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A B S T R A C T   

The exploitation of mineral resources has seriously polluted the environment around mines, 
notably in terms of heavy metal contamination of tailings pond soil. Hyperspectral remote 
sensing, as opposed to conventional on-site sampling and laboratory analysis, offers a potent tool 
for effective monitoring the content of soil heavy metals. Therefore, we investigated the inversion 
models of heavy metal content in metal tailings area based on measured hyperspectral and 
multispectral data. Hyperspectral and its transformation, as well as the simulated Landsat8-OLI 
multispectral were used for model inversion respectively. Stepwise Multiple Linear Regression 
(SMLR), Partial Least Squares Regression (PLSR) and Back Propagation Neuron Network (BPNN) 
were established to study the spectral inversion of eight heavy metals (Cu, Cd, Cr, Ni, Pb, Zn, As, 
and Hg). The direct inversion models were established on the basis of correlation analysis and the 
adjust coefficient of determination (Adjust_R2) and Root Mean Square Error (RMSE) were used for 
model evaluation. Then the best combination of spectral transformation and inversion model 
were explored. The model inversion results suggested that: (1) Hyperspectral transformation can 
generally improve the model accuracy, especially the second derivative spectral, based on which 
the training Adjust_R2 of Hg SMLR and PLSR models are as high as 0.795 and 0.802. (2) The BP 
neural network inversion based on the denoised hyperspectrum demonstrate that both the 
training and testing Adjust_R2 of Cd, Ni and Hg models are all greater than 0.5, indicating good 
applicability in practical extrapolation. (3) Both the training and testing Adjust_R2 of Cu and Hg 
PLSR models based on simulated R_Landsat8-OLI multispectral are greater than 0.5, and Hg has 
lower RMSE and lager Adjust_R2 with training and testing Adjust_R2 values of 0.833 and 0.553 
respectively. (4) Multispectral remote sensing detection and mapping of Hg contamination were 
realized by the optimal simulation model of Hg. Hence, it is feasible to simulate the multispectral 
with hyperspectral data for investigating heavy metal contamination.   

1. Introduction 

Soil heavy metal pollution is a significant issue that threatens both the sustainable development of social economy and the safety of 
ecological environment [1]. As a major energy consumer, China has continuously expanded the scale of mineral resources exploitation 
in recent years, which has caused serious negative effects on the soil environment, especially the soil heavy metal contamination [2]. 
Heavy metals are deposited in the soil of the mining area due to waste water, solid waste, and dust from mining activity. These heavy 
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metals are subsequently enriched by soil bio-enrichment, which threatens human health and the food chain [3]. Therefore, studying on 
soil heavy metal pollution in mining areas is crucial to enhancing both the sustainable use of land and the ecological environment 
protection. Conventional laboratory testing is labor-intensive, time-consuming, and challenging to acquire accurate distribution of soil 
contaminants across a continuous range. Due to its effectiveness, low cost, and extensive potential for dynamic monitoring, hyper
spectral remote sensing technology has emerged as the industry standard for analyzing heavy metal contamination [4–6]. The heavy 
metal concentration of mining soil has been predicted by soil hyperspectral analysis [7–9]. However, the spectrum characteristic 
absorption bands are not readily apparent and it is challenging to directly invert the heavy metal content in the mining soil due to the 
trace amounts of heavy metals in the mining soil. Consequently, current research mainly focus on improving model algorithms, 
selecting spectral features, transforming hyperspectral to achieve the indirect prediction of soil heavy metals [10–12]. Derivation, 
logarithm, continuum elimination, and wavelet transformation are common spectral transformation forms, from which the spectral 
derivative transformation can effectively highlight the response characteristics of soil heavy metals [13,14]. Typically, univariate and 
conventional linear regression cannot satisfy the prediction needs, whereas models coupling with feature selection algorithms, such as 
partial least squares regression (PLSR), neural network (BP, RBF), support vector machine (SVM), and random forest (RF), which 
thoroughly consider multivariate responses, have been widely used to predict soil heavy metal concentrations [5,15,16]. Multispectral 
remote sensing images, on the other hand, rich in spectral information, simple to obtain, inexpensive, and have a wide range of spatial 
distribution, which make it better suited for investigating small mining areas that actually require spatial analysis of soil heavy metals 
[17]. The multispectral inversion approach, which creates a link between the heavy metal content of the sampling point and the 
reflectance of the multispectral to find the best fitting model, thus providing a reliable basis for soil environmental monitoring [18]. 
There are, however, few studies on regional-scale soil heavy metal remote sensing inversion combined with remote sensing images due 
to the difficulty in obtaining hyperspectral remote sensing images and the number limitation of multispectral image bands [19]. Even 
worse, the influence of topography and land use types on soil model information have not been completely taken into account in 
previous studies [20,21]. Additionally, different soil types have different compositions, structures, and textures, which affect how light 
is absorbed, scattered, and transmitted as well as how heavy metals are adsorbted, moved, and released from the soil [22]. 

Fig. 1. General situation of the Beiminghe tailings area and sampling sites distribution.  
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Consequently, it is challenging to connect contamination levels with hyper or multispectral responses. 
The terrain in Beiminghe metal tailings area is complex and undulant, and the mines are densely distributed. The regional 

ecological has been severely damaged by long-term continuous mining, and the heavy metal content in the soil has far exceeded the 
standard, which seriously threatens the life and health of local residents [23]. Due to the limits of the available study on soil heavy 
metal pollution in mining sites, the Beiminghe tailings area have been chosen as our investigation target. The heavy metal spectral 
response characteristics were identified through the correlation analysis of heavy metal content and transformation spectrum, and the 
direct inversion model of Cu, Cd, Cr, Ni, Pb, Zn, As, and Hg have been established, which primarily composed of three parts: (1) SMLR 
and PLSR inversion models based on the characteristic bands of measured soil hyperspectral and its transformation; (2) BPNN 
inversion models based on denoised spectral R; (3) SMLR and PLSR inversion models based on the spectral of simulated Landsat8-OLI 
multispectral and its associated vegetation index. The study investigated the optimal combination of spectral transformation and 
inversion models for Cu, Cd, Cr, Ni, Pb, Zn, As, and Hg. Then the models of each kind soil heavy metals based on simulated 
Landsat8-OLI spectral characters were evaluated, and based on the optimal model and Landsat8 images, the corresponding soil heavy 
metal multispectral pollution mapping was realized. It is envisioned that these initiatives will be able to offer technical support and 
reference for local soil heavy metal monitoring and soil environmental management. 

