of rapamycin 

activity) [26, 36]. mTOR includes two complexes: one 

is mTORC1 (mTOR complex 1), and the second is 

mTORC2 (mTOR complex 2) [37]. Since mTORC1 is 

linked to ER stress by the unfolded protein response 

[38], the mTORC1 activation state was assessed using 

the phosphorylation state of ribosomal protein S6 in 24 

mo. mice [17]. Compared to 3 mo., phosphorylated S6 

content was significantly increased in 24 mo. hearts 

(Figure 1C). Metformin treatment decreased the 

phosphorylation of S6 in 24 mo. mice compared to 

vehicle (Figure 1D), suggesting that metformin 

treatment leads to mTORC1 inhibition in 24 mo. mice. 

 

Metformin decreased ER stress in the aged hearts 

 

The induction of ER stress increased CCAAT/ 

enhancer-binding protein homologous protein (CHOP) 

content and the cleavage of ATF6 (cleaved activated 

transcription factor 6) [17, 39]. Therefore, CHOP  

and cleaved ATF6 are a robust indicator of ER stress 
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[17, 39]. The contents of the cleaved ATF6 and CHOP 

were elevated in 24 mo. versus 3 mo. mice (Figure 2A, 

2B), indicating an increased ER stress in aged hearts. 

Metformin treatment decreased the contents of cleaved 

ATF6 and CHOP in 24 mo. hearts (Figure 2A, 2B), 

supporting that metformin treatment decreases the ER 

stress that occurs during aging. 

 

Metformin improved oxidative phosphorylation in 

aged IFM 

 

Aging leads to electron transport chain defects in IFM 

[40]. Compared to 3 mo., the rate of state 3 respiration in 

IFM was decreased in 24 mo. in the presence of complex 

I substrates (glutamate + malate) (Table 1) [17]. The 

maximal rate of ADP-stimulated respiration was also 

decreased in IFM from 24 mo. (Table 1). The ADP-

limited respiration (state 4) in IFM was also slightly 

decreased in 24 mo. (Table 1). The uncoupled respiration 

stimulated with dinitrophenol was decreased in 24 mo. 

IFM (Figure 1C), localizing the defect to the electron 

transport chain [41].  

 

The state 3 respiration in IFM was not decreased in 24 

mo. with succinate as complex II substrate using 

rotenone to block potential reverse electron flow  

(Table 1) [42, 43]. The rate of state 4 respiration in IFM 

was decreased in 24 mo. using succinate (Table 1). The 

high ADP-stimulated respiration was not decreased in 

24 mo. IFM compared to 3 mo. with complex II

 

 
 

Figure 1. Administration of metformin increased phosphorylation of AMPK and ACC in aged mouse hearts. (A) Shows the 
protocol of metformin feeding. In metformin treated groups, metformin (300 mg/kg/day body weight) was dissolved in drinking water with 
sucrose (0.2g/100 ml) as sweetener and fed to mice for 2 weeks. In vehicle treated groups, mice were fed with drinking water with added 
sucrose (0.2g/100 ml). Compared to vehicle, metformin treatment increased the phosphorylation of AMPK and ACC in aged hearts, 
supporting that metformin feeding activates the AMPK in the aged hearts (B). The phosphorylation of protein S6 was increased with age, 
indicating an increased activity of mTORC1 (C). Metformin treatment decreased the age induced S6 phosphorylation (D). Mean ± SEM. 
*p<0.05 vs. vehicle, †p<0.05 vs. 3 mo. 
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substrates (Table 1), suggesting that the maximal rate of 

respiration with complex II substrate was not altered in 

aged IFM. These results localize the electron transport 

defect with aging predominantly to complex I in murine 

IFM [17]. 

 

Metformin treatment improved state 3 respiration in 24 

mo. IFM in the presence of either complex I or II 

substrates (Table 1). Metformin treatment also 

improved the dinitrophenol-uncoupled respiration in 24 

mo. IFM with complex I substrate (Figure 3B), 

supporting an improvement in the age-induced defect in 

electron transport. Metformin also increased state 4 

respiration in 24 mo. IFM (Table 1). Importantly, MET 

did not alter mitochondrial respiration in 3 mo. mice 

without a defect in OXPHOS. 

