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Genome-driven evolutionary game theory helps
understand the rise of metabolic interdependencies
in microbial communities
Ali R. Zomorrodi 1,2,3 & Daniel Segrè 1,2,3,4

Metabolite exchanges in microbial communities give rise to ecological interactions that

govern ecosystem diversity and stability. It is unclear, however, how the rise of these

interactions varies across metabolites and organisms. Here we address this question by

integrating genome-scale models of metabolism with evolutionary game theory. Specifically,

we use microbial fitness values estimated by metabolic models to infer evolutionarily stable

interactions in multi-species microbial “games”. We first validate our approach using a well-

characterized yeast cheater-cooperator system. We next perform over 80,000 in silico

experiments to infer how metabolic interdependencies mediated by amino acid leakage in

Escherichia coli vary across 189 amino acid pairs. While most pairs display shared patterns of

inter-species interactions, multiple deviations are caused by pleiotropy and epistasis in

metabolism. Furthermore, simulated invasion experiments reveal possible paths to obligate

cross-feeding. Our study provides genomically driven insight into the rise of ecological

interactions, with implications for microbiome research and synthetic ecology.
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Obligate dependencies among microorganisms through the
exchange of essential metabolites have been hypothesized
to be ubiquitous in microbial ecosystems1,2. Similar

interactions have also been engineered in laboratory systems,
mainly based on genetically induced auxotrophies3–8. However,
the evolutionary rise and maintenance of these interactions
constitutes an unresolved puzzle, since genotypes that do not
contribute to the production of costly metabolites may have a
selective advantage over producers. One theory, known as the
Black Queen (BQ) Hypothesis9, suggests that in communities
with BQ functions (essential functions that are costly to focal
cells, or “producers”, but are unavoidably leaky and partially
available to the broader community) metabolic dependencies
could arise through adaptive gene loss: in such communities
organisms benefit from losing their own capacity to produce a
costly metabolite (thus becoming “non-producers”). This could
give rise to an obligate dependency of non-producers on produ-
cers9, or, in the case of more than one BQ function, to obligate
cross-feeding (bidirectional dependency)10. However, little is
known about the conditions under which these dependencies
would be established, as the rise of mutant genotypes due to
adaptive gene loss does not necessarily guarantee a stable
coexistence.

A limited number of theoretical studies have recently explored
this question using ecological models11–14. Similarly, other stu-
dies have used evolutionary game theory (see refs. 15–18 for
comprehensive reviews), and concepts from economics19 to bet-
ter understand inter-species dependencies in microbial commu-
nities. While these approaches have provided valuable
phenomenological insight into the general principles of metabolic
interdependencies, they often do not take into account the spe-
cific details of the organisms, pathways, and molecules involved:
behind the biosynthesis, leakiness, and utilization of these
metabolites, is a complex network of biochemical reactions, which
may significantly vary across different environmental conditions,
metabolites, and organisms. A powerful avenue to address this
gap is the use of systems biology methods, such as genome-scale
network models of metabolism20. These models take into account
the full metabolic circuitry of a cell and provide quantitative
predictions of its growth capacity and metabolic fluxes. Recent
work has started applying these approaches to model microbial
communities21–30 (also see ref. 31 for a recent review) and to
study the evolution of adaptive diversification in long-term evo-
lutionary experiments32. However, a systematic analysis of the
possible equilibrium states of interacting species as a function of
the leakiness of various metabolites, and of their underlying
metabolic circuits is still lacking.

Here we propose a hybrid modeling approach that combines
the theoretical insight of evolutionary game theory with the
organism-specific-detailed analysis of cell-wide metabolic net-
works. We demonstrate how this strategy allows one to map the
landscape of possible inter-species interactions, for which
genome-scale metabolic models provide unique mechanistic
insights. In addition to providing a genomic- and biochemistry-
grounded basis for the quantitative assessment of the BQ
Hypothesis, our approach can generate testable organism- and
metabolite-specific predictions of inter-species interactions
equilibria.

Results
Integrating metabolic networks and evolutionary game theory.
Our genomically-driven game theory approach enables a fast way
of computing physiologically relevant estimates of the fitness (or
“payoff”) of microbes involved in metabolic interactions, and of
inferring the evolutionarily stability of such interactions under

diverse environmental or strategic conditions. Different microbes,
identified here with their genotypes, are assumed to potentially
leak specific metabolites that can be utilized by other community
members. For each possible pair of genotypes in the community,
we used constraint-based analysis of genome-scale metabolic
models to estimate their fitness (payoff) as they engage in a
specific metabolite-mediated interaction. The payoff of a geno-
type is set to its predicted growth rate, implicitly taking into
account how this rate will be affected by the level of leakage and
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Fig. 1 General scheme for the proposed genome-driven evolutionary game
theory approach. Annotated genomes of community members are used to
construct genome-scale metabolic models. For each possible pair of
genotypes in the community, constraint-based analysis tools for metabolic
models, such as flux balance analysis51, are used to estimate the fitness (or
“payoff”) of each genotype as they engage in a specific metabolite-
mediated interaction. These payoffs form the payoff matrix of the game.
Based on this payoff matrix, we identify all pure strategy Nash equilibria of
the game, using an automated pipeline (NashEq Finder, see “Methods”).
The payoff matrix also allows one to model evolutionary dynamics (i.e., how
genotype frequencies change over time)33 and to determine which of the
identified Nash equilibria are evolutionarily stable (see “Methods”).
Supplementary Figs. 11 and 12 provide a more specific representation of this
scheme for the presented case studies in this paper
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by the biosynthesis and possible transport cost of the specific
metabolite(s) leaked (see “Methods” and Fig. 1). From these
estimated payoffs (forming the “payoff matrix” of the game), we
can infer which pairs of interacting genotypes can equilibrate in
the community and drive its fate. This is achieved by using the
game theory concept of “Nash equilibrium”, defined as a state
where no player can increase its payoff by a unilateral change of
strategy. To automate the identification of Nash equilibria for a
game involving two or more players, we developed an
optimization-based algorithm called NashEq Finder (see “Meth-
ods”). Note that in this algorithm, and throughout this work, we
focus only on pure strategy Nash equilibria33. The payoff matrix
also allows one to model evolutionary dynamics (i.e., how gen-
otype frequencies change over time)33 and to determine which of
the identified Nash equilibria are evolutionarily stable (see
“Methods” and Fig. 1). It is worth noting that, while constraint-
based analyses of metabolic networks often seek the prediction of
optimal states (e.g., by maximizing growth), their integration with
evolutionary game theory enables the inference of non-optimal
equilibrium states of a microbial community.