2. Materials and methods 

2.1. Study area 

Beiminghe metal tailings area (113◦45′–114◦22′ E and 36◦28′–37◦01′ N) is located in the middle section of the eastern foothills of 
Taihang Mountains, in Wu’an City, Hebei Province (Fig. 1). The average annual temperature is 11 ◦C–13.5 ◦C and the precipitation 
variations in seasonal. This metal tailings area is approximately 20.95 Km2 with ravines and rugged terrain, and the difference in 
height is 93 m. The ore body in this area belongs to the contact metasomatism iron deposit of Ordovician limestone and Yanshanian 
diorite, and the metallic minerals in the ore are mainly magnetite and pyrite. It has a significant impact on the local economy and 
ecosystem as a contemporary large-scale mine that integrates mining and dressing. The mining area has been continuously mined for 
20 years, which has brought significant economic benefits to the local community. However, tailings and wastewater have been 
discharged casually, which not only takes up farmland but also seriously pollutes the environment. Harmful substances in the tailings 
and ore are blown by the wind, and nearby villagers suffered from skin diseases. More seriously, the piled-up tailings dumped into the 
riverchannel pose a serious threat to the river’s flood discharge. For these reasons, Beiminghe tailings area is an important soil 
environment research area. Therefore, high accuracy inversion models are necessary to established to promptly and effectively 
monitor soil heavy metal contamination, so as to facilitate the prevention and management of local soil heavy metal pollution. 

2.2. Data acquisition 

2.2.1. Soil sample collection and preparation 
By viewing the Google’s high-definition satellite images and prospecting on the site, a strip sampling belt was set up along the 

tailing accumulation step dam and its sewage discharge direction. The field surveys we conducted from mid to late October 2020, and 
66 soil samples were collected (Fig. 1). What needs to be noted is that the tailings wastewater and residue in the drainage channel 
section have little impact on the surrounding soil environment due to the isolation effect of the gutter, so the sampling points are only 
laid in the tailing accumulation step dam at the top of the channel and the downstream discharge section. 1~1.5 kg of topsoil (0–20 cm 
in depth) was excavated at each sampling point with weeds and larger gravels removed. And GPS positioning was performed 
simultaneously with the sampling. Soil properties, land use types, and vegetation cover conditions around sampling points were 
recorded in detail. And when necessary, the hand-held GPS camera was used to take pictures of the sampling site to record envi
ronmental information. Finally, these samples were packed into labeled fresh-keeping bags and brought back to the laboratory. The 
soil were naturally air-dried by spreading them in a ventilated and dry place for grinding. Then, the soil was screened via a 200-mesh 
sieve to further determine heavy metal content and soil spectrum. 

2.2.2. Chemical detection of soil heavy metal content 
The soil specimens were treated by the microwave digestion system with an appropriate acid solution (HNO3-HCl-HF-HC104). 

Then the content of Cu, Cd, Cr, Ni, Pb, Zn, and As were determined by inductively coupled plasma atomic emission spectrometry (ICP- 
AES). Due to low boiling point and volatile nature of Hg, the results of conventional digestion measurements will be low. Therefore, the 
DMA-80 automatic mercury analyzer was used to directly determine the Hg content of solid soil samples. This method does not require 
sample pretreatment and has no reagent contamination [24]. The detection limits of all elements are less than 0.05 mg kg− 1, and the 
quality was controlled by blank samples and spiked recovered samples. 

2.2.3. Soil spectra measurement 
The soil spectrum was measured by the FiledSpec 4 portable ground object spectrometer produced by the ASD company of America. 

The spectrometer probe consists of a 512-element array PDA detector and two independent InGaAs detectors and detectable wave
length range is 350–2500 nm. The spectrometer is easy to operate with powerful software package. It is suitable for various appli
cations in remote sensing measurement, crop monitoring, forest research, industrial lighting measurement, oceanographic research 
and mineral exploration [25]. Spectral measurements were performed in a simulated darkroom with interior spectral measurement 
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conditions are as follows: 1000 W halogen lamp was the only light source, 30◦ between the illumination and vertical directions, and 30 
cm distance between light source and soil. The soil sample was placed in a black and non-metallic container with a diameter of 10 cm 
and a depth of approximately 1 cm. Spectral reflectance data was gathered by irradiating the surface of the material vertically at a 
distance of 15 cm with the instrument’s high-density reflection probe. The equipment was preheated for 30 min prior to data 
collection, and the whiteboard was optimized before the experiment and every 3 samples were optimized during the experiment. With 
the spectrum range of 350~2500 nm and the spectral resolution of 1 nm, 12 spectral curves were gathered for each soil sample. The 
obviously incorrect spectral curve was identified and removed using the software View Spec Pro, and then the average of spectral was 
calculated as the actual spectrum of the soil sample. 

2.3. Spectral smoothing and transformation 

Due to the influence of instrument internal structure, human errors, and external environment factors, pre-processing of spectra is 
required to reduce the interference from illumination and background noise. This allows for the decomposition of mixed spectral 
features, enhancing spectral sensitivity, and thereby improving the accuracy of the spectral model [13,14]. In this study, the soil 
reflectance spectra were initially modified using the splice correction tool of the View SpecPro software [26]. Additionally, 
Savitzky-Golay smoothing was employed to reduce noise and enhance the smoothness of the spectra, efficiently preserving the original 
characteristics of the data, ensuring the accuracy and reliability of the model [27]. As the content of heavy metals in soil occurs at a 
microscopic level, their individual reflectance spectra may not distinctly highlight the response of heavy metals. Spectral mathematical 
transformations, on the other hand, typically increase the signal-to-noise ratio, thereby enhancing the target spectral information and 
highlighting soil spectral features. Therefore, the spectrum after splicing correction as well as smoothed and denoised was employed as 
the original reflection spectrum R, and eight spectral transformation indices such as the first derivative and second derivative of the 
spectrum, the inverse-log of the spectrum, the first derivative of the inverse-log of the spectrum, the second derivative of the 
inverse-log of the spectrum, the square root of the spectrum, and the continuum removal of the spectrum, which were represented by 
FD(R), SD(R), LR, FD (LR), SD (LR), Sqrt (R), and CR, respectively, have been obtained respectively. 