 

Metformin decreased the age-induced MPTP 

opening in IFM 

 

A decrease in calcium retention capacity (CRC) is an 

indicator of an increased sensitivity to MPTP opening 

 

 
 

Figure 2. Administration of metformin decreased the endoplasmic reticulum (ER) stress in aged mouse hearts. Compared to 3 

mo., the contents of the cleaved ATF6 (A) and CHOP (B) were significantly increased in 24 mo., supporting the presence of increased ER stress 
in aged hearts. The contents of cleaved ATF6 and CHOP were markedly decreased in metformin-treated 24 mo. hearts compared to vehicle, 
supporting that metformin treatment decreased the ER stress present in aged hearts. Metformin treatment did not alter the ER stress in 3 
mo. hearts. Mean ± SEM. *p<0.05 vs. 3 mo. vehicle, †p<0.05 vs. 24 mo. vehicle. n=4 in each group. 
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Table 1. The rate of oxidative phosphorylation in IFM from young and aged mice with or 
without metformin treatment. 

Mice 3 mo. 24 mo. 

Groups Vehicle (n=13) Metformin (n=5) Vehicle (n=11) Metformin (n=5) 

 Complex I substrates: glutamate + malate 

State 3 (nAO/min/mg) 356±13 367±14 271±13* 337±22† 

State 4 (nAO/min/mg) 58±3 58±5 48±1* 58±3† 

RCR 6.3±0.2 6.6±0.5 5.7±0.2 5.9±0.5 

2 mM ADP (nAO/min/mg) 481±17 487±29 318±19* 397±32† 

 Complex II substrates: Succinate + rotenone 

State 3 (nAO/min/mg) 860±30 735±13* 779±34 847±30 

State 4 (nAO/min/mg) 256±12 226±11 212±8* 218±8 

RCR 3.4±0.1 3.3±0.1 3.7±0.1 3.9±0.1 

2 mM ADP (nAO/min/mg) 849±29 746±19* 769±34 788±32 

Mean ± SEM. *p<0.05 vs. 3 mo. Vehicle, †p<0.05 vs. 24 mo. Vehicle. 

in mitochondria [26, 44]. The CRC was significantly 

decreased in 24 mo. IFM compared to 3 mo. (Figure 

3D), supporting that aging sensitizes to MPTP opening 

in IFM. Metformin led to a decreased sensitivity to 

MPTP opening in IFM from 24 mo. hearts (Figure 3D). 

These results indicate that metformin treatment lessens 

the probability of MPTP opening in aged IFM. 

 

Metformin did not improve oxidative 

phosphorylation in aged SSM with a minor age-

related defect in respiration 

 

The IFM are the dominant site of age-induced defects in 

mitochondrial respiration [7, 9, 40]. However, with age, 

SSM also exhibit a minor decrease in respiration [45]. 

Compared to adult, state 3 respiration in SSM was 

decreased in aged hearts with complex I substrate (Table 

2). However, the state 4 respiration and respiratory 

control ratio (RCR) were not changed. (Table 2). The 

high ADP-stimulated respiration [46] (Table 2) and the 

uncoupled respiration (Figure 1B) were also decreased 

in SSM at 24 mo. versus 3 mo. The state 3 respiration in 

SSM was also decreased in 24 mo. with succinate as 

substrate whereas the state 4 respiration was unchanged 

(Table 2). Maximal ADP-stimulated respiration was not 

decreased in 24 mo. with complex II substrate (Table 2), 

indicating relative intact of complex II in aged SSM.  

 

Metformin treatment did not improve OXPHOS in SSM 

from either 3 or 24 mo. (Table 2 and Figure 3A). The 

CRC was not altered by age in SSM (Figure 3C) 

supporting that age did not increase the sensitivity to 

MPTP opening in SSM in the baseline state (Figure 3C).  

 

Metformin decreased cardiac injury following 

ischemia-reperfusion 

 

Metformin feeding did not affect heart or body weight 

in 24 mo. old mice (Table 3). Metformin treatment did 

not alter left ventricular developed pressure (LVDP) 

[47] (Table 3) or end diastolic pressure (LVEDP) (Table 

3) before ischemia in 24 mo. hearts compared to 

vehicle. Ischemia followed by reperfusion led to 

decreased LVDP and increased LVEDP in both vehicle 

and metformin-treated hearts compared to the pre-

ischemia value (Table 3). However, metformin 

treatment markedly decreased the infarct size compared 

to vehicle (Figure 4B), supporting that metformin 

treatment that leads to the restoration of mitochondrial 

function mitigates cardiac injury in aged hearts during 

subsequent in vitro ischemia and reperfusion.  