Metabolic dependencies in invertase-producing S. cerevisiae.
As a proof of concept of our approach, we sought to reproduce
the experimentally observed equilibria in the well-characterized
yeast sucrose hydrolysis system34: when growing on sucrose, S.
cerevisiae produces the surface enzyme invertase (encoded by the
suc2 gene), hydrolyzing sucrose into glucose and fructose, part of
which leak out and serve as a public good. Since invertase pro-
duction is energetically costly, a mutant strain, which has lost its
suc2 gene, may emerge (Fig. 2a). Given that this non-producer
mutant strain does not incur the production of invertase and just
reaps the benefit of public goods, it can reproduce faster and
eventually dominate the co-culture thereby leading to the collapse
of the community (a scenario called Prisoner’s Dilemma in game
theory). It was shown, however, that, in addition to the Prisoner’s
Dilemma, alternative outcomes are possible in certain ranges of
tunable parameters, i.e., the cost of invertase production and the
sugars capture efficiency (the percentage of glucose and fructose
not lost in the form of public goods)34. These alternative out-
comes include the Mutually Beneficial game (where producers
dominate), and the Snowdrift game (where producers and non-
producers coexist)34.

We constructed the in silico producer and non-producer
strains using the iAZ900 yeast metabolic model35, and inferred
the Nash equilibria of the system as a function of the glucose/
fructose capture efficiency and the invertase production cost (see
“Methods” and Supplementary Methods for details of flux
balance analysis formulations to estimate the payoffs). Variations
in the invertase production cost were implicitly modeled by
changing the stoichiometric coefficient of ATP in the sucrose
hydrolysis reaction in the metabolic model. We thus explored
systematically how the Nash equilibria of the system vary over a
grid of possible values of the capture efficiency and the invertase
production cost. This analysis showed that all three types of Nash
equilibria observed experimentally34 could be reproduced
(Fig. 2b): Prisoner’s Dilemma emerges at high costs of sucrose
hydrolysis or low glucose/fructose capture efficiency, a Mutually
Beneficial game occurs at low costs of sucrose hydrolysis and high
glucose/fructose capture efficiencies, and a Snowdrift game for
values in between. As shown in Fig. 2c, in silico invasion
experiments also recapitulate the experimental observation that
the equilibrium frequency of the producers and non-producers do
not depend on their initial frequencies. As an additional
validation of our approach, we reproduced, in silico, the
experimental observation34 that addition of extra glucose to the

growth medium leads to a decrease in the equilibrium fraction of
producers and their eventual extinction (see Fig. 2d–f for details).
Thus, based entirely on the detailed knowledge of an organism’s
metabolic network, which allowed us to estimate payoffs in inter-
microbial games, our pipeline can reproduce known Nash
equilibria previously observed experimentally and identified
through phenomenological models that depend on ad hoc
nonlinearity assumptions34.

Single amino acid dependencies in E. coli. Upon verifying our
approach in the yeast sucrose hydrolysis system, we sought to
characterize the landscape of possible ecological interactions in a
different microbial system consisting of a large set of strains and
exchanged metabolites. In particular, we explored the establish-
ment of metabolic dependencies mediated by the leakiness of
individual amino acids in E. coli and asked how these depen-
dencies vary across the 20 amino acids and different leakiness
levels. Here, a prototrophic wild-type (WT, producer), leaking a
given amino acid could interact with a mutant strain (MT, non-
producer) lacking the gene(s) for the biosynthesis of that amino
acid (Fig. 3a). The iJO1366 genome-scale model of E. coli36 was
used to construct in silico producer and non-producer strains (see
Supplementary Methods and Supplementary Data 1 for details).
Given that we do not know what level of leakiness may be
manifested for each amino acid in natural E. coli strains and
communities, we explored the expected equilibria of this system
for any leakiness level (within a sensible range) across different
amino acids. With this analysis (as done before in the yeast case,
see Supplementary Table 1 for a side-by-side comparison of the
two systems), we systematically study the BQ Hypothesis over a
large grid of two of its key parameters, i.e., the cost of performing
a BQ function and the level of leakiness.

As shown in Fig. 3b, Prisoner’s Dilemma, Mutually Beneficial,
and Snowdrift outcomes are the major possible equilibria, similar
to the yeast system (Fig. 2b, where the amino acid cost is
analogous to the sucrose hydrolysis cost and the leakiness level
plays a role similar to the capture efficiency; see also
Supplementary Table 1). However, a more complex pattern is
observed here for the Mutually Beneficial region (see Supple-
mentary Note 3), highlighting the organism- and product-specific
nature of our approach. In addition, one can observe that, for
each amino acid, there is a threshold for leakiness level above
which non-producer mutants (MT) dominate, thereby leading to
community collapse (i.e., Prisoner’s Dilemma) (Fig. 3b). Thus, we
may expect the amino acids’ secretion levels by E. coli in natural
microbial communities to lie below this threshold. While
measurements for directly testing this prediction are not currently
available, the average of multiple published amino acid secretion
data sets37,38 (Fig. 3c) displays a consistent trend of leakiness
levels decreasing with increasing amino acids biosynthesis cost.

To assess the evolutionary stability of these Nash equilibria, we
performed in silico invasion experiments, where a resident
population of WT is invaded by a low-frequency MT and vice
versa. This analysis showed that the equilibrium frequencies of
WT and MT are independent of their initial frequencies (Fig. 3d).
This has been theoretically and experimentally suggested10,39 to
stem from the negative frequency dependence of fitness. In
addition to recapitulating this pattern, our analysis provides a
quantitative prediction of the selection coefficients of the 20
amino acids. As shown in Fig. 3e, the predicted selection
coefficients are within the range of data available from previous
experimental reports for E. coli39 for MT/WT frequency ratios of
less than one. However, the model underestimates the selection
coefficients for frequency ratios greater than one, and displays
deviations from linearity at its extremes, where experimental data
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are not currently available. Overall, this analysis underscores that
our approach can provide a realistic quantitative link between
metabolic circuitry and important ecological parameters.