2.4. Landsat8-OLI image data acquisition and preprocessing 

The Landsat 8-OLI remote sensing images with no cloud on October 29, 2020 were selected to integrate with the field measured 
data. The spectral response function of the Landsat8-OLI sensor was obtained from the ENVI software [28], according to which the soil 
spectrum was resampled, and the spectral reflectance consistent with each band of the sensor were acquired. The DEM data are ASTER 
GDEM provided by the Chinese Academy of Sciences Data Center, with a resolution of 30 m. The original Landsat 8 OLI Level 1T data 
product has already undergone systematic radiometric and geometric correction, but terrain correction was not applied. Therefore, in 
this study, the original Landsat 8 OLI imagery was first subjected to radiometric calibration and atmospheric correction. Subsequently, 
DEM data were utilized for terrain correction. NDVI were calculated by the pixel dichotomy model, and then the Modified Normalized 
Difference Water Index (MNDWI), the Difference Vegetation Index (DVI), the Enhanced Vegetation Index (EVI), the Clay Mineral Ratio 
(CMR), as well as characteristic components like Greenness, Brightness, and Wetness, were then calculated to reflect soil character
istics. The formulaes and references of NDVI, MNDWI, DVI, EVI, CMR, Greenness, Brightness, and Wetness were listed in Table 1. And 
B2, B3, B4, B5, B6 and B7 mentioned in the calculations in Table 1 correspond to the simulated bands of Blue, Green, Red, NIR, SWIR1, 
and SWIR2 of the Landsat 8-OLI image. Therefore, the simulated bands and indices were collectively refer to the simulated multi
spectral spectrum R_Landsat 8-OLI. 

2.5. Model inversion and verification methods 

2.5.1. Model approach 
The accuracy of the soil heavy metal spectral inversion models is influenced by the soil composition, the rationality of the sampling 

data, and the selection of the inversion methodology [35,36]. It is difficult to estimate heavy metal elements in soil by direct physical 
model. The direct inversion method based on the correlation between heavy metals and soil hyperspectral is primarily applicable to 
regions with severe heavy metal pollution [37]. The Stepwise Multiple Linear Regression (SMLR) is a method that variables are 
selected into the regression equation based on F statistics, and the variance contribution values of all variables are considered [11,38]. 

Table 1 
Spectral index definition of the Landsat 8-OLI image.  

Index Definition 

MNDWI (B3 − B6)/(B3+B6) [29] 
DVI B5 − B4 [30] 
CMR B6/B7 [31] 
EVI 2.5 × (B5 − B4)/(B5+6×B4 − 7.5×B2+1) [32] 
NDVI (B5 − B4)/(B5+B4) [33] 
Greenness − 0.294 × B2 − 0.243 × B3 − 0.5424 × B4 + 0.7276 × B5 + 0.0713 × B6 − 0.1608 × B7 [34] 
Brightness 0.3029 × B2 + 0.2786 × B3 + 0.4733 × B4 + 0.5599 × B5 + 0.508 × B6 + 0.1782 × B7 [34] 
Wetness 0.1511 × B2 + 0.1973 × B3 + 0.3283 × B4 + 0.3407 × B5 − 0.7117 × B6 − 0.4559 × B7 [34]  
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Partial least squares regression (PLSR) integrates the advantages of principal component analysis, canonical correlation analysis and 
linear regression analysis. It is typically employed for regression modeling in the case of the number of samples to be fewer than the 
number of variables. It is widely used in the field of hyperspectral inversion since it can eliminate the influence of multiple correlations 
[39–42]. The Backpropagation neural network (BPNN), as a multi-layer feedforward neural network trained through error back
propagation, fundamentally utilizes the sum of squared network errors as the objective function. It employs the gradient descent 
method for training, thereby determining the objective function at its minimum error state [43]. Due to its sophisticated pattern 
classification capability and powerful multidimensional feature mapping ability, the BPNN has been widely applied in various fields 
[44]. Therefore, in this study SMLR, PLSR and BPNN were employed to establish predictive models for soil heavy metal content. 

The empirical formula (Eq. (1)) was adopted to determine the number of hidden layer nodes in BP neural network, which ranges 
from 5 to 14 [45]. The number of hidden layer nodes was finally determined through repeated experiments, ensuring that the number 
of hidden layer nodes was less than the number of training samples [46]. Tansig and purelin were used as the transfer function of the 
hidden layer and the output layer respectively, while the trainlm based on Levenberg-Marquardt method was used for training which 
was according to numerical optimization theory. 

N =
̅̅̅̅̅̅̅̅̅̅̅̅
n + m

√
+ a (1)  

where N is the number of hidden layer nodes, n is the number of input nodes, which is equal to the number of independent variables, 
that means n = 15. m is the number of output nodes, which is equal to the number of dependent variables, that is, m = 1, a is a constant 
from 1 to 10. 

2.5.2. Model verification 
The evaluation metrics for model performance primarily include the accuracy, efficacy and stability of the model [47]. The co

efficient of determination R2 provides insight into the level of fit and stability of the model. However, there are limitations when used 
to assess the fitting model, which ignores the statistical significance that R2 grows higher with the increase of variables [48]. In order to 
scientifically evaluate the model performance for heavy metals, therefore, the adjusted coefficient of determination Adjust_R2 was 
calculated to evaluate the stability and precision of the inversion models. The closer the Adjust_R2 value is to 1, indicates a stronger 
degree of fit between the measured and predicted values, signifying higher accuracy in the inversion and greater stability of the model. 
The assessment indicator known as Root Mean Square Error (RMSE) was used to measure the deviation between the predicted value 
and the actual value and it is sensitive to outliers. RMSE exhibits the predictive ability of the model, the smaller the value, the better of 
the predictive effect of the model. The model evaluation index formula are as follows (Eq. (2), Eq. (3), Eq. (4)). 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(Pi − Si)

2

√

(2)  

R2 =

∑n

i=1

(
Si − Si

− )2
∗
(

Pi − Pi
− )2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(
Si − Si

− )2
√

∗
∑n

i=1

(
Pi − Pi

− )2
(3)  

Adjust R2 = 1 −

(
1 − R2

)
(n − 1)

n − p − 1
(4)  

where Si and Pi are the measured and predicted values of soil heavy metal content, S
−

i and P
−

i are the average of the observed values and 
the mean of the predicted values, respectively. n is the number of samples, p is the number of selected independent variables of the 
model. 

Table 2 
The statistical characteristics of soil samples in Beiminghe tailings area.  