 

DISCUSSION 
 

In the present study, we show that chronic treatment for 

two weeks with metformin improved pre-existing age-

induced ER stress (Figure 2) and mitochondrial 

dysfunction (Figure 3B). Next, we asked if the relief of 

ER stress with improved mitochondrial function led to 

decreased cardiac injury following ischemia and 

reperfusion. In the buffer perfused aged heart, infarct 

size was substantially reduced (Figure 4D). As 

expected, metformin feeding increased AMPK 

activation as shown by the phosphorylation of both 

AMPK and ACC (Figure 1). Thus, a translational 

relevant approach can attenuate metabolic defects 

present in the aged heart and reduce injury in the aged 

heart from superimposed cardiac stress [41]. 

Furthermore, this treatment approach uses the novel 

approach to decrease cardiac injury from ischemia and 

reperfusion by the treatment of preexisting age-induced 

disease.  

 

OXPHOS is mainly impaired in IFM from aged hearts 

[7]. A decrease in dinitrophenol-uncoupled respiration 
supports that the defects in aged heart mitochondria are 

located in the electron transport chain [7, 40, 48]. Aging 

also sensitizes to MPTP opening mainly in IFM [14]. 
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The results support previous findings that the aging 

defect predominantly involves IFM. The ER stress 

increases in aged hearts [17, 49]. Metformin attenuates 

the ER stress in aged hearts indicated by decreased 

CHOP and cleaved ATF6 contents (Figure 2). CHOP is 

a major endpoint of the activation of ER stress, with 

increased formation not only via cleavage of ATF6, but 

also via phosphorylation and activation of PERK 

(RNA-activated protein kinase-like ER kinase) [50] as 

well as the activation of IRE1α (inositol requiring 

enzyme 1) [51–55]. Concomitant with the reduction in 

ER stress, metformin treatment improves OXPHOS and 

decreases the sensitivity of MPTP opening in aged IFM 

(Figure 3D). These results support that the increased ER 

stress causes mitochondrial dysfunction in the aged 

heart [17]. Restoration of mitochondrial function prior 

to the onset of ischemia and reperfusion in aged hearts 

by metformin, in turn, decreases cardiac injury during 

ischemia-reperfusion. Thus, chronic metformin 

treatment could be a promising strategy to protect aged 

hearts during ischemia and reperfusion by reducing the 

ER stress present in the baseline state. 

 

Chronic metformin pretreatment decreases infarct size 

in adult mice [56]. Furthermore, ongoing metformin 

treatment appears beneficial in diabetic patients who 

 

 
 

Figure 3. Administration of metformin improved mitochondrial function in aged IFM.  Compared to 3 mo., dinitrophenol 

(DNP) uncoupled respiration was decreased in 24 mo. SSM (A) and IFM (B) using complex I substrate, supporting that aging impairs the 
mitochondrial respiratory chain. Metformin feeding improved oxidative phosphorylation in 24 mo. IFM oxidizing complex I subst rates 
(B). Metformin feeding did not affect the oxidative phosphorylation in 24 mo. SSM with complex I substrates ( A). Compared to 3 mo., 
the calcium retention capacity (CRC) was decreased in 24 mo. IFM (D), supporting that aging sensitizes to mitochondrial permeability 
transition pore (MPTP) opening. Metformin feeding improved the CRC in 24 mo. IFM (D) but not in 24 mo. SSM (C), indicating that 
metformin feeding decreased MPTP opening in 24 mo. IFM. Mean ± SEM; * p <0.05 vs. 3 mo. vehicle. †p<0.05 vs. 24 mo. vehicle. n=13 
in 3 mo. vehicle group. N=5 in 3 mo. metformin treatment group. n=10 in 24 mo. vehicle group. N=9 in 24 mo. metfor min treatment 
group. 
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Table 2. The rate of oxidative phosphorylation in SSM from young and aged mice with or 
without metformin treatment. 

