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Background: The management of unruptured intracranial aneurysm (UIA)

remains controversial. Recently, machine learning has been widely applied

in the field of medicine. This study developed predictive models using

machine learning to investigate periprocedural complications associated with

endovascular procedures for UIA.

Methods: We enrolled patients with solitary UIA who underwent endovascular

procedures. Periprocedural complications were defined as neurological

adverse events resulting from endovascular procedures. We incorporated

three machine learning algorithms into our prediction models: artificial

neural networks (ANN), random forest (RF), and logistic regression (LR).

The Shapley Additive Explanations (SHAP) approach and feature importance

analysis were used to identify and prioritize significant features associated with

periprocedural complications.

Results: In total, 443 patients were included. Forty-eight (10.83%) procedure-

related complications occurred. In the testing set, the ANN model produced

the largest value (0.761) for area under the curve (AUC). The RF model also

achieved an acceptable AUC value of 0.735, while the AUC value of the

LR model was 0.668. SHAP and feature importance analysis identified distal

aneurysm, aneurysm size and treatment modality as most significant features

for the prediction of periprocedural complications following endovascular

treatment for UIA.

Conclusion: Periprocedural complications after endovascular treatment for

UIA are not negligible. Prediction of periprocedural complications viamachine

learning is feasible and e�ective. Machine learning can serve as a promising

tool in the decision-making process for UIA treatment.
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Introduction

The prevalence of unruptured intracranial aneurysm (UIA)

in the adult population is about 3–7% (1, 2). The rupturing

of UIAs usually results in subarachnoid hemorrhage, which

is associated with a high rate of mortality and morbidity

(3). In recent decades, endovascular treatment has become

the first-line of treatment for intracranial aneurysm and has

achieved satisfactory outcomes (4). However, most UIAs have

a low annual risk of rupture, and complications related to the

endovascular treatment of UIAs should not be neglected (5, 6).

It remains controversial whether UIA should be treated or not.

For these reasons, the risk of complications from endovascular

treatment should be carefully weighed against the risk of UIA

rupture. Establishing a method to identify factors associated

with procedure-related complications, and to predict risk from

such complications, could provide critical reference guidelines

to physicians.

Recent studies have applied machine learning (ML) to

the prediction of intracranial aneurysm rupture and outcome

after endovascular treatment (7–9). When challenged with

complex non-linear relationships across large datasets, ML

can generate automated decisions that often outperform

conventional statistical methods. Liu et al. and Zhu et al.

reported promising results from the application of ML

techniques to