Element Minimum 
(mg/kg) 

Maximum 
(mg/kg) 

Mean 
(mg/kg) 

Standard 
Deviation (mg/ 
kg) 

Skewness Kurtosis Coefficient of 
variation 

Background 
value (mg/kg) 

Hyper 
background 
rate 

Cu 28.296 4218.23 1034.47 1112.293 1.202 0.881 1.075 21.8 100.00% 
Cd 0 10 2.697 1.909 1.682 3.403 0.708 0.094 93.94% 
Cr 21.638 160 64.91 32.133 1.151 0.794 0.495 68.3 34.85% 
Ni 9.987 511.667 126.586 131.728 1.323 0.965 1.041 30.8 62.12% 
Pb 3.327 823.333 131.381 162.94 1.897 4.59 1.24 21.5 57.58% 
Zn 24.983 266.134 73.652 46.479 1.936 4.613 0.631 78.4 37.88% 
As 24.983 101.396 43.988 18.983 1.43 0.98 0.432 13.6 100.00% 
Hg 0.003 0.073 0.019 0.016 1.483 2.272 0.828 0.036 13.64%  
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3. Results and discussion 

3.1. Statistical analysis of soil heavy metal content 

Table 2 shows the statistical characteristics of soil heavy metals content. From the table, it is evident that the average concen
trations of Cu, Cd, Pb, Ni and As far exceed the background values observed in Hebei Province in1990, making it representative of a 
heavily multi-source polluted region for heavy metals [49]. The hyper background rate of Cu and As samples reached up to 100%, and 
Hg with the lowest ratio of 13.64%. Theoretically, the skewness and kurtosis of the standard normal distribution are both 0, but the 
actual data is not an absolute normal distribution. It is considered that the data can be basically regarded as normally distributed if the 
absolute value of the data kurtosis is less than 10 and the absolute value of the skewness is less than 3 [50]. The accumulation of soil 
components in environmental geochemistry typically coincides with an increase in variability. As a parameter representing the 
fluctuation features of the soil environment, the coefficient of variation can be employed to some extent to describe the accumulation 
status of soil heavy metals [51]. In this study, all elements exhibited approximately normal distributions and their spatial distribution 
demonstrated significant variability and heterogeneity, with coefficients of variation exceeding 30%. It is evident that soil metal el
ements have been enriched to varied degrees under the influence of long-term mining activities and other anthropogenic factors. 
Although this matter has been acknowledged for a while, it has not yet been fully resolved. 

3.2. Characteristics of soil spectral 

Firstly, it is essential to apply spectral data smoothing to minimize noise interference and enhance the signal-to-noise ratio. The 
approach of Savitzky-Golay convolution was performed for spectral smoothing. The comparison of the reflectance spectral curves of 
soil samples before and after splice correction and smoothing treatment are shown in Fig. 2(a) and (b). It is visible that the spectral 
curves are smoother at wavelengths of 1000 nm and 1800 nm, and the original spectral characteristics were preserved. The maximum 
spectral reflectance of dark soil samples is 0.6, whereas the maximum reflectance of light soil samples is 0.4, indicating a consistent 
spectral trend between the two. Generally, excluding the 900 nm band, the absorption characteristics of the soil spectrum in the visible 
and near-infrared bands were mainly caused by the electronic transition of metal ions such as Fe2+, Fe3+, Cu2+, and Mn3+, as well the 
frequency doubling and harmonic frequency generated by the bending vibration of molecules, such as –OH, CO3

2− , OH-and NH4+

[52–54]. For example, there are obvious curve absorption characteristics around 1400, 1900 and 2200 nm, which are mainly related to 
the OH− contained in iron oxides and kaolin-like clay minerals [55]. While absorption peak near 2450 nm is generated by the vibration 
of CO3

2− groups in soil carbonates, and the vicinity of 1450 nm was an evident absorption valley caused by the stretching vibration of 
water molecular –OH in soil silicate minerals [47]. A deep “V" shape can be detected in the spectrum curve between 1875 and 2130 nm 
as a result of the metal hydroxyl group stretching [56]. There are distinct characteristic absorption bands and reflection peaks around 
1350 nm and 2450 nm, which significantly affected by atmospheric water vapor absorption [57]. 

3.3. Correlation analysis between heavy metal content and soil spectrum 

Spectral preprocessing is crucial in spectral analysis as it can draw attention to spectral feature bands and reduce spectral noise 
[13]. Thus, eight spectral transformation indices were calculated for spectral feature screening and model inversion. Consequently, the 
correlation analysis between soil heavy metals and spectral transformations were performed to further determined the soil spectral 
characteristics, and the correlation coefficients r can be seen from Fig. 3(a–h). Nearly all of the correlation coefficients between the 

Fig. 2. Spectral curves of soil samples before and after treatment.  
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concentration of soil heavy metal elements and their corresponding spectral index curves were below 0.65. The peak positions of the 
correlation coefficients exhibit a consistent pattern, however the extreme and significant correlation bands were distinct. Compared to 
the original spectral R, the transformed spectra exhibited a significant improvement in correlation with heavy metals, effectively 
highlighting the spectral response characteristics. As compared to the first derivative spectrum, which showed a more moderate 
correlation variation, the second derivative spectrum showed an intense and compact correlation change across the band range. The 
correlation between spectral index of R, LR, Sqrt(R) and soil heavy metals present a horizontal wine glass shape, with obvious trend 
consistency. Meanwhile the correlation between the first derivative spectrum, and CR with heavy metals have clear characteristics in 
the range of 350~1500 nm with a gently change trend, while the correlation changes violently at 1500–2500 nm. As showed a 
relatively low correlation with the soil spectra, while Hg exhibited a favorable response and demonstrated the highest correlation with 
the soil spectra, followed by Cu, Cd, Cr, Ni, Pb and Zn. In the wavelength range of 350~460 nm and 700–1000 nm, the concentrations 
of Zn and Hg showed an increasing trend in correlation with the spectral R, Sqrt(R) and CR. Specifically, there was a negative cor
relation observed in 350~460 nm and a positive correlation in 700~1000 nm. However, the correlation between the concentrations of 
Zn and Hg and the spectral LR displayed an opposite trend compared to the correlation between Zn and Hg concentrations and spectral 
R and CR Furthermore, in the wavelength range of 700~2500 nm, the concentrations of soil heavy metals, including Cu, Cd, Cr, Ni, Pb, 
and As, were found to be negatively correlated with the spectral transformation R and CR, and positively correlated with the spectral 
LR, and both correlations exhibited an increasing trend. The correlation coefficients are significantly correlated near 460 nm, which is 
mainly due to the weak absorption peak of soil manganese oxides. 

The maximum correlation and response wavelengths for the concentration of soil heavy metals and different spectral are showed in 
Table 3. Results showed that spectral transformation effectively improves the spectral response of soil heavy metals, especially the 
second derivative spectral, which might help extract relevant information for the rare components [58]. After the continuum removed 
treatment, the soil spectral absorption characteristics were highlighted, and the absolute values of the maximum correlation 

Fig. 3. Correlation coefficient between soil heavy metals contents and spectral transformation,  
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coefficients of Hg and Cu with the spectra in visible and near-infrared band ranges reached to 0.827 and 0.688, respectively. The 
maximum correlation response bands of Cu, Cd, and Ni with the spectrum R, LR, and Sqrt(R) were primarily distributed in the 
wavelength range b2326~b2346, with an overlap, indicating that there were similar spectral response characteristics. The maximum 
correlations coefficient of Cu, Ni and Hg with the spectrums in the were all greater than 0.6, while As and Cr were all lower than 0.5. 
The spectrum FD(R), SD(R), and SD(LR) have single maximum correlation band with soil heavy metals, while the other transformed 
spectrum have maximum correlation group bands with soil heavy metals. 