Mice 3 mo. 24 mo. 

Groups Vehicle (n=13) Metformin (n=5) Vehicle (n=11) Metformin (n=5) 

 Complex I substrates: glutamate + malate 

State 3 (nAO/min/mg) 291±16 326±7 220±14* 243±13 

State 4 (nAO/min/mg) 44±4 48±3 37±2 41±2 

RCR 6.9±0.4 7.1±0.5 6.1±0.3 6.1±0.6 

2 mM ADP (nAO/min/mg) 345±16 377±6 251±21* 272±25 

 Complex II substrates: Succinate + rotenone 

State 3 (nAO/min/mg) 642±25 587±24 557±20* 599±30 

State 4 (nAO/min/mg) 179±8 172±8 149±5* 156±6 

RCR 3.6±0.1 3.4±0.1 3.7±0.1 3.9±0.2 

2 mM ADP (nAO/min/mg) 593±25 529±22 532±21 545±23 

Mean ± SEM. *p<0.05 vs. 3 mo. Vehicle. 

 

Table 3. Hemodynamic change during ischemia-reperfusion in 24 
mo. hearts with or without metformin treatment. 

 Vehicle (n=9) Metformin (n=10) 

Body weight (g) 33.1 ± 1.5 33.6 ± 1.2 

Heart weight (g) 0.17 ± 0.01 0.18 ± 0.01 

Ratio of Heart/body 0.0050 ± 0.0003 0.0053 ± 0.002 

 Pre-Ischemia 

LVDP (mmHg) 82 ± 8 73 ± 2 

LVEDP (mmHg) 5 ± 1 6 ± 1 

 End of Reperfusion 

LVDP (mmHg) 39 ± 5* 30 ± 7* 

LVEDP (mmHg) 32 ± 6* 34 ± 7* 

Mean ± SEM. *p<0.05 vs. corresponding pre-ischemic value. All p=NS 
vehicle vs. metformin. 

 

suffer a subsequent infarct [57]. Metformin treatment in 

diabetic patients substantially improves cardiovascular 

disease outcomes in the UK Prospective Diabetes Study 

(UKPDS) [58]. Metformin protects in experimental 

models of heart failure [57]. Metformin is well tolerated 

in non-diabetic mice [33, 59]. The GIPS-III trial found 

that metformin therapy was also safe in non-diabetic 

adult patients, including those suffering an acute 

myocardial infarction [60]. Thus, there is a substantial 

potential for a repurposing in elders to attenuate age-

induced susceptibility of the heart.  

 

The mechanisms by which aging leads to mitochondrial 

dysfunction remain unclear. In the present study, we 

find that ER stress is markedly elevated in aged hearts. 

In addition, the reduction of ER stress using metformin 
improves mitochondrial function in aged hearts. The 

results support that the increased ER stress causes 

mitochondrial dysfunction during aging. Metformin 

treatment decreased ER stress in other disease models 

including catecholamine stress [61], pressure overload 

[34] and diabetes [62]. However, the mechanisms of 

action of metformin from these studies also remains to 

be better defined. Metformin may decrease ER stress 

due to modulation of SERCA activity in the adult heart 

[26, 63]. To our knowledge, the improvement in 

mitochondrial function in the aged heart with 

attenuation of the ER stress by metformin therapy has 

not been previously described.  

 

Two weeks of metformin therapy markedly reduced 

ER stress and subsequent mitochondrial dysfunction 

in the adult heart [26, 28]. This previous work from 

our laboratory [26] demonstrates that metformin 

decreases the thapsigargin-induced ER stress in adult 

hearts with the protection of mitochondrial oxidative 
phosphorylation and complex I of the respiratory 

chain [26, 28]. In the present study, metformin can 

decrease the age-induced pre-existing ER stress 

present in aged hearts before the occurrence of other 
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cardiac disease. These results support that metformin 

is an option to decrease the ER stress in aged hearts 

before the onset of a superimposed stress such as 

ischemia and reperfusion. Administration of the 

AMPK activator 5-aminoimidazole-4-carboxyamide-

1-beta-D-ribofuranoside decreases the ER stress in 

cardiac myocytes during hypoxia-reoxygenation [64], 

indicating that activation of AMPK decreases the ER 

stress. Metformin is clearly a more translational relevant 

approach to modulate ER stress and improve 

mitochondrial function than the classic small molecule 

chaperone 4-phenylbutyrate (4-PBA) that is commonly 

used to inhibit ER stress in animal studies [65], 

including during aging [17, 66, 67]. To further support 

the role of age-induced ER stress in mitochondrial 

dysfunction during aging, previous work showed that 

two weeks of treatment with the 4-PBA reduced ER 

stress and improved pre-existing age-induced 

mitochondrial dysfunction [17, 68]. 

