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Introduction: Surgical resection of brain tumors is often limited by adjacent critical

structures such as blood vessels. Current intraoperative navigations systems are

limited; most are based on two-dimensional (2D) guidance systems that require

manual segmentation of any regions of interest (ROI; eloquent structures to avoid or

tumor to resect). They additionally require time- and labor-intensive processing for any

reconstruction steps. We aimed to develop a deep learning model for real-time fully

automated segmentation of the intracranial vessels on preoperative non-angiogram

imaging sequences.

Methods: We identified 48 pediatric patients (10-months to 22-years old) with

high resolution (0.5–1mm axial thickness) isovolumetric, pre-operative T2 magnetic

resonance images (MRIs). Twenty-eight patients had anatomically normal brains, and

20 patients had tumors or other lesions near the skull base. Manually segmented

intracranial vessels (internal carotid, middle cerebral, anterior cerebral, posterior cerebral,

and basilar arteries) served as ground truth labels. Patients were divided into 80/5/15%

training/validation/testing sets. A modified 2-D Unet convolutional neural network (CNN)

architecture implemented with 5 layers was trained to maximize the Dice coefficient, a

measure of the correct overlap between the predicted vessels and ground truth labels.

Results: The model was able to delineate the intracranial vessels in a held-out

test set of normal and tumor MRIs with an overall Dice coefficient of 0.75. While

manual segmentation took 1–2 h per patient, model prediction took, on average, 8.3 s

per patient.

Conclusions: We present a deep learning model that can rapidly and automatically

identify the intracranial vessels on pre-operative MRIs in patients with normal vascular

anatomy and in patients with intracranial lesions. The methodology developed can be

translated to other critical brain structures. This study will serve as a foundation for

automated high-resolution ROI segmentation for three-dimensional (3D) modeling and

integration into an augmented reality navigation platform.
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INTRODUCTION

Brain tumors are often devastating, life threatening, and
permanently affect quality of life. The mainstay of treatment for
many brain tumors is surgical resection, with more extensive
resections showing a clear benefit on survival (1). However,
surgical resection is especially challenging when tumors distort
the intracranial arteries by compressing or growing around them.
The extent of resection can be limited by the involvement of
the arteries, which, if removed or damaged, can lead to death or
devastating disabilities.

Neurosurgeons utilize intraoperative navigation systems when

large tumors have severely distorted the intracranial arteries, as

these systems are useful adjuncts for executing nuanced surgical

plans, as well as confirming the extent of resection. However,
standard intraoperative navigations systems are limited: they
are based on two-dimensional (2D) representations of three-
dimensional (3D) anatomy and provide guidance using flat
screen monitor visualization. While some navigation systems
have limited 3D reconstruction capabilities, most require manual
segmentation of any regions of interest (ROIs, e.g., eloquent
structures to avoid or the tumor being resected). Image-
by-image identification of ROIs within a large series could
include hundreds to thousands of individual images, each with
multiple ROIs. This demarcation is time-consuming and labor
intensive such that most neurosurgeons usually rely on quick
2D representations rather than forming 3D plans that are
anatomically more accurate (2).

Current automated systems for identifying ROIs rely on
contrast or time-of-flight sequences and use pixel intensity
thresholds, which do not always identify normal anatomic
structures or pathologic lesions to the fidelity that is needed
for intraoperative neurosurgical navigation (3). Additionally,
these algorithms often require manual pre-processing, are
computationally intensive, and have not yet translated to real
time use in clinical practice. Studies have applied variousmachine
learning approaches to delineate the cerebral vasculature using
vascular MRI sequences (3–5), but no study has used routine
clinical pre-operative MRIs to delineate neurovasculature.
Furthermore, many of these models apply to adult anatomy, and
thus may not translate to the pediatric population. For instance,
in young children, age-related differences in myelination may
affect image intensity and thus make automated methods more
challenging than in the adult population.

Deep learning, a form of machine learning that is task-
oriented rather than reliant on a priori selected spatial
or intensity features, has shown promise in rapid image
classification and segmentation tasks (6–8). We present a
deep learning U-net model for the automated segmentation
of the main intracranial arteries by training on pre-operative
structural MRI scans of pediatric patients with anatomically
preserved vasculature as well as those with lesions compressing
or encompassing the cerebral arteries. This model has the
potential to facilitate intraoperative navigation with minimal
human oversight through high-throughput, automated labeling
of neurovasculature without the need for contrast images or
dedicated vascular sequences.