The correlation between soil heavy metals content and simulated multispectral R_landsat8-OLI, as well its characteristic vegetation 
index can be seen from Table 4. There were considerable and strong connections between the simulated spectral variables and the 
concentration of soil heavy metals, with the exception of CMR and the simulated B3 band. Cu, Ni, Zn, and Hg all demonstrated 
correlation coefficients that were greater than 0.5 with MNDWI, DVI, EVI, NDVI, and greenness, from which Hg has the strongest 
correlation with these variables and the correlation coefficient reached to 0.81. EVI, NDVI, and B7 were the greatest correlation index 
between soil heavy metal concentrations and simulated spectral R_landsat8-OLI. With the exception of As and Zn, all other soil heavy 
metals exhibited significant correlations with B5, B6, B7, and Wetness. Specifically, Hg showed a positive and significant correlation 
with B5, B6, and B7, while displaying a negative and significant correlation with Wetness. Conversely, Cu, Cd, Cr, Ni, and Pb showed 
significant negative correlations with B5, B6, and B7, while demonstrating a significant negative correlation with Wetness. 

Fig. 3. (continued). 
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Table 3 
Maximum correlation coefficients and response wavelengths for heavy metals contents and various spectral indices.  

Maximum Correlation R FD(R) SD(R) LR FD(LR) SD(LR) Sqrt(R) CR R_Landsat8-OLI 

Cu − 0.647** − 0.713** − 0.688** 0.663** 0.739** 0.713** − 0.656** − 0.688** − 0.703** 
b2328~b2341 b949 b1002 b2329~b2332 b948 b1002 b2330~b2333 b1301~b1327 EVI 

Cd − 0.504** − 0.525** 0.556** 0.518** 0.533** − 0.569** − 0.511** 0.427** − 0.485** 
b2327~b2339 b2116 b1945 b2326~b2346 b1053, 

b1054 
b1945 b2325~b2346 b2105,b2106 B7 

Cr − 0.388** − 0.354** 0.427** 0.398** − 0.343** − 0.401** − 0.393** − 0.348** − 0.343** 
b2480 b474 b468 b2480 b1800 b468 b2480 b596~b599 B7 

Ni − 0.623** − 0.681** − 0.641** 0.641** 0.723** 0.673** − 0.633** − 0.679** − 0.679** 
b2328~b2341 b948 b1002 b2328~b2333 b979 b1003 b2330~b2333 b1332~b1343 EVI 

Pb − 0.4** 0.58** 0.644** 0.423** − 0.625** − 0.679** − 0.412** − 0.376** − 0.358** 
b2416,b2417,b2435~b2437 b1799 b858 b2436 b1799 b651 b2436 b2417 B7 

Zn − 0.475** 0.617** 0.511** 0.488** − 0.633** − 0.536** − 0.482** 0.541** 0.551** 
b414 b888 b430 b367~b370, 

b412~b416, 
b422,b423 

b913 b1003 b412~b416, 
b421~b423 

b998,b999 NDVI 

As 0.194 − 0.454** 0.485** − 0.174 0.398** 0.501** 0.185 − 0.339** − 0.249* 
b417~b433 b1697 b779 b2329 b2478 b1731 b420~b429, 

b431 
b654 EVI 

Hg − 0.689** 0.838** 0.723** 0.73** − 0.85** 0.739** − 0.71** − 0.827** 0.81** 
b425 b896 b537 b422~b427 b671, 

b675 
b997 b417~b430 b550~b554 NDVI 

Attention: **. At the level of 0.01 (two tails), the correlation is significant; *. At the level of 0.05 (two tails), the correlation is significant. 
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3.4. The establishment and analysis of the spectral inversion model 

3.4.1. Feature selection and model construction 
According to the statistical characteristics analysis that the long-term mining has significantly enriched the heavy metal concen

tration in the soil of the study area. Therefore, the direct inversion method was adopted in this paper, which was in line with objective 
facts. Direct inversion models for soil heavy metals can be established based on the correlations between soil heavy metals and spectra 
[59,60]. The top 15 significant band groups with the highest correlation at levels 0.05 and 0.01 were chosen based on the correlation 
between the concentration of soil heavy metals and different spectral indicators. Average values of each band group were calculated as 
characteristic variables of each spectral indexes, and the significant simulated spectral variables were identified as the characteristic 
variables of the spectral simulation model. According to the order of heavy metal content from small to large, one sample was obtained 
as a verification sample for every three samples, and the data was finally split into a traing set with 44 samples and a testing set with 22 
samples. The spectral features and heavy metals content were taken as independent variables and dependent variables respectively, 
thus the SMLR, PLSR and BPNN inversion models of soil heavy metals were established, which include the SMLR and PLSR models 
based on spectral R and spectral transformation, BPNN models based on the spectral R, and the SMLR and PLSR models base on 
simulate multispectral R_landsat8-OLI. For the purpose of facilitating model comparison, we identify the models using symbols that 
correspond to their spectral. 

3.4.2. Modeling evaluation 
Fig. 4(a–f) shows the Adjust_R2 comparison of the SMLR training models based on each spectral transformation. It indicates that the 

spectral transformations have enhanced the correlation between the spectra and soil heavy metals, and consequently the prediction 
ability of the models based on spectral transformation have been effectively improved. With the exception of Zn, the second derivative 
models of soil heavy metals show better performance to some extent compared to the first derivative models. When the two kinds of 
second-order derivative SMLR training models were compared, it demonstrated that, except for Ni, the training Adjust_R2 of SD(LR) 
models of soil heavy metals were higer than those of the SD(R) training models. With the exception of Cr, the stability of the first-order 
derivative training models is better than the continuum removal models. Additionally, for most soil heavy metals, the Adjust_R2 of CR 
training models were higher than those of the LR training models. By comparing the Adjust_R2 of the training models based on R and 
R_Landsat8-OLI, it was observed that the former exhibited higher Adjust_R2 values for Cu, Zn, and Hg. In conclusion, the recommended 
order of indices for establishing spectral models of heavy metals with SMLR model is as follows: SD(LR) > SD(R) > FD(LR) > FD(R) >
CR > LR > Sqrt (R) > R. 