Metformin is a traditional anti-diabetic drug with 

cardioprotective effects by activating AMPK signaling 

[69]. The mechanism of AMPK activation is due to 

subtle complex I inhibition, leading to a modest decrease 

in energy charge. This inhibition is observed with chronic 

metformin therapy and requires only micromolar 

intracellular concentration [70, 71]. Metformin, via  

this AMPK activation, leads to enhanced mitophagy  

and mitochondrial biogenesis [72–74]. Metformin 

downregulates the mechanistic target of rapamycin 

through activation of AMPK [36, 75]. In addition to the 

relief of ER stress, the potential mechanisms of AMPK 

protection include favoring glucose uptake and oxidation, 

modulation of autophagy [76], and augmentation of 

mitochondrial biogenesis [77]. In the present study, 

chronic metformin treatment activates AMPK in aged 

hearts as shown by increased phosphorylation of the 

AMPK and ACC. These results suggest that metformin 

decreases the ER stress during aging by activating the

 

 
 

Figure 4. Administration of metformin decreased cardiac injury in aged mouse hearts. (A) Shows the experimental protocol. 
Metformin feeding was the same as in Figure 1. Isolated perfused hearts received no ex vivo treatment. The isolated mouse hearts 
underwent 25 min. global ischemia at 37° C and 60 min. reperfusion. Metformin treatment decreased the infarct size in aged 24 mo. hearts 
compared to vehicle (B), supporting that metformin treatment decreased cardiac injury in 24 mo. hearts following ischemia-reperfusion. 
Mean ± SEM. †p<0.05 vs. 24 mo. vehicle. n=9 in vehicle treated group. n=10 in metformin treated group. 
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AMPK signaling. Interestingly, a recent study shows 

that the decreased PGC1-α level in aged hearts is not 

dependent on AMPK activity. Metformin treatment 

does improve mitochondrial biogenesis in aged hearts 

[78]. These results suggest that metformin-mediated 

improvement in biogenesis is not solely dependent on 

AMPK activation.  

 

Activation of AMPK by metformin leads to decreased 

mTOR activity through activation of AMPK [36, 37]. 

The mTORC1 performs the classic functions of mTOR 

including nutrient sensing, regulation of protein 

synthesis, and autophagy [37], whereas the mTORC2 is 

involved in cell proliferation and insulin signaling [37]. 

mTORC1 is linked to ER stress via the unfolded protein 

response [38]. Inhibition of mTOR extends lifespan 

[79]. mTORC1 regulates the translation of several 

mitochondria-related mRNAs including components of 

complex I and V and transcription factor A (TFAM) 

[80]. Inhibition of mTORC1 in 24 mo. mice improves 

cardiovascular function and reverses cardiac fibrosis 

[81] by improving mitochondrial function [82]. The 

inhibition of mTORC1 by activation of AMPK itself 

prolongs lifespan [82, 83]. The current study shows that 

metformin treatment results in activation of AMPK in 

24 mo. old mice accompanied by decreased mTORC1 

activation indicated by decreased phosphorylation of the 

protein S6. These results support the notion that 

activation of AMPK provides protective benefits in 

aged hearts by inhibiting mTORC1. 

 

AMPK activation is enhanced by the sestrin protein 

family [84]. Sestrin2 is a stress-induced scaffold protein 

that mediates AMPK activation via interaction with 

LKB1 [5, 85, 86]. Sesn2 expression at baseline was 

reduced in aged hearts [5, 86] and a decrease in Sesn2 

attenuates AMPK activation. Sesn2 mediated AMPK 

activation also leads to the downregulation of mTOR 

[87, 88] that can protect cells against ER stress by 

decreasing protein synthesis [89, 90]. The age-induced 

decrease in Sesn2 expression may impair activation of 

AMPK in response to stress. However, in the current 

study, chronic metformin therapy was nonetheless able 

to activate AMPK to a sufficient extent to reduce ER 

stress and improve mitochondrial function, similar to 

protection against ER stress in the adult heart [26]. 