A global map of interactions mediated by amino acid pairs. We
further extended our analysis to map the landscape of ecological
interactions in populations of E. coli strains with two leaky amino
acids. Under what conditions would the increased number of
exchangeable metabolites give rise to more complex inter-species
interdependencies, such as reciprocal exchanges (cross-feeding)?
Four different genotypes are possible in this case (Fig. 4a): a
prototrophic genotype that produces and leaks two amino acids
(i.e., a full producer, denoted as “11”), two partial producer
mutants (denoted as “01” and “10”) each auxotrophic for one
amino acid (due to loss of the corresponding biosynthesis genes)
but synthesizing and leaking the other amino acid, and a no-
producer mutant strain (denoted as “00”) that is auxotrophic for
both amino acids (due to loss of both amino acid biosynthesis
genes). Here, “1” and “0” denote the presence or absence of

biosynthesis pathways (genes) for an amino acid, respectively. In
a community composed of all these four genotypes, different
types of interactions are possible. Here we focus on pairwise
interactions, such as cross-feeding, [01, 10], and unidirectional
dependency, [00, 11], though higher-order interactions among
three or four genotypes (e.g., [00, 01, 10] and [00, 01, 10, 11]) are
possible as well. We systematically computed all Nash equilibria,
at varying leakiness levels, for 189 amino acid pairs, corre-
sponding to all possible pairs of 20 amino acids (Fig. 4b) except
for one, namely the alanine and isoleucine pair, since the 00
genotype for this particular pair is also auxotrophic for a third
amino acid (valine). Examples of higher-order interaction equi-
libria for a number of selected pairs are also provided in Sup-
plementary Figs. 2–7.

As shown in Fig. 4b, a wide spectrum of equilibria ensues
across different amino acid pairs and across different leakiness
levels (e.g., see Fig. 4c, d). Interestingly, despite the diversity of
exchanged metabolites and corresponding auxotrophic strains, a
majority of pairs are found to conform to general ecological
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Fig. 2 Metabolic dependencies in populations of S. cerevisiae growing on sucrose. a Metabolic interactions between producer (wild-type, WT) and non-
producer (mutant, MT) genotypes of S. cerevisiae growing on sucrose34. Here, e represents the percentage of glucose/fructose that diffuses away and
serves as a public good. b Nash equilibria and c the equilibrium frequency of WT for the community shown in a as a function of the capture efficiency of the
glucose/fructose and the invertase production cost (that latter was implicitly modeled by changing the stoichiometric coefficient of ATP in the sucrose
hydrolysis reaction, indicated by x). An alternative in silico formulation of the energetic cost of invertase production that reproduces exactly the setup used
in the experiment by Gore et al.34 (based on histidine auxotrophy) proved to be qualitatively equivalent to the analysis presented here (see Supplementary
Note 2 for details). The equilibrium frequency of WT in c was obtained from in silico invasion experiments (see “Methods”) for two cases of a small
fraction of MT invading a resident population of WT and vice versa. This analysis demonstrated that the equilibrium frequency of WT is the same in both
cases (results are shown here for only one case). dMetabolic interactions between WT and MT when additional glucose is provided in the growth medium
(see Supplementary Methods for details of implementation). e Nash equilibria and f the equilibrium frequency of WT in the presence of glucose in the
growth medium. The entire Snowdrift game region and part of the Mutually Beneficial region in b are replaced by the Prisoner’s Dilemma game, in e, which
is consistent with previous reports34 and serves as an additional verification of our modeling approach. This is because in the presence of an external
supply of glucose, MT is less dependent on WT, leading to an increase in the average fitness of MT
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patterns: for example, 139 (out of 189 or 73.5%) of amino acid
pairs display a qualitatively identical region of leakiness levels
(green regions in Fig. 4b and c), where a unidirectional
dependency, [00, 11], and cross-feeding, [01, 10], both emerge
as Nash equilibria. The leakiness levels leading to these two
equilibria are the ones for which the full producer (i.e., 11
genotype) can still sustain growth. We refer to this region as
“sustainable leakiness region” (see “Methods” for further details).
This is analogous to the maximum leakiness level in the study of
individual amino acid secretions (Fig. 3b): we expect the leakiness
of the two amino acids by E. coli in natural environments to lie in
this region, as any leakiness levels outside this region would lead
to extinction of the WT.

Another feature common to several amino acid pairs in Fig. 4b
is the existence of a region in the leakiness plane (shown in red),
where cross-feeding (i.e., [01, 10]) is the only viable association;
excessive leakiness in this region makes the full producer, 11,
non-viable (e.g., see Fig. 4c). Notice that this region is contiguous
to the green region (i.e., the sustainable leakiness region with [00,
11] and [01, 10] as Nash equilibria). One interesting aspect of this
configuration is that cross-feeding could initially ensue in the
green region and gradually move toward the red region as
leakiness levels of the two amino acids increase. This transition
could be achieved in two phases: first, an initial cross-feeding
association due to natural leakage of the amino acids (in the green

region) could be spontaneously established; in a second phase,
i.e., in a period of adaptive evolution, amino acids leakage by
cross-feeders could increase to help the growth of the partner in
exchange for the increased availability of metabolites each needs.
The leakiness can increase to levels that cannot be sustained by
their ancestor, 11, thereby providing a selective advantage for
cross-feeders and ultimately leading to cooperative cross-feeding
as the only viable association.

Metabolic pathway interactions shape ecological interactions.
In addition to exploring the landscape of Nash equilibria across
different leakiness levels, it is interesting to ask whether the details
of the biochemical networks underlying the genome-scale meta-
bolic model predictions matter, and whether they provide direct
explanatory power at the ecological level. Notably, for 50 amino
acid pairs, the region of sustainable leakiness levels does not
conform to the general pattern described above. For some pairs,
this region is partitioned into a number of subregions each cor-
responding to a different equilibrium (e.g., see Fig. 4d), while in
some extreme cases, this entire region corresponds to one type of
Nash equilibrium, e.g., for arginine and glutamate, and glycine
and threonine (see below).

For the first anomalous pair, (arginine and glutamate), Nash
equilibria in the sustainable leakiness region includes [10, 11] and
[00, 11], but not the cross-feeding state [01, 10] (Fig. 5a).
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Inspection of the biosynthesis pathway of arginine and glutamate
in E. coli revealed that glutamate is required for the production of
ornithine, which serves as an essential precursor for the
biosynthesis of arginine. This implies that a mutant strain lacking
the biosynthesis pathways for glutamate (i.e., strain 10) will not be
able to synthesize and leak arginine, thus acting like a 00 genotype
and preventing the occurrence of cross-feeding. This observation
is consistent with a previous study reporting the inability of
arginine and glutamate auxotrophic mutant strains to grow in a
co-culture under minimal medium3. This effect is thus due to a
pleiotropic metabolic gene (i.e., a gene whose modification affects

more than one metabolic phenotype), and illustrates how core
biochemistry can impact ecological interactions.