MATERIALS AND METHODS

Patient Selection
3D isovolumetric T2-weighted pre-operative MRIs were
retrospectively collected from consecutive patients <25 years old
undergoing work-up between 2011 and 2018. These included
patients with normal intracranial vascular anatomy undergoing
evaluation of extracranial pathology, concussion, or surgical
planning for non-lesional epilepsy, as well as those undergoing
surgical planning for intracranial lesions. All images were
reviewed by a board-certified pediatric neuroradiologist (KWY)
as well as a board-certified pediatric neurosurgeon (SHC) and
confirmed to have the requisite pre-surgical imaging protocol
suitable for integration into a surgical navigation system.

Institutional review board (IRB) approval was obtained for
the acquisition and analysis of all clinical and imaging data
(Stanford IRB-44851). Informed consent was obtained at the
time of imaging acquisition but waived by the IRB for the
retrospective review since images were de-identified immediately
after collection and prior to analysis.

MRI Acquisition
MRI was performed at 3T using the following magnets: GE
Discovery, GE LightSpeed, GE Revolution (GE Healthcare,
Waukesha, WI). The 3D isovolumetric isotropic T2-weighted
MRI protocol comprised of Freq FOV 24; TR/TE 2500/MAX;
ETL 100; slice thickness 0.5–1mm; matrix (512 × 512);
BW 62.50.

Ground Truth Labels
The main intracranial arteries [internal carotid (ICA), anterior
cerebral (ACA), middle cerebral (MCA), posterior cerebral
(PCA), basilar, anterior communicating (Acom), posterior
communicating (Pcom) arteries] were manually segmented by
a neurosurgery resident (JLQ) on axial images from the level of
the cavernous sinuses inferiorly to the frontal horns superiorly.
Segmentations were confirmed by a board-certified pediatric
neuroradiologist (KWY).

Image Processing and Data Augmentation
DICOM images and their manual segmentations were processed
using the Python programming language with the pydicom and
SimpleITK packages (9). Images were resampled to 512 × 512
pixels in the axial dimension. Nyul histogram normalization was
performed on all of the images using the intensity distributions
from the images in the training set (10). Axial slices were
randomly flipped, rotated, translated, and cropped to a final
size of 480 × 480 pixels for data augmentation, to improve
the generalizability of the model. 3D projections were rendered
using ITK-SNAP.

U-Net Model Architecture
We used a modified U-net (Figure 1), which is a convolutional
neural network (CNN) as described by Ronneberger et al. (11).
Our U-net accepts an input of 480× 480 pixels. Each level of the
encoding half (left side) applies two padded 3 × 3 convolutional
layers with stride 1, followed by a rectified linear unit (ReLU) and
a 2 × 2 max-pooling operation with stride 2. Each layer reduces
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FIGURE 1 | Modified U-net architecture. Axial slices were cropped to 480 × 480 pixels and fed in as input. The model outputs, for each pixel, a probability that the

pixel is a blood vessel. Probabilities were thresholded at 0.5.

the dimensions by half, and the number of feature channels is
doubled. The final, fifth level includes two 3 × 3 convolutional
layers without a pooling layer. The decoding half (right side)
recovers the original dimensions of the input images by up-
sampling the feature maps and concatenating the corresponding
feature channels from the each layer in the encoding half,
followed by ReLU. The final layer is a 1 × 1 convolution that
decodes the feature vector into a probability prediction for each
pixel (vessel vs. non-vessel).

Data Split and Model Training
MRIs were allocated into development (training and validation)
and held-out test sets using random stratified sampling
within each group. The breakdown was 80/5% for the
training/validation and 15% for the held out test set. The model
was trained to minimize the generalized dice loss as described by
Sudre et al. (12). The weighted generalized dice loss (Equation
1) was used given the heavy imbalance of vessel to non-vessel
pixels. Training was performed via stochastic gradient descent
for 100 epochs. A hyperparameter search was performed using
the validation set: learning rate= 3e-4, batch size= 2, dropout=
0.2. The final chosen model was the one with the lowest loss on
the validation set, to minimize overfitting.