The larger of the Adjust_R2 and the smaller the of RMSE, the better of the model, according which the statistical information of the 
optimal SMLR models of soil heavy metals in Table 5 were obtained. From the table, it can be observed that, except for Zn, the optimal 
SMLR models with smaller RMSE for soil heavy metals are all based on SD(LR), indicating that this spectral SMLR model exhibits good 
predictive capability. The optimal SMLR models show Adjust_R2 values within the range of 0.395–0.795 for training and 0.247–0.544 
for testing, respectively. Among them, both the training and testing Adjust_R2 for Hg exceed 0.5. The optimal training models of soil 
heavy metals ranked from high to low according to the training Adjust_R2 are Hg > Pb > Cu > Ni > As > Zn > Cd > Cr. The input 
variables and their band composition of the optimal SMLR model for soil heavy metals are shown in Table 6. The arrangement order of 
the input variables represents the degree of correlation between their corresponding composition characteristic bands and heavy metal 
content, and the higher the ranking, the greater the correlation. It can be seen that the spectral response characteristics of soil heavy 
metals are mainly concentrated in the wavelength of b440~b540, b610~b660, b760~b890, b950~b1010, b1140~b1290, 
b1690~b1740 and b1940~b1960, which are the key spectral features of heavy metal inversion models. Pb exhibits the strongest 
spectral response to soil spectra with the largest number bands that have been chosen, whereas Zn exhibits the weakest spectral 
response to soil spectra with only one band has been selected. 

Table 4 
The correlation coefficients between soil heavy metals contents and simulated landsat8-OLI spectral variables.  

Correlation Cu Cd Cr Ni Pb Zn As Hg 

B1 0.513** 0.238 0.025 0.477** 0.220 − 0.464** 0.190 − .682** 
B2 0.477** 0.210 − 0.011 0.441** 0.208 − 0.452** 0.177 − 0.668** 
B3 0.219 0.011 − 0.174 0.193 0.063 − 0.345** 0.106 − 0.469** 
B4 − 0.209 − 0.269* − 0.305* − 0.216 − 0.164 − 0.062 − 0.032 0.012 
B5 − 0.520** − 0.436** − 0.303* − 0.507** − 0.284* 0.229 − 0.132 0.430** 
B6 − 0.566** − 0.465** − 0.310* − 0.546** − 0.326** 0.282* − 0.125 0.440** 
B7 − 0.610** − 0.485** − 0.343** − 0.588** − 0.358** 0.327** − 0.142 0.450** 
MNDWI 0.661** 0.422** 0.171 0.628** 0.348** − 0.503** 0.183 − 0.723** 
DVI − 0.672** − 0.430** − 0.132 − 0.638** − 0.296* 0.514** − 0.199 0.784** 
CMR 0.052 0.001 0.106 0.046 0.107 − 0.092 0.063 0.102 
EVI − 0.703** − 0.426** − 0.141 − 0.679** − 0.291* 0.545** − 0.249* 0.773** 
NDVI − 0.669** − 0.406** − 0.104 − 0.637** − 0.296* 0.551** − 0.192 0.810** 
Greenness − 0.576** − 0.305* − 0.019 − 0.540** − 0.240 0.505** − 0.198 0.784** 
Brightness − 0.395** − 0.388** − 0.330** − 0.390** − 0.249* 0.103 − 0.073 0.206 
Wetness 0.639** 0.458** 0.252* 0.609** 0.353** − .417** 0.157 − .573** 

Attention: **. At the level of 0.01 (two tails), the correlation is significant; *. At the level of 0.05 (two tails), the correlation is significant. 
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Fig. 4. Comparison of the Adjust_R2 of SMLR training models based on diffrent spectral index.  
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Fig. 5(a–d) shows the comparison of the Adjust_R2 about the PLSR training models based on each spectral transformation. Similar to 
the conclusion of the heavy metal SMLR inversion models, the models based on derivative spectral indices demonstrated significantly 
better performance than the original spectral R, with the second derivative indices are particularly enhancing the stability and ac
curacy of the training models. Except for Hg and Cu, the Adjust_R2 of the second derivative training models are larger than those of the 
first derivative training models. The findings also demonstrate that, with the exception of Cd and Cr, the Adjust_R2 of the PLSR training 
models based on second derivative spectra are all greater than 0.5. Moreover, the PLSR training models based on FD(LR) show higher 
Adjust_R2 compared to those based on CR. It is observed that the model performance is similar by comparing the Adjust_R2 of the two 
kinds of second derivative PLSR training and testing models based on SD(R) and SD(LR). 

Further, Table 7 provides the statistical information of the optimal PLSR models of soil heavy metals. It is discovered that the best 
PLSR models for soil heavy metals were all second derivative models, with an equal distribution of the two types of second derivative 
models. The Adjust_R2 of the optimal PLSR training models are all greater than 0.5, which means a better inversion. When comparing 
the training Adjust_R2, the stability of heavy metal modeling is as follows: Hg > As > Pb > Cu > Ni > Zn > Cd > Cr. The Adjust_R2 of the 
testing models are ranged from 0.329 to 0.606, and the testing Adjust_R2 of Cu, Cr, As and Hg all exceeded 0.5, showing good model 
prediction ability. The optimal PLSR model expressions of each heavy metal element are listed in Table 8. 

The result of BPNN models based on denoised spectral R demonstrated that the range of training Adjust_R2 values is from 0.421 to 
0.822, while the range of testing Adjust_R2 values is from 0.163 to 0.827. The Adjust_R2 and RMSE of the BPNN model for soil heavy 
metals are shown in Fig. 6(a) and (b). It is clear that the training and testing Adjust_R2 for Cu, Cd, Ni, and Hg are all greater than 0.5, 
proving the effectiveness and applicability of the BPNN inversion models. With a maximum difference of 10 mg/kg, the modeling 
RMSE of the BPNN model is relatively similar to the predicted RMSE. According to the model evaluation criteria, the performance of 
heavy metal inversion models was compared, and it is obvious that Hg > Ni > Pb, Cu > Pb, Cd > Cr, and Cd > Zn. 

Fig. 7(a) and (b) compares the Adjust_R2 of training and testing models of soil heavy metals based on the landsat8-OLI simulated 
multispectral characteristics. Cr, Ni, and Pb were unable to be modeled using SMLR since no characteristic variables could be selected 
into the SMLR process, while PLSR models for all of the investigated elements were all successfully established. The Adjust_R2 of PLSR 
training models of Cu, Ni, Hg are all greater than 0.5 with small RMSE, while only the testing Adjust_R2 of Hg exceeded 0.5. The 
Adjust_R2 of SMLR and PLSR training models of Hg are 0.766 and 0.833, respectively, and the testing Adjust_R2 are 0.513 and 0.553, 
indicating that the PLSR model based on simulated Landsat8-OLI spectral provides the best prediction for Hg. Formula 5 (Eq. (5)) 
illustrates how this model is calculated, and the P-value test of the variable coefficients in formula 5 showed that the coefficients of the 
variables have all reached the 0.05 significant level. 