A more complex scenario occurs for the glycine and threonine
pair, where cross-feeding, [01, 10], is the only Nash equilibrium
that emerges in the sustainable leakiness region (Fig. 5b). What
prevents [00, 11] from being a Nash equilibrium here? One of the
conditions for [00, 11] to be a Nash equilibrium is that, in the
presence of 11, the fitness of the non-producer (00) should be
higher than any of the partial producers (01 and 10) (as one
would intuitively expect, because 00 does not incur the
production cost of the two amino acids). In this case, however,
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Fig. 4 Equilibrium metabolic dependencies in populations of E. coli with two leaky amino acids. a Genotypes involved include a prototrophic strain self-
synthesizing two leaky amino acids (i.e., 11), two single-mutant strains each is auxotrophic for one amino acid but synthesizing and leaking the other (i.e.,
01 and 10), and a mutant strain auxotrophic for both leaky amino acids (i.e., 00). Here, “1” and “0” denote the presence or absence of biosynthesis
pathways (genes) for an amino acid, respectively. b The identified Nash equilibria of two-player games (i.e., pairwise interactions) for all amino acid pairs
across different leakiness levels, zoomed in for two selected pairs including c lysine and isoleucine, d glutamate and leucine. A sample payoff matrix of the
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viable leading to community collapse. Nash equilibria of three- and four-player games for a selected number of amino acid pairs are also given in
Supplementary Figs. 2–7

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01407-5

6 NATURE COMMUNICATIONS |8:  1563 |DOI: 10.1038/s41467-017-01407-5 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


it turns out that 00 is less fit than 10 (thr− mutant) when facing
11, thereby preventing [00, 11] from being a Nash equilibrium.
This anomalous effect is due to the fact that the concurrent
removal of glycine and threonine biosynthesis genes (in 00) will
lead to a reduction in the capacity of metabolic network to
produce a number of other essential biomass components (such
as serine). Interestingly, this is a case of diminishing-return (or
“negative”) epistasis, in which the effect of the double mutation
(00) is less severe than expected based on the two single
mutations (01 and 10). Negative epistatic interactions preventing
the appearance of [00, 11] as the Nash equilibrium can be
observed for 34 other amino acid pairs (Supplementary Data 3).
This pattern is consistent with existing experimental reports
showing that epistasis correlates negatively with the expected
fitness of multiple “genome streamlining” mutations in E. coli,
thereby causing diminishing returns40. These results provide

mechanistic insights into how epistatic interactions among
intracellular pathways can affect ecological networks, a feature
that cannot be easily captured by abstract phenomenological
models.

Paths toward the emergence of cross-feeding. It is next inter-
esting to ask whether our approach can shed light onto the
possible paths toward the rise of different interactions, especially
cross-feeding. In the landscapes of identified Nash equilibria
(Fig. 4b), cross-feeding ([01, 10]) emerges together with other
equilibria (such as [00, 11] in the green region in Fig. 4b, c). This
raises the question of whether and under what conditions a cross-
feeding dependency would be evolutionarily stable. By perform-
ing a number of targeted in silico invasion experiments (see
“Methods”), we found that this depends strongly on the initial
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Fig. 6 Impact of the initial genotype frequencies on the evolutionary emergence of metabolic dependencies in populations of E. coli with two leaky amino
acids. Here, we have shown the results of targeted in silico invasion experiments for a representative amino acid pair (lysine and isoleucine) (see also
Fig. 4c). a 00, 01, and 10 simultaneously originate from 11 (i.e., WT) through genome streamlining and invade an existing population of 11 genotypes. b A
small population of 10 and 00 invade a resident population of the 11 and 01. This simulates the second step of a two-step process for the loss of the leaky
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population of 11. This models an alternative scenario for the two-step loss of leaky functions leading to stable cross-feeders: Two partial producer mutant
genotypes (01 and 10) simultaneously originate from 11, followed by the rise of the 00 genotype from 01 and/or 10 in a later stage. As shown here, cross-
feeders can evolutionarily stabilize and coexist with 11 genotypes in the first step. Further analysis showed that cross-feeders are also resistant to invasion
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frequencies of the four genotypes shown in Fig. 4a. In particular,
our analysis demonstrates that cross-feeders (01 and 10) will go
extinct if they invade the full producer (11) in presence of the
non-producer genotype (00) (Fig. 6a). However, cross-feeders can
subsist in a progressive loss of prototrophy, where 00 is not
present initially and invades at a later stage. Figure 6b, c shows
two examples of such scenario. For instance, the left diagram in
Fig. 6b depicts the two-step process suggested in ref. 10: first, the
biosynthetic capacity for one amino acid is lost, e.g., resulting in a
01 genotype, which could equilibrate and coexist with 11 (as
shown in Fig. 3a, b, d). In the second step, either 01 or 11 may
lose their capacity to produce the second amino acid (because the
other strain can compensate), giving rise to 00 and 10 genotypes,
respectively (Fig. 6b). Here, we quantitatively explored this
mechanism by assessing the evolutionary dynamics for the sec-
ond step, assuming that equilibration of the first step has already
occurred, i.e., we performed in silico invasion experiments where
10 and 00 invade a resident population of 11 and 01. As shown in
Fig. 6b, the prototrophic (11) and no-producer (00) genotypes
always survive in this competition, while cross-feeders survive
only at high leakiness levels. Consistent with our findings in
Fig. 6b, c, a previous study showed that a heterogeneous com-
munity of S. cerevisiae auxotroph strains relying on each other for
the exchange of amino acids can emerge from an initial proto-
trophic strain through the progressive loss of amino acids syn-
thetic capacity41. Further in silico invasion experiments
demonstrated that established cross-feeding pairs tend to be
resistant to invasion by non-producers (Supplementary Fig. 9)
and by prototrophs (Supplementary Fig. 10). Thus, once estab-
lished, obligate mutual metabolic exchange could be evolutiona-
rily stable against invasion by other genotypes, even in a
homogenous environment, consistent with previous experimental
reports42. In addition, as evident from Fig. 6, whether the division
of labor afforded by mutual metabolic exchanges can lead to the
establishment of a cross-feeding association depends on the initial
genotype frequencies, the level of metabolic exchanges (leakiness)
and the nature of the specific metabolites exchanged.