Equation 1: Generalized dice loss (GDL) (12). Subscript 1
subscript indicates vessel. Subscript 0 indicates non-vessel. l =
label, p= predicted. The weight w= 1/n2, where n is the number
of respective pixels (vessel or non-vessel) for that axial slice.

GDL = 1−
2
[

w0
∑

(

l0 × p0
)

+ w1
∑

(

l1 × p1
)]

w0
∑

(

l0 + p0
)

+ w1
∑

(

l1 + p1
)

Model Evaluation
We assessed segmentation accuracy using the Dice coefficient
(Equation 2) (13), a measure of the overlap between the blood
vessel pixels delineated on the ground truth label compared to
the predicted pixels by the model.

Equation 2: Dice coefficient (13). TP = true positive, FP =

false positive, FN= false negative.

Dice =
2 × TP

(2 × TP)+ FP + FN

RESULTS

Intracranial Vessel Dataset
Patients undergoing evaluation at Lucile Packard Children’s
Hospital from 2011 to 2018 were included. A total of 50
patients were found to have high resolution, isovolumetric T2
MRIs. Isovolumetric T2 MRIs were chosen given the ability to
reliably identify and visualize anatomical structures including the
cerebral vasculature. The following two patients were excluded:
one with prior tumor resection (n = 1) since vessels may have
been coagulated with subsequent angiogenesis; and one with
a brainstem vascular lesion (n = 1) since they may have had
obscured and potentially abnormal vessels. The final dataset
included 48 patients aged 10-months to 22-years old (median
= 9.5), with 21 girls and 27 boys. These comprised of 28
patients undergoing surgical planning for non-lesional epilepsy
(23), evaluation of extracranial pathology (3), or concussion
(2). We also included 20 patients with intracranial lesions,
some of whom had significant distortion or encompassment
of the intracranial vessels (15). Intracranial lesions included
craniopharyngioma (4), ganglioglioma (4), pilocytic astrocytoma
(3), ependymoma (1), oligodendroglioma (1), subependymal
giant cell astrocytoma (1), tectal glioma (2), epidermoid cyst,
(1), porencephalic cyst (1), and primitive neuroectodermal tumor
(1). One patient had hemimegencephaly but was categorized
with the “lesion” group due to distortion of the intracranial
vasculature. All patients with intracranial lesions were imaged
prior to surgical intervention. Six patients had also underwent
vascular imaging (MR angiography, CT angiography, or digital
subtraction angiography), but all after their initial MRI. Patient
demographics are shown in Table 1.
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U-Net Segmentation of Intracranial Vessels
38 patients (22 with normal anatomy, 16 with intracranial
lesions) were used to train the U-net. A validation set of
2 patients (1 normal, 1 lesion) was used to track training

TABLE 1 | Patient dataset.

Normal vessel patients N = 28

Age 10.6 months−22.6 years

(median = 9.97)

Male N = 16

Female N = 12

Non-lesional epilepsy N = 23

Extracranial pathology N = 3

Concussion N = 2

Intracranial lesion patients

Age 2–22 years (median = 9.3)

Male 11

Female 9

Craniopharyngioma 4

Ganglioglioma 4

Pilocytic astrocytoma 3

Ependymoma 1

Oligodendroglioma 1

Subependymal giant cell astrocytoma 1

Tectal glioma 2

Epidermoid cyst 1

Porencephalic cyst 1

Primitive neuroectodermal tumor 1

Hemimegancephaly 1

progress and check for overfitting. Figure 2 shows the training
curve depicting the decrease in generalized dice loss for the
training set as training progressed. Model training took 18 h
to complete. The model with the lowest generalized dice
loss on the validation set (epoch 43) was chosen as the
final model.

Example images of the original scan, ground truth label,
model-generated segmentation, and overlaid figures are shown
in Figure 3. Images were generated in under 0.2 s per axial slice,
and <8 s per scan. A dice score of 0.75 was achieved on the
held-out test set of 8 patients: 5 patients with normal anatomy
and 3 patients with intracranial lesions. The normal subset had
a dice score of 0.77 and the tumor subset had a dice score of
0.71, indicating better performance of the model on patients with
normal vascular anatomy.