− 0.0067015bcoastal + 0.087487bblue − 0.208961bgreen + 0.339939bNIR − 0.467545bSWIR1
+0.410681bSWIR2 − 0.0847886bMNDWI + 0.382773bDVI − 0.57085bEVI + 0.427975bNDVI
+0.0680955bgreenness + 0.208389bwetness − 0.0268428

(5)  

3.4.3. Comparison of three inversion models 
The training and testing Adjust_R2 of the optimal SMLR, PLSR, and BPNN inversion models were compared on the basis that the 

RMSE of the whole are not significantly different, which was shown in Fig. 8(a) and (b). According to the statistics of the optimal SMLR 

Table 5 
Information statistics of the optimal SMLR model of soil heavy metals.  

Heavy metal element Model index the number of the entered variables Training Testing 

Adjust_R2 RMSEC（mg/kg） Adjust_R2 RMSEP（mg/kg） 

Cu SD(LR) 2 0.576 6.916 0.484 7.739 
Cd SD(LR) 3 0.426 3.303 0.285 1.641 
Cr SD(LR) 3 0.395 3.318 0.325 2.564 
Ni SD(LR) 2 0.568 8.055 0.383 10.459 
Pb SD(LR) 4 0.732 7.093 0.449 12.798 
Zn FD(LR) 1 0.474 3.0024 0.247 4.519 
As SD(LR) 3 0.488 2.506 0.286 5.754 
Hg SD(LR) 3 0.795 0.007 0.544 0.011  

Table 6 
Feature band statistics of the optimal SMLR model of soil heavy metals.  

Heavy metal element the entered variables Band composition 

Cu B1, B15 b1002, b1955 

Cd B5, B7, B8 b980, b443, b820 

Cr B14, B9, B5 b1738, b980, b1248 

Ni B6, B3 b1485,1956, b997 

Pb B2, B1, B13, B4 b858, b651, b796, b1724 

Zn B2 b888 

As B6, B8, B14 b1697,761, b1735, b1269 

Hg B5, B2, B6 b537, b453, b1002  
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and PLSR models of soil heavy metals, it seems that the PLSR model appears to have better performence than the SMLR model overal. It 
turns out that the testing Adjust_R2 were always lower than the training Adjust_R2 when comparing the two ideal models for soil heavy 
metals. Models based on the second derivative spectral have better prediction ability than other spectral models. The findings sug
gested that the BPNN models based on R for Cu, Cd, Ni, and Hg are superior to the ideal PLSR model based on spectral transformation. 
Therefore, the recommended ranking of inversion models for Cu, Cd, Ni, and Hg is: BPNN > PLSR > SMLR. The comparison results also 
indicate that the BPNN inversion models based on R for Cr, Pb, As, and Zn are inferior to the best SMLR models based on spectral 
transformation. Hence, BPNN < SMLR < PLSR is the suggest order of the inversion models for Cr, Pb, As, and Zn. According to the 

Fig. 5. Comparison of the Adjust_R2 of PLSR training models based on diffrent spectral index.  

Table 7 
Information statistics of the optimal PLSR model of soil heavy metals.  

Heavy metal element Model index the number of principal components Training Testing 

Adjust_R2 RMSEC（mg/kg） Adjust_R2 RMSEP（mg/kg） 

Cu SD(LR) 3 0.639 12.459 0.508 12.098 
Cd SD(R) 4 0.528 3.072 0.329 2.809 
Cr SD(R) 4 0.517 7.119 0.606 6.429 
Ni SD(LR) 3 0.590 15.174 0.415 15.560 
Pb SD(LR) 6 0.767 15.185 0.482 20.478 
Zn SD(R) 4 0.564 8.101 0.455 8.534 
As SD(R) 3 0.787 4.718 0.583 4.483 
Hg SD(LR) 4 0.802 0.021 0.522 0.022  
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Adjust_R2 of the training models based on R_landsat8-OLI and R, it is evident that, except for Cd, the former models outperform the 
latter in terms of model performance. Therefore, it is feasible to perform heavy metal model inversion based on the simulation 
multispectral of Landsat8-OLI sensor. The significant improvement in the correlation between spectral data and soil heavy metal 
content, especially through spectral differentiation, highlights the potential for selecting appropriate spectral indices and model 
inversion methods to enhance soil heavy metal prediction models. As a result, it is essential to use various model prediction techniques 
for various heavy metal study items. 

3.4.4. Mapping of Hg concentrations using Landsat8_OLI image data 
According to the Adjust_R2 of the SMLR training models based on R_Landsat8-OLI and R, it is observed that the Adjust_R2 values for 

Cu, Zn, and Hg are higher in the model based on R_Landsat8-OLI compared to the model based on R. Therefore, it is feasible to perform 
heavy metal model inversion based on the simulation multispectral of Landsat8-OLI sensor. Furthermore, through comparing the 
ranking of the optimal models, it is consistently observed that Hg consistently exhibits the best model fitting performance among the 
three models. In light of this, this investigation used Hg as the exploration object and the multispectral mapping of Hg contamination 
distribution, which performed by the best model according Eq. (5) was shown in Fig. 9. Numerous active mines and slag dumping sites 
have been discovered in the research area through visual interpretation of photographs and field investigation. The pollution sources 
are mainly located in the southwest of the research region and have directly contaminated the soil there. The contamination map of Hg 
demonstrates that the worst Hg pollution were the nearby settlements, tailings sites, and sewage outlets, which are the key factors for 
the high concentrations. 

Table 8 
Expressions of the optimal PLSR models about soil heavy metals.  

Heavy metal 
element 

Optimal PLSR model expression 

Cd Y = 5.62b1945 + 52.39b819 − 34.50b1944 + 23.70b1485 − 9.38b432 + 28.62b443 + 111.05b820 + 37.62b997 + 78.99B1451,980 − 0.98b2152 +

84.75b800 − 7.61b998 − 34.88b1448 + 56.464b760 + 32.18b1003,533 − 0.17 
Hg Y = 29.75b997 + 38.65b453 − 2.15b998 + 7.17b1003 − 170.93b537 − 56.35b1002 − 11.51b536 + 13.67b1004 − 13.29b999 − 29.90b1393 +

8.23b444 + 19.12b603 + 6.71b485 − 17.07b606 − 46.99b1392 − 0.01 
As Y = − 0.13b779 − 0.18b1731 − 0.19b1739 + 0.30b1697 + 0.33b2009 + 0.92b1735,761 + 0.32b792 + 0.39b2010 − 0.010.92b1736 − 0.09b1698 +

0.28b1740 + 0.01b2480 − 0.76b1269 + 0.10b1399,791 − 0.38b1001 − 0.01 
Cu Y = 4.33b1002 + 2.15b1003 − 1.81b997 + 0.04b998 − 1.11b1004 b