Discussion
We demonstrated here that by adding new layers of details to
abstract theoretical ecology models, we can reveal how intracel-
lular molecular mechanisms (including pleiotropy and epistasis of
metabolic genes) lead to the rise of non-intuitive ecological
interactions. The analysis we presented spans over 80,000 in silico
experiments (across 189 amino acid pairs and 441 leakiness level
combinations), which is beyond the current experimental cap-
abilities. This study provides testable predictions that can be used
as a guideline for the design of future-targeted experiments, e.g.,
built upon previously established synthetic communities3–7. For
example, our computational results could be used to suggest
choices of metabolite pairs and ranges of leakiness levels likely to
lead to the establishment of a specific inter-dependency, such as,
cross-feeding. Targeted experiments based on our computational
results could further help assess the BQ Hypothesis. In particular,
one could explicitly test the feasibility of different paths toward
the establishment of cross-feeding mediated by the presence of
BQ functions, as shown in Fig. 6. Future theoretical developments
built upon this work could examine how the rise of obligate
metabolic dependencies based on BQ functions may serve as a
starting point for the evolution of cooperative behavior, e.g.,
through the evolution of upregulated leakiness levels (as described
for the transition from the green to the red region in Fig. 4c). One
limitation of the current study is that, due to the use of the
Replicator equation for our in silico invasion experiments we do
not take into account the impact of population dynamics

(changes in population size) on evolutionary dynamics (changes
in genotype frequencies)—a phenomenon referred to as eco-
evolutionary feedback43–46. This interplay may affect the equili-
bria of the system44–46, potentially causing our in silico predic-
tions (Fig. 6) to deviate from experimental observations. Future
studies could address these possible discrepancies by extending
our approach to eco-evolutionary game theory models. Alter-
natively, dynamic flux balance analysis (FBA) of microbial con-
sortia24 could be used to capture both eco-evolutionary feedback
as well as the impact of dynamic changes of the growth medium.

From a biotechnological standpoint, our study offers a basis for
better understanding metabolic interdependencies in biomedi-
cally relevant natural microbial communities, such as those in the
human gut microbiota47–49: here products from the bacterial
degradation of ingested food (e.g., starch by Bacteroidetes47) can
serve as public goods for the microbiota, potentially leading to the
rise of cheaters, with major consequences for the health of the
human host. In addition, our approach lays the foundation for
proactively incorporating evolutionary concepts in the de novo
design of stable synthetic microbial consortia for various bio-
technological applications, guaranteeing that engineered com-
munities will be resistant to invasion by competing strategies31.

Methods
Background on evolutionary game theory. Evolutionary game theory is the
application of classical game theory to model the evolutionary dynamics of mixed
populations. Modeling microbial communities with evolutionary game theory
involves two steps: (i) Considering all pairwise interactions among genotypes and
estimating the payoff (fitness) of a microbial player k upon interacting with a
partner k′. Higher-order interactions can be similarly considered. These estimated
payoffs are represented in the form of a matrix, referred to as the payoff matrix of
the game. (ii) Using the payoff matrix to identify the Nash equilibria—a funda-
mental concept in game theory, defined as a state where no player has an incentive
to unilaterally change its current strategy, because it cannot improve its payoff by
doing so. An “evolutionary stable strategy” is a similar concept in evolutionary
game theory: It is a Nash equilibrium, which is evolutionarily stable, i.e., natural
selection alone is sufficient to prevent invasion by competing mutant strategies.
Evolutionary stable strategies can be found by modeling the evolutionary dynamics
of the game using the computed payoffs (see the following sections). In this text
(following evolutionary game theory33 and microbial ecology literature44), by
“evolutionary dynamics,” we mean how the relative genotype abundances (fre-
quencies or community structure) change over time. This aspect of evolutionary
dynamics, as opposed to the simulation of de novo mutations and subsequent
selection processes (which have been pursued in other studies50), is the main focus
of our analyses.

Background on Flux Balance Analysis (FBA). FBA (described in detail elsewhere,
e.g., ref. 51) is a linear optimization problem that uses genome-scale metabolic
models to make quantitative predictions about the cell’s growth capacity, intra-
cellular reaction fluxes, and secretion rates of metabolites that are potentially
excreted by the cell under a given environmental/growth condition. In the most
common formulation, this is achieved by maximizing the flux of a pseudo-reaction
called biomass reaction (vbiomass) whose reactants are precursors required for
growth and whose flux is indicative of the cell’s growth capacity. This is subject to
constraints imposing steady-state mass balance for each metabolite in the network
(see Constraint 1 below) and lower and upper bounds on reactions fluxes reflecting
known irreversibility of specific reactions and uptake and aeration conditions (see
Constraint 2 below). The standard formulation of FBA is as follows:

Maximize vbiomass

subject to

P
j2J

sijvj ¼ 0; 8i 2 I;

ð1Þ

LBj � vj � UBj; 8j 2 J;
ð2Þ

where, I is the set of metabolites, J is the set of reactions, sij is the stoichiometric
coefficient of metabolite i in reaction j (known from the metabolic model), LBj and
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UBj denote lower and upper bounds on the flux of reaction j, respectively, and vj is
the flux of a reaction j.

Using FBA to compute payoffs of interacting microbes. We used FBA to pro-
vide organism-specific estimates of the payoffs upon specific pairwise (or higher-
order) interactions (see also Fig. 1 and Supplementary Figs. 11 and 12). For a given
pair of genotypes k and k′, we solve two separate FBA problems, one for the
genome-scale metabolic model associated with genotype k and one for the genome-
scale metabolic model associated with genotype k′. The optimal biomass flux
obtained upon solving these FBA problems will provide an estimate of the growth
rate of each genotype in a given pairwise interaction, which we use as a proxy for its
payoff. For example, the payoff of k when facing k′ (akk′) is vkbiomass and the payoff
of k′ when facing k (ak′k) is vk′biomass.

Each FBA problem involves two new types of constraints in addition to
Constraints (1) and (2) mentioned above: (i) The first type of constraint (Eq. 3
below) implements in silico the gene deletions that correspond to the genotype
under consideration. For example, if genotype k is auxotroph for lysine, this
auxotrophy can be induced by knocking out gene lysA, which codes for
diaminopimelate decarboxylase (DAPDC). In the FBA model, this gene deletion is
simulated by setting vDAPDC= 0. More complex gene-to-reaction mappings could
lead to more complex set of constraints. In cases where several different choices are
possible for genes whose deletion would induce a given auxotrophy, we select one
arbitrarily. (ii) The second type of constraints (Eqs. 4 and 5 below) simulates the
exchange of metabolites between the genotypes under consideration. Given the rate
(ei) at which a metabolite i leaks out of genotype k, we simulate such leakage by
imposing a fixed secretion rate ei in the FBA calculation for this genotype. In
simulating growth for genotype k, we further take into account the availability of
other metabolites secreted by genotype k′, by appropriately setting the import
constraints in the FBA problem. Thus, in our approximation of an interaction, the
two FBA calculations for genotypes k and k′ are performed independently, each
assuming availability of the metabolites leaked by the other.