3D Visualization of the Intracranial Vessels
In order to visualize the intracranial vessels in a manner
similar to that of pre-operative planning systems, the axial
slices were stacked to generate 3D projections of the vessels in
patients with normal vasculature (Figure 4) and with tumors
(Figure 5). Qualitatively, the model was able to segment
the main arteries of the Circle of Willis with considerable
fidelity as reviewed by our neuroradiologist (KWY). The
fidelity of the prediction seemed to decrease for the distal
branches of the middle cerebral arteries. The tumor scans
had more false positive artifacts, as small isolated islands of
pixels that do not appear to be vascular structures on the
3D reconstructions.

FIGURE 2 | Training curves showing decrease in generalized dice loss for the training (red “+”) and validation (green “x”) as training progressed. The model with the

lowest validation loss was chosen for the final model, to reduce overfitting.
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FIGURE 3 | Segmentation of intracranial vasculature by the deep learning model. T2 slices and manual (human) segmentation of vessels are shown for example

patients with normal anatomy vs. intracranial tumor. Model (U-net) segmentation is shown in red. An overlay of manual segmentation and model segmentation is

shown with green as true positive, yellow as false negative, and red as false positive.

FIGURE 4 | 3D reconstruction of intravascular segmentation performed manually by human or automatically by the deep learning model in patients with normal

intracranial vasculature.

DISCUSSION

Our results demonstrate the first application of a CNN to identify
and segment the intracranial vasculature using non-contrast, pre-
operative brain MRIs from children. The use of deep learning to

fully automate intracranial vascular segmentation using standard
of care brain MRI scans, without additional contrast or a
vascular protocol, carries important clinical implications. These
include more efficient segmentation outputs, time and cost
savings, as well as the potential for real-time translation into
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FIGURE 5 | 3D reconstruction of intravascular segmentation performed manually by human or automatically by the deep learning model in patients with compressed

intracranial vasculature from intracranial tumors.

safer surgical resection of tumors in close proximity to critical
vascular structures, particularly at the skull base, brainstem, or
peri-Sylvian regions of the brain.

While some techniques for automated intra-operative brain
volume rendering exist, most require extensive pre-processing
steps, including skull-stripping (14). At present, no software
specifically targets rendering of the main intracranial vessels,
and most only reconstruct the surface vasculature of the brain.
Additionally, these techniques require contrast-enhanced scans
in order to threshold the signal intensity of brightly enhancing
vasculature from background brain (14, 15). With thresholding
methods, other high signal regions, such as hemorrhage, protein,
or bone marrow, can overlap with and obscure tumor tissue
and vessels.

Given that the MRI protocols used in surgical navigation
systems are less sensitive to vascular delineation, (16) some
investigators have used magnetic resonance angiography (MRA)
and intraoperative ultrasound angiography projected as a
stereoscopic display overlying the surgical field (17, 18) while
others have applied CT angiogram (CTA) with intraarterial
contrast injection (16), to better assess vascular malformations.
However, such approaches still require surgeons to manually
delineate ROIs (tumor or vascular lesions, and anatomic
structures of interest) on each frame of the preoperative CT or
MRI (19).

Manual delineation and ROI generation by clinical
experts remains the gold-standard for intracranial vessel
segmentation. While thin-slice 3D MRI scans allow for superior

3D reconstructions for surgical navigation, they have many slices
per scan, making manual delineation incredibly time consuming
and clinically impractical. Therefore, some surgeons may choose
to delineate ROIs on MRIs acquired using more conventional
diagnostic protocols. However, due to technical differences in
image angle, slice selection, and slice thickness, these ROIs may
not accurately transfer onto the 3D reconstructions. Further,
any manual delineation would be challenging to perform in
real-time, such as during surgery using intra-operative MRIs.

Various studies have examined automated and semi-
automated vessel segmentation methods, from rule-based
mathematical extraction algorithms to machine-learning
techniques (20, 21). One study used intensity thresholds of MRA
for computer-aided feature extraction to detect small intracranial
aneurysms (22). Mejis et al. applied feature extraction and
random forest classification to segment the cerebral vasculature
using CTA from stroke patients (23). However, these methods
have required separate vascular imaging protocols, such as MRA
or CTA (20, 21, 24); and the lengthy pre- and post-processing
steps required for these methods pose limitations on real-time
clinical implementation.