 

In addition to increased cardiac injury during ischemia-

reperfusion, aging also invalidates endogenous 

signaling of cardiac protection that leads to many 

cardioprotective approaches that protect younger adult 

hearts, leading these approaches to fail in aged hearts 

[7, 12, 91]. Treatment of aged rats with the small 
molecule metabolite acetylcarnitine improved 

mitochondrial function [6], supporting the potential 

reversibility of the mitochondrial defect in aging. This 

concept is further supported by current findings that 

metformin restores mitochondrial function in the aged 

hearts. Treatment with acetylcarnitine in the aged heart 

not only restored mitochondrial function, but also 

reduced cardiac injury during ischemia-reperfusion [6], 

indicating that the age-induced mitochondrial defects 

contribute to cardiac injury [6]. The current study shows 

that metformin treatment improves mitochondrial 

function and decreases cardiac injury in aged hearts 

during ischemia and reperfusion, expanding available 

options to restore mitochondrial function in aged hearts. 

Metformin treatment may provide additional benefits in 

the high-risk elderly population with a greater incidence 

of myocardial infarction [2, 3] that suffer substantially 

greater cardiac injury and decreased survival should an 

infarction occur [2, 3]. 

 

MPTP opening leads to cell death during ischemia and 

reperfusion [92]. Increased ER stress favors MPTP 

opening in adult heart mitochondria [26–28]. In the 

present study, aging leads to increased sensitivity to 

MPTP opening mainly in IFM. Importantly, attenuation 

of the ER stress with metformin decreases MPTP 

opening in mitochondria isolated from aged hearts. The 

current study provides direct evidence that the increased 

ER stress favors MPTP opening during aging. ER stress 

mediated oxidative [93] and calcium-driven [27] 

mechanisms impact mitochondria and likely contribute to 

the increased susceptibility to MPTP opening even in the 

baseline state. Metformin treatment decreases the MPTP 

opening during acute ER stress by activating AMPK 

[26]. This mechanism may be also involved in decreased 

MPTP opening in aged hearts with metformin treatment.  

 

Limitations 

 

The current study emphasized a translational relevant 

approach to activate AMPK driven reduction in ER 

stress in the baseline aging condition to improve 

mitochondrial function. The response from aged hearts 

paralleled the response of metformin therapy to reduce 

ER stress, likely via AMPK mediated mechanisms. The 

period of pretreatment that improved mitochondrial 

function in the current study most certainly resulted in 

modest inhibition of complex I that was present during 

ischemia and reperfusion, even in the absence of 

additional metformin treatment [70, 71] which would 

have exerted protection in aged heart during ischemia 

[94] and early reperfusion [11]. Although inhibition  

of complex I by metformin leads to deceased  

cardiac injury during ischemia-reperfusion [33], other 

mechanisms may be also involved in the protection of 

metformin. The improvement of OXPHOS, especially 
with complex I substrates, does not suggest that 

substantial complex I inhibition was present before 

ischemia and reperfusion from the chronic metformin 
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treatment, though a beneficial impact regarding 

production of reactive oxygen species production and 

attenuation of permeability transition pore opening 

cannot be excluded [70]. Metformin may decrease 

cardiac injury by decreasing sensitivity to MPTP 

opening as shown in cultured cells and isolated 

mitochondria [71]. ROS generated by reverse electron 

flow contributes to cardiac injury during reperfusion 

[95]. Metformin treatment likely also mitigates cardiac 

injury through reduction of the reverse flow-induced 

ROS generation [70]. Activation was sufficient despite 

age-related decrements in sestrin 2 content, the role of 

which will also require further study. The mechanisms 

of the ER and mitochondrial interactions that favor age-

induced mitochondrial dysfunction will require 

additional work. Finally, the model of ischemia and 

reperfusion is one of acute injury, the study of longer-

term reperfusion and recovery periods, especially the in 

vivo ischemia-reperfusion model, will be required in the 

future. 