The general FBA problem for genotype k is mathematically formulated as
follows (superscript k is removed here for the ease of presentation):

Maximize vbiomass

subject to

P
j2J

sijvj ¼ 0; 8i 2 I;

LBj � vj � UBj; 8j 2 J;

vj ¼ 0; 8j 2 Jmutation ð3Þ

vEX iðeÞ � ei; 8i 2 I leaky
ð4Þ

vEX iðeÞ � �ui; 8i 2 Iuptake
ð5Þ

where, Jmutation denotes the set of reactions corresponding to specific gene
mutations for the genotype under consideration. In addition, Ileaky⊂ I is the set of
leaky (secreted) metabolites by the genotype under consideration and Iuptake⊂ I
represents the set of metabolites that is available to this genotype for uptake and
that is provided by other genotypes. vEX_i(e) denotes the flux of exchange reaction
for a metabolite i. ei> 0 and ui> 0 denote the pre-specified net export and uptake
flux of a metabolite i, respectively (see Supplementary Methods for details of how ei
and ui were calculated for the presented case studies).

In the above FBA problem, Constraint (3) sets to zero the flux of reactions
corresponding to the specific gene mutations in the genotype under consideration.
Constraint (4) requires the export of leaky metabolites at the pre-specified level ei
and Constraint (5) allows for the uptake of metabolites available from partner
genotype(s) in a pairwise or (higher-order) interaction. It is worth highlighting
again that the input parameters for this FBA problem (in addition the metabolic
network stoichiometry) are the list of metabolites that each genotype is leaking, and
the level of leakiness for each of them.

The payoff of the genotype under consideration is set to the optimal value of the
biomass flux, or to the death rate (a negative value) in the case of an infeasible
problem. An infeasible FBA problem may occur due the lack of enough carbon
source to satisfy maintenance ATP requirements in the model or due to imposing a
high level of leakiness for leaked metabolites. Imposed leakiness level causing this
infeasibility is referred to “unsustainable leakiness levels.” The details of specific
formulations for the presented case studies with S. cerevisiae and E. coli are given in

the Supplementary Methods. Additional environmental/strategic/genetic
conditions can be incorporated through the addition of appropriately defined
constraints. Alternatively, one can use a different objective function (e.g., the
minimization of metabolic adjustment52), objective function-independent
approaches53, 54, or other constraint-based community modeling tools, e.g., those
in refs. 21,23.

Automated identification of the Nash equilibria. Upon constructing the payoff
matrix, as described above, one can identify the Nash equilibria of the game. We
developed NashEq Finder, an optimization-based procedure to automate the
identification of all pure strategy Nash equilibria of an n-player game. Here, for
ease of presentation, we describe the NashEq Finder formulation for a two-player
non-symmetric game. Let P and Q denote the set of all conceivable strategies for
player 1 and player 2, respectively. A binary decision variable is defined as follows
to capture whether or not each entry pq of the payoff matrix satisfies the conditions
of a Nash equilibrium:

wpq ¼
1; If entry pq satisfies the conditions of aNash equilibrium

0; Otherwise

�
; 8p 2 P; q 2 Q:

Now, let the entry pq of the payoff matrix constitute a1pq; a
2
pq

� �
with a1pq and a2pq

being the payoffs of players 1 and 2, respectively. NashEq Finder can be formulated
as follows:

Maximize z ¼ P
p2P

P
q2Q

wpq NashEq Finder½ �

subject to

a1pq � max
p′2P

a1p′q

n o� �
wpq þ LB1 1� wpq

� � 8p 2 P; q 2 Q; ð6Þ

a2pq � max
q′2Q

a2pq′

n o� �
wpq þ LB2 1� wpq

� � 8p 2 P; q 2 Q; ð7Þ

where, LB1 and LB2 are non-zero lower bounds on the payoff values of players 1
and 2, respectively, The objective function of this optimization problem maximizes
the values of binary variables corresponding to entries of the payoff matrix. The
definition of binary variable wpq is mathematically imposed by Constraints (6) and
(7). In particular, Constraint (6) mathematically describes the conditions of a pure
strategy Nash equilibrium for player 1, i.e., if player 2’s strategy is fixed at q∈Q,
player 1 attains its maximum payoff by taking strategy p∈ P. Constraint (7)
imposes the same condition for player 2 (see Supplementary Methods for an
example detailing how these constraints work). Notice that NashEq Finder is an
integer linear program (ILP), which can be always solved to global optimality (if an
optimal solution exists). Upon solving this optimization problem, any entry of the
payoff matrix for which the corresponding binary variable is equal to one will be a
Nash equilibrium. NashEq Finder can thus identify all pure strategy Nash equili-
bria of the game in one shot by solving this ILP problem. If this optimization
problem is infeasible, it means that no pure strategy Nash equilibrium exists. This
formulation can be easily generalized for an n-player game. A python script
implementing NashEq Finder for an n-player game is available in Supplementary
Software 1. A rudimentary assessment of the computational efficiency of the
NashEq Finder for the case studies presented in this paper is also provided in
Supplementary Methods.

Modeling evolutionary dynamics at genome-scale resolution. Following stan-
dard approaches in evolutionary game theory, we model evolutionary dynamics
using the Replicator equation33. To take into account interactions higher than
pairwise, we used an extended form of the classical Replicator equation33. This
equation predicts the changes in the relative abundance (frequencies) of genotypes
over time according to their reproductive fitness under the assumption of a roughly
constant population size33 (see Supplementary Note 1 for the difference between
this equation and multi-species dynamics FBA24). The extended form of the
Replicator equation can be expressed as follows55:

dxk
dt

¼ fk xð Þ � ϕ xð Þð Þxk; k ¼ 1; 2; ¼ ;K; ð8Þ

fk xð Þ ¼
XK
k′¼1

akk′xk′ þ
XK
k′¼1

XK
k00¼1

akk0 k00 xk0xk00 þ ¼ ; k ¼ 1; 2; ¼ ;K; ð9Þ

ϕ xð Þ ¼
XK
k′¼1

fk′ xð Þxk′: ð10Þ

Here, index k denotes a community member k and x= [x1, x2, …, xK]T is the
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composition of the community with xk being the frequency of genotype k at time t.
fk(x) is the average reproductive fitness of genotype k that depends not just on
other genotypes it may encounter but also on their frequencies. akk′ and akk′k″
denote the payoffs of genotype k when encountering another genotype k′ in a two-
player game (i.e., pairwise interaction) or two other genotypes k′ and k″ in a three-
player game, respectively. Finally, ϕ(x) is the average fitness of the entire com-
munity. Here, we use the Replicator equation to perform targeted in silico invasion
experiments, in which a newly emerged low-frequency genotype invades an
existing resident genotype.