Deep learning, a task driven form of machine learning, has
multiple advantages for clinical implementation. Rather than
relying on hand-crafted features, deep learning algorithms learn
to identify the most relevant features for model optimization.
Various studies have shown the utility of CNNs, a form
of deep learning, for vessel segmentation, in particular for
retinal imaging (20). Another study showed that a single CNN
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architecture could learn to segment different tissue types using
MR brain, MR breast, and cardiac CTA, but did not target
the cerebral vasculature (25). Livne et al. demonstrated CNN-
based cerebral vascular segmentation usingMRAs from 66 adults
with cerebrovascular disease. While such results are promising,
MRA is often vulnerable to flow-related artifacts (26) and can
underestimate the vasculature if there are alterations in blood
flow dynamics. Studies have also shown that MRA alone may be
inadequate for presurgical neurovascular localization, which has
prompted methods for fusing MRA and contrast-enhanced MRI
(5, 26).

Given these weaknesses, we trained a U-net CNN to
automate vascular segmentation on pre-operative scans, which
allow for wider use of our model with more flexible clinical
applications. These high-resolution, isotropic, isovolumetric T2-
weighted MRI scans are acquired pre-operatively for mapping
of brain tumors or seizure foci due to superior diagnostic
capability for detecting small lesions as well as the potential
for high-resolution reformatting in any plane (27). Unlike prior
approaches, ours does not rely on a time-of-flight vascular
sequences thus rendering our approach immune to flow-
related artifacts. Additionally, the lack of need for intravenous
contrast is an additional advantage, due to rising concerns
about gadolinium deposition in the brain and its known
associated and unknown risks, particularly in children (28, 29).
Unlike previous approaches using thresholding techniques, our
model was trained to explicitly perform pixel-wise classification
and segmentation of the intracranial arteries, and therefore,
is specific to identifying neurovasculature rather than any
structure that might display signal intensity within a prescribed
threshold range. We demonstrate that even without a dedicated
neurovascular protocol or intravenous contrast, automated
vascular segmentation is feasible using CNNs. Furthermore, we
demonstrate good performance on a pediatric dataset, with a
wide range of brain sizes from infants to late teenagers, which
has not been previously conducted.

With our model, we noticed that segmentation was more
accurate for delineating normal vasculature compared to
vessels in patients with tumors. This was possibly due to
vascular deformation by the tumor. Another possibility is that
constriction of the vessels from the underlying mass diminished
the overall vascular caliber, which decreases the number of pixels
in the denominator of the Dice score on which the model is
evaluated, making it quantitatively more sensitive to error. The
model also tended to identify more false positives and have more
artifacts as the vessels became more distal to the Circle of Willis.
One source of false positives may stem from parasitic tumor
vessel branches, which were not delineated in our manual ground
truth labels that only included the main intracranial arteries.
Significantly increasing the size of the training dataset, especially
including patients with tumors, would allow the model to better
learn which cerebral arteries are consistently represented, thus
potentially decreasing the number of false positives.

One major limitation in our study was the small sample size
of our retrospective cohort. Despite our rather limited training

set of 38 patients, our model was still able to generate relatively
high fidelity segmentations of the major intracranial arteries on
a held out test set of 8 patients, which were never seen by the
model during the training phase. It is likely that more training
data would lead to higher accuracy by the convolutional neural
network. Since vascular imaging was not available for most of
the patients in our study, we did not label our T2 scans using
vascular imaging. However, our use of high-resolution, isotropic,
isovolumetric scans permitted the best possible visualization of
the vascular anatomy, which was labeled by a neurosurgery
resident with oversight by a board-certified neuroradiologist,
as manual delineation currently remains the gold standard for
ROI identification in clinical practice. Future work could include
more human labelers to address and to quantify the degree
of inter-observer variability in identifying critical structures,
as well as the integration of intraoperative MRI sequences
to further facilitate the integration of this model into real-
time neuronavigation.

CONCLUSIONS

We demonstrate the feasibility and fidelity of a CNN model for
segmentation of pediatric cerebral vasculature using a standard
of care pre-operative MRI protocol that does not require contrast
dye or additional vascular imaging sequences. In future work we
hope to incorporate this model into neuronavigational systems
for pre-operative planning and intraoperative navigation.
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