 

CONCLUSIONS 
 

Chronic treatment of aged mice for two weeks with 

metformin activated AMPK signaling leading to a 

reduction in age-induced ER stress with substantial 

improvement of function in heart mitochondria (Figure 5).  

 

 
 

Figure 5. The chronic administration of metformin 
decreases endoplasmic reticulum stress with 
improvement in cardiac mitochondrial function in aged 
mouse hearts. Aging increases endoplasmic reticulum (ER) 

stress that causes mitochondrial dysfunction by increasing 
calcium overload and ROS generation. The ER and cardiac 
mitochondrial interact via mitochondrial associated 
membranes (MAM). An increase in mitochondrial calcium 
overload and ROS generation sensitizes to mitochondrial 

permeability transition pore (MPTP) opening that augments 
cardiac injury during ischemia-reperfusion. Metformin 
treatment decreases cardiac injury by restoring mitochondrial 
function before ischemia through attenuation of the ER stress 
in the aged hearts. 

In the setting of these improvements, the age-enhanced 

susceptibility to cardiac injury during myocardial 

infarction and reperfusion was improved. The current 

study advances the understanding of mechanisms 

involved in aging-mediated mitochondrial dysfunction, 

but also provides a novel treatment opportunity to 

restore mitochondrial function in aging in that the ER 

stress can be modulated by pharmacologic 

interventions. This translational treatment approach 

provides key evidence for a new treatment paradigm to 

decrease injury from superimposed cardiac disease in 

the high-risk aged heart by the treatment of age-related 

defects to restore mitochondrial function before the 

onset of acute cardiac disease in the elderly heart. This 

approach is potentially relevant to acute coronary 

syndromes with ST elevation-induced myocardial 

infarction with an increased risk of progression to heart 

failure [2, 96], acute coronary syndromes with non-ST 

elevation infarction [97, 98], heart failure with 

preserved ejection fraction [99, 100], and chemotherapy 

cardiotoxicity [101]. 

 

MATERIALS AND METHODS 
 

Metformin treatment 

 

The Animal Care and Use Committees of Virginia 

Commonwealth University and the McGuire 

Department of Veterans Affairs Medical Center 

approved the study. Male mice of young adult (3 mo.) 

and aged mice (24 mo.) were used in this study. Mice 

were given a normal diet with ad libitum access to food 

and water throughout the experiment. Normal diet 

included 16% protein and 4% fat. In metformin treated 

mice, metformin (300 mg/kg/day body weight) was 

dissolved in drinking water with sucrose (0.2g/100 ml) 

as sweetener and fed to mice for 2 weeks [56] (Figure 

1A). The dose of metformin was based upon previous 

studies in the rat [56]. Control mice received drinking 

water with sucrose vehicle (0.2g/100 ml). Deep 

anesthesia was induced in mice with pentobarbital 

sodium (100 mg/kg, i.p.). Then, mitochondria were 

isolated from the excised mouse heart. 

 

Isolation of cytosol, mitochondria, and nucleus 

 

SSM and IFM were isolated as previously described 

[17]. The mouse heart was first placed in cold buffer A 

(composition in mM: 100 KCl, 50 MOPS 

[3-(N-morpholino) propanesulfonic acid], 1 EGTA, 5 
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MgSO4, and 1 ATP). The heart was blotted dry, 

weighed, and homogenized using a polytron tissue 

homogenizer at 10,000 rpm for 2.5 seconds. The 

polytron homogenate was first centrifuged at 500 g for 10 

min. The supernatant was used to isolate SSM with 

further centrifugation at 3,000 g for 10 min. The pellet 

from the 500 g centrifuge step was washed and used for 

IFM isolation. The skinned myofibers, obtained from the 

polytron homogenization step, were resuspended in buffer 

A and incubated with 5 mg/g (wet weight) trypsin for 10 

min at 4° C. Then, buffer B [buffer A including 0.2% 

bovine serum albumin (BSA)] was added to stop trypsin 

effect. The crude SSM and IFM were washed with buffer 

B. The purified SSM and IFM were suspended in 80 mM 

KCl, 50 mM MOPS, and 0.5 mM EGTA for functional 

measurement.  

 

Oxygen consumption in isolated mitochondria was 

measured using a Clark-type oxygen electrode at 30° C 

as previously described [102]. Glutamate (20 mM) + 

Malate (10 mM) were used as complex I substrate. 