Code availability. A python script implementing NashEq Finder is available as
Supplementary Software 1. In addition, source codes used to generate the data and
figures analyzed during the current study are fully available from the corresponding
author upon request.

Data availability. The data sets generated and/or analyzed during the current
study are available from the corresponding author on reasonable request.

Received: 20 April 2017 Accepted: 13 September 2017

References
1. Zelezniak, A. et al. Metabolic dependencies drive species co-occurrence in

diverse microbial communities. Proc. Natl Acad. Sci. USA 112, 6449–6454
(2015).

2. Freilich, S. et al. Competitive and cooperative metabolic interactions in bacterial
communities. Nat. Commun. 2, 589 (2011).

3. Wintermute, E. H. & Silver, P. A. Emergent cooperation in microbial
metabolism. Mol. Syst. Biol. 6, 407 (2010).

4. Mee, M. T., Collins, J. J., Church, G. M. & Wang, H. H. Syntrophic exchange in
synthetic microbial communities. Proc. Natl Acad. Sci. USA 111, E2149–E2156
(2014).

5. Shou, W., Ram, S. & Vilar, J. M. Synthetic cooperation in engineered yeast
populations. Proc. Natl Acad. Sci. USA 104, 1877–1882 (2007).

6. Harcombe, W. Novel cooperation experimentally evolved between species.
Evolution 64, 2166–2172 (2010).

7. Hoek, T. A. et al. Resource availability modulates the cooperative and
competitive nature of a microbial cross-feeding mutualism. PLoS Biol. 14,
e1002540 (2016).

8. Zhang, X. & Reed, J. L. Adaptive evolution of synthetic cooperating
communities improves growth performance. PLoS ONE 9, e108297 (2014).

9. Morris, J. J., Lenski, R. E. & Zinser, E. R. The Black Queen Hypothesis: evolution
of dependencies through adaptive gene loss. MBio 3, e00036-12 (2012).

10. Morris, J. J. Black Queen evolution: the role of leakiness in structuring
microbial communities. Trends Genet. 31, 475–482 (2015).

11. Oliveira, N. M., Niehus, R. & Foster, K. R. Evolutionary limits to cooperation in
microbial communities. Proc. Natl Acad. Sci. USA 111, 17941–17946 (2014).

12. Mas, A., Jamshidi, S., Lagadeuc, Y., Eveillard, D. & Vandenkoornhuyse, P.
Beyond the Black Queen Hypothesis. ISME J. https://doi.org/10.1038/
ismej.2016.22 (2016).

13. Estrela, S., Morris, J. J. & Kerr, B. Private benefits and metabolic conflicts shape
the emergence of microbial interdependencies. Environ. Microbiol 18,
1415–1427 (2016).

14. Germerodt, S. et al. Pervasive selection for cooperative cross-feeding in bacterial
communities. PLoS Comput. Biol 12, e1004986 (2016).

15. Frey, E. Evolutionary game theory: theoretical concepts and applications to
microbial communities. Phys. A 389, 4265–4298 (2010).

16. Hummert, S. et al. Evolutionary game theory: cells as players. Mol. Biosyst. 10,
3044–3065 (2014).

17. Blaser, M. J. & Kirschner, D. The equilibria that allow bacterial persistence in
human hosts. Nature 449, 843–849 (2007).

18. Ruppin, E., Papin, J. A., de Figueiredo, L. F. & Schuster, S. Metabolic
reconstruction, constraint-based analysis and game theory to probe genome-
scale metabolic networks. Curr. Opin. Biotechnol. 21, 502–510 (2010).

19. Tasoff, J., Mee, M. T. & Wang, H. H. An economic framework of microbial
trade. PLoS ONE 10, e0132907 (2015).

20. Becker, S. A. et al. Quantitative prediction of cellular metabolism with
constraint-based models: the COBRA toolbox. Nat. Protoc. 2, 727–738 (2007).

21. Stolyar, S. et al. Metabolic modeling of a mutualistic microbial community.
Mol. Syst. Biol. 3, 92 (2007).

22. Klitgord, N. & Segrè, D. Environments that induce synthetic microbial
ecosystems. PLoS Comput. Biol. 6, e1001002 (2010).

23. Zomorrodi, A. R. & Maranas, C. D. OptCom: a multi-level optimization
framework for the metabolic modeling and analysis of microbial communities.
PLoS Comput. Biol. 8, e1002363 (2012).

24. Zhuang, K. et al. Genome-scale dynamic modeling of the competition between
Rhodoferax and Geobacter in anoxic subsurface environments. ISME J. 5,
305–316 (2011).

25. Khandelwal, R. A., Olivier, B. G., Röling, W. F., Teusink, B. & Bruggeman, F. J.
Community flux balance analysis for microbial consortia at balanced growth.
PLoS ONE 8, e64567 (2013).

26. Zomorrodi, A. R., Islam, M. M. & Maranas, C. D. d-OptCom: dynamic multi-
level and multi-objective metabolic modeling of microbial communities. ACS
Synth. Biol. 3, 247–257 (2014).

27. Chan, S. H. J., Simons, M. N. & Maranas, C. D. SteadyCom: predicting
microbial abundances while ensuring community stability. PLoS Comput. Biol.
13, e1005539 (2017).

28. Harcombe, W. R. et al. Metabolic resource allocation in individual microbes
determines ecosystem interactions and spatial dynamics. Cell Rep. 7, 1104–1115
(2014).

29. Cole, J. A., Kohler, L., Hedhli, J. & Luthey-Schulten, Z. Spatially-resolved
metabolic cooperativity within dense bacterial colonies. BMC Syst. Biol. 9, 15
(2015).

30. Chen, J. et al. Spatiotemporal modeling of microbial metabolism. BMC Syst.
Biol. 10, 21 (2016).

31. Zomorrodi, A. R. & Segrè, D. Synthetic ecology of microbes: mathematical
models and applications. J. Mol. Biol. https://doi.org/10.1016/j.jmb.2015.10.019
(2015).

32. Großkopf, T. et al. Metabolic modelling in a dynamic evolutionary framework
predicts adaptive diversification of bacteria in a long-term evolution
experiment. BMC Evol. Biol. 16, 163 (2016).