1004
− 3.31b1945 − 0.39b1944 − 9.11b1485 + 0.85b1926 − 6.42b1956 − 1.86b1396 +

5.73b1393 + 3.51b999 − 1.71b1397 − 5.47b1955 − 0.20 
Pb Y = − 0.83b651 − 1.29b858 − 0.73b729 − 1.17b1724 − 0.14b863 + 1.29b864 − 0.32b612 − 0.03b573 + 1.38b621 + 1.51b1801 − 1.22b1149 −

0.37b829 − 2.21b796 + 0.30b859 + 0.03b613 − 0.99 
Cr Y = 0.32b468 + 0.38b820 + 0.04b800 + 0.16b819 − 0.91b1248 − 2.38b1738 + 0.77b760 + 0.25b1944 − 1.90b1295 + 0.46b1806 + 0.41b1358,467 +

0.51b1550 + 0.49b1837 − 0.97b1256 + 0.85b1124 + 0.004 
Zn Y = 0.26b430 + 0.05b1003 + 0.69b1002 − 0.05b999 − 0.72b1000 − 0.57b1004 + 0.19b998 + 0.26b431 − 0.20b1453,997 + 0.02b602 − 0.06b1810 +

0.80b536 − 0.02b1432 − 1.45b1809 + 3.68b1570 + 0.02 
Ni Y = 0.10b1003 + 0.49b1002 − 0.36b997 + 0.09b998 − 0.08b1004 − 1.51b1956,1485 + 0.30b999 − 0.34b1396 − 0.25b1945 − 0.21b1926 − 0.04b1944 +

0.60b1393 − 1.16b1955,819 − 0.47b1397 + 0.02b1925 − 0.06  

Fig. 6. BPNN model coefficient comparison based on R.  
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4. Discussions and conclusions 

4.1. Discussions 

Although soil heavy metals are difficult to invert directly through spectral characteristic analysis due to their low contents, there 
are studies have been conducted to achieve direct inversion of heavy metals by analyzing the correlation between heavy metal content 
and soil spectrum [17,61]. The study analyzed the relationship between the spectral transformation and the soil heavy metal content, 
and a set of technical processes for predicting soil heavy metal content using hyperspectral data was developed, and finally the optimal 
inversion models for soil heavy metals were selected out. Statistical analysis demonstrated that there were severe heavy metal 
pollution in the study area. Soil heavy metals have specific spectral absorption characteristics in the soil spectrum, which provides a 
theoretical basis for the extraction of soil pollution information [9]. Savitzky-Golay convolution smoothing was proved to be a method 
that can effectively reduce spectral noise and preserve the original spectral features, which beneficial to improve the spectral infor
mation of soil heavy metals. Furthermore, the goal of spectral transformation is to eliminate or weaken the change in soil spectral 
signal intensity caused by random factors, as well as to reduce noise influence and enhance soil heavy metal spectral information. 
Correlation analysis results demostrated that spectral transformation, especially the second derivative spectrum, effectively improved 
the correlation between heavy metals and spectra, which highlights the spectral response characteristics of heavy metals, and this is 
consistent with previous studies [9,11]. Hyperspectral data have many bands and high redundancy, however, traditional feature 
selection methods based on correlation screening usually ignore the impact of significant bands on inversion accuracy. The PLSR 

Fig. 7. Comparison of Adjust_R2 of the SMLR and PLSR models based on R_Landsat8-OLI.  

Fig. 8. Comparison of the Adjust_R2 between the optimal SMLR, PLSR models and BPNN models of soil heavy metals.  
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method can be applied to a continuous spectrum with many bands and serious autocorrelation, which can effectively improve the 
quantitative inversion accuracy of metal elements. 

Although the accuracy of the hyperspectral inversion model in this study was somewhat less accurate than that of the conventional 
detection techniques, the soil samples and the obtained data were handled, and the main factors that could affect the results were 
excluded. Therefore, the established model precision and credibility were comparatively higher. The inversion models summary re
sults indicated that the training models based on spectral derivative indices show significantly higher Adjust_R2 compared to the 
models based on the original spectral R. Moreover, the second-order derivative models particularly stand out in improving the stability 
and accuracy of the models. With the exception of Hg, the optimal PLSR model outperforms the optimal SMLR model in terms of 
training and testing accuracy for other heavy metals. We speculate that the superior performance of the PLSR model compared to the 
SMLR model is attributed to its ability to address multicollinearity, prevent overfitting, and account for nonlinear relationships be
tween the independent and dependent variables. The BPNN inversion results indicating a better model effect and good practical 
extrapolation for Cd, Ni, and Hg. The simulated Landsat8-OLI multispectral inversion model demonstrates the feasibility of heavy 
metal content retrieval for Landsat8-OLI multispectral data, particularly for Hg. 

Air-dried ground soil samples were used in the research, thus the accuracy of the inversion models was less affected by objective 
conditions such as soil moisture and particle size. However, the accuracy of the heavy metal regression model was affected by many 
factors, such as the number of measured soil samples, remote sensing image resolution, the significance of the correlation of selected 
modeling factors, and the rationality of the modeling method. Therefore, the influence of these variables such as the type of soil, 
textural variations according to depth, organic matter content and even the simple volumetric moisture content of the samples, on the 
spectral response mechanism of heavy metal soils should not ignored if the experimental conditions allowed. And it is essential to 
choose suitable characteristic bands to establish models in light of the complex mechanism of spectral response for soil heavy metals. 

4.2. Conclusions 

In this study, the statistical analysis of soil heavy metal content was carried out through the measured sample data, and the cor
relation between the soil heavy metals content and the hyperspectral were analyzed to establish the direct estimation models based on 
different spectral transformations. In addition, by combining the simulated Landsat8-OLI multispectral and PLSR model, the high- 
precision multispectral remote sensing mapping of Hg has been accomplished. The current evidence suggests that the conventional 
mathematical transformations applied to the spectral data in the paper have effectively improved the spectral response correlation of 
heavy metals, thereby demonstrating an advantage in the direct inversion model of soil heavy metals. The combination of simulated 
Landsat8-OLI multispectral and PLSR model seems to have better performence in some cases, proving that the simulated multispectral 
is feasible for soil heavy metals inversion. However, there are certain limitations, such as the unexplored potential of spectral wavelet 
transformations and other possible enhancements. Furthermore, the study only employed SMLR, PLSR, and BPNN models to validate 
the performance of heavy metal inversion based on correlation-based band combinations. Therefore, it is essential to further inves
tigate their performance in mainstream models, such as the random forest model and other similar models. As an exploratory attempt 

Fig. 9. Simulated multispectral mapping of Hg contamination distribution in metal tailings area.  
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in the inversion of heavy metal models, this study aims to provide a reference for the model inversion of soil heavy metals in mining 
locations. 
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