Succinate (20 mM) was used as the complex II substrate 

with the inclusion of 7.5 μM rotenone. ADP (2 mM) 

was used to determine the maximal rate of ADP-

stimulated respiration.  

 

Calcium retention capacity (CRC) in isolated 

mitochondria 

 

The CRC was used to assess the calcium induced MPTP 

opening in freshly isolated SSM and IFM [103]. The 

assay medium included mitochondria (125 μg/ml), 150 

mM sucrose, 50 mM KCl, 2 mM KH2PO4, and 5 mM 

succinate in 20 mM Tris/HCl with pH at 7.4. Calcium 

Green-5N (0.5 uM, Thermo Scientific, Waltham, MA) 

was used to monitor extra-mitochondrial Ca2+ 

concentration with excitation and emission wavelengths 

set at 500 and 530 nm, respectively [103]. Sequential 

exogenous calcium (5 nmol/pulse) was added into 

cuvettes until MPTP opening occurred, shown by a 

burst release of calcium from mitochondria.  

 

Measurement of ROS in SSM and IFM 

 

The amount of H2O2 generation in SSM and IFM was 

measured using Amplex red as a fluorogenic indicator in 

the presence of horseradish peroxidase. Freshly isolated 

SSM or IFM (200 μg) were incubated in chelex-treated 

buffer [pH 7.4 (150 mM KCl, 5 mM KH2PO4, 1 mM 

EGTA)] in the presence of 25 μM Amplex Red and 0.20 

units/ml HRP. Glutamate + malate was used as complex I 

substrate, and succinate + rotenone was used as complex 

II substrate. Rotenone (complex I inhibitor) and 
antimycin A (complex III inhibitor) were used to induce 

maximal H2O2 generation from complex I and complex 

III, respectively [104]. 

Isolated perfused heart model of Ischemia and 

Reperfusion 

 

Mouse hearts were excised under deep anesthesia using 

pentobarbital sodium (100 mg/kg i.p.) and anticoagulated 

with heparin (1,000 IU/kg i.p.). The isolated heart is 

mounted in the Langendorff setup and perfused with 

modified Krebs-Henseleit (K-H) buffer oxygenated with 

95% O2-5% CO2 through aorta. A balloon was inserted 

into the left ventricle to monitor cardiac function. The 

heart was first perfused with K-H buffer for 15 min. The 

hearts underwent 25 min. of global ischemia at 37° C and 

60 min. of reperfusion (Figure 4A). In order to keep a 

constant heart rate, hearts were paced at 420 beats/min 

during the 15 min. equilibration period and after 10 min. 

of reperfusion [105]. Myocardial infarct size was 

measured at the end of the reperfusion using staining 

with triphenyl tetrazolium chloride (TTC) [106]. 

 

Western blotting 

 

Proteins from mitochondria or cytosol were separated 

using 12% or 4-15% Tris-glycine gels (Bio-Rad, 

Hercules, CA) and transferred to a PVDF membrane 

(Millipore) using semi-dry transfer (Bio-Rad). The 

membrane was incubated for 1 hour at room temperature 

in 5% (w/v) non-fat dry milk (Bio-Rad) in TBS-T buffer 

(10 mM Tris pH 7.5, 150 mM NaCl, 0.1% Tween-20). 

Then, the membrane was incubated with primary antibody 

overnight at 4° C. After 1 hour incubation at room 

temperature with a 1:10,000 dilution of HRP-conjugated 

anti-mouse or anti-rabbit IgG F(ab)2 (GE Healthcare Life 

Sciences, Piscataway, NJ), blots were developed using 

ECL Plus Western Blotting Detection Reagents (GE 

Healthcare Life Sciences, Piscataway, NJ) [28, 47]. 
 

Statistical analysis 

 

Data are expressed as the mean ± standard error [107]. 

Normality distribution was assessed. One-way analysis of 

variance (ANOVA) was used to compare the differences 

between groups (≥ 3 groups). The Student-Newman-

Keuls test of multiple comparisons was used when a 

significant F value was obtained. The non-paired student 

test (two tails) was to compare the differences between 

two groups. Statistical significance was accepted when a 

value of p less than 0.05 was obtained. 
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