33. Nowak, M. A. Evolutionary Dynamics: Exploring The Equations Of Life.
(Belknap Press of Harvard University Press, Cambridge, 2006).

34. Gore, J., Youk, H. & van Oudenaarden, A. Snowdrift game dynamics and
facultative cheating in yeast. Nature 459, 253–256 (2009).

35. Zomorrodi, A. R. & Maranas, C. D. Improving the iMM904 S. cerevisiae
metabolic model using essentiality and synthetic lethality data. BMC Syst. Biol.
4, 178 (2010).

36. Orth, J. D. et al. A comprehensive genome-scale reconstruction of Escherichia
coli metabolism--2011. Mol. Syst. Biol. 7, 535 (2011).

37. Paczia, N. et al. Extensive exometabolome analysis reveals extended overflow
metabolism in various microorganisms. Microb. Cell Fact. 11, 122 (2012).

38. Valle, J. et al. The amino acid valine is secreted in continuous-flow bacterial
biofilms. J. Bacteriol. 190, 264–274 (2008).

39. D’Souza, G. & Kost, C. Experimental evolution of metabolic dependency in
bacteria. PLoS Genet. 12, e1006364 (2016).

40. D’Souza, G., Waschina, S., Kaleta, C. & Kost, C. Plasticity and epistasis strongly
affect bacterial fitness after losing multiple metabolic genes. Evolution 69,
1244–1254 (2015).

41. Campbell, K. et al. Self-establishing communities enable cooperative metabolite
exchange in a eukaryote. Elife 4, e09943 (2015).

42. Pande, S. et al. Fitness and stability of obligate cross-feeding interactions that
emerge upon gene loss in bacteria. ISME J. 8, 953–962 (2014).

43. Post, D. M. & Palkovacs, E. P. Eco-evolutionary feedbacks in community and
ecosystem ecology: interactions between the ecological theatre and the
evolutionary play. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 1629–1640
(2009).

44. Sanchez, A. & Gore, J. feedback between population and evolutionary dynamics
determines the fate of social microbial populations. PLoS Biol. 11, e1001547
(2013).

45. Rauch, J., Kondev, J. & Sanchez, A. Cooperators trade off ecological resilience
and evolutionary stability in public goods games. J. R. Soc. Interface 14,
20160967 (2017).

46. Widder, S. et al. Challenges in microbial ecology: building predictive
understanding of community function and dynamics. ISME J. 10, 2557–2568
(2016).

47. Rakoff-Nahoum, S., Foster, K. R. & Comstock, L. E. The evolution of
cooperation within the gut microbiota. Nature 533, 255–259 (2016).

48. Waldor, M. K. et al. Where next for microbiome research? PLoS Biol. 13,
e1002050 (2015).

49. Magnúsdóttir, S. et al. Generation of genome-scale metabolic reconstructions
for 773 members of the human gut microbiota. Nat. Biotechnol. 35, 81–89
(2017).

50. Elena, S. F. & Lenski, R. E. Evolution experiments with microorganisms: the
dynamics and genetic bases of adaptation. Nat. Rev. Genet. 4, 457–469 (2003).

51. Orth, J. D., Thiele, I. & Palsson, B. What is flux balance analysis? Nat.
Biotechnol. 28, 245–248 (2010).

52. Segrè, D., Vitkup, D. & Church, G. M. Analysis of optimality in natural and
perturbed metabolic networks. Proc. Natl Acad. Sci. USA 99, 15112–15117
(2002).

53. Trinh, C. T., Wlaschin, A. & Srienc, F. Elementary mode analysis: a useful
metabolic pathway analysis tool for characterizing cellular metabolism. Appl.
Microbiol. Biotechnol. 81, 813–826 (2009).

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01407-5 ARTICLE

NATURE COMMUNICATIONS |8:  1563 |DOI: 10.1038/s41467-017-01407-5 |www.nature.com/naturecommunications 11

https://doi.org/10.1038/ismej.2016.22
https://doi.org/10.1038/ismej.2016.22
https://doi.org/10.1016/j.jmb.2015.10.019
www.nature.com/naturecommunications
www.nature.com/naturecommunications


54. Schuster, S., de Figueiredo, L. F., Schroeter, A. & Kaleta, C. Combining
Metabolic Pathway Analysis with Evolutionary Game Theory. Explaining the
occurrence of low-yield pathways by an analytic optimization approach.
Biosystems 105, 147–153 (2009).

55. Cressman, R. & Tao, Y. The replicator equation and other game dynamics.
Proc. Natl Acad. Sci. USA 111, 10810–10817 (2014).

Acknowledgements
We gratefully acknowledge funding from the Defense Advanced Research Projects
Agency (Purchase Request No. HR0011515303, Contract No. HR0011-15-C-0091), the
U.S. Department of Energy (Grants DE-SC0004962 and DE-SC0012627), the NIH
(Grants 5R01DE024468 and R01GM121950), the national Science Foundation (Grants
1457695 and NSFOCE-BSF 1635070), MURI Grant W911NF-12-1-0390, the Human
Frontiers Science Program (grant RGP0020/2016), and the Boston University Inter-
disciplinary Biomedical Research Office ARC grant on Systems Biology Approaches to
Microbiome Research. We also thank Dr Kirill Korolev and members of the Segrè Lab for
their invaluable feedback on this work.

Author contributions
A.R.Z. and D.S. conceived and designed the study. A.R.Z. conducted all simulation
studies and analyses. A.R.Z. and D.S. wrote the manuscript. Both authors read and
approved the final manuscript.

Additional information
Supplementary Information accompanies this paper at doi:10.1038/s41467-017-01407-5.

Competing interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2017

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01407-5

12 NATURE COMMUNICATIONS |8:  1563 |DOI: 10.1038/s41467-017-01407-5 |www.nature.com/naturecommunications

http://dx.doi.org/10.1038/s41467-017-01407-5
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Genome-driven evolutionary game theory helps understand the rise of metabolic interdependencies in microbial communities
	Results
	Integrating metabolic networks and evolutionary game theory
	Metabolic dependencies in invertase-producing S. cerevisiae
	Single amino acid dependencies in E. coli
	A global map of interactions mediated by amino acid pairs
	Metabolic pathway interactions shape ecological interactions
	Paths toward the emergence of cross-feeding

	Discussion
	Methods
	Background on evolutionary game theory
	Background on Flux Balance Analysis (FBA)
	Using FBA to compute payoffs of interacting microbes
	Automated identification of the Nash equilibria
	Modeling evolutionary dynamics at genome-scale resolution
	Code availability
	Data availability

	References
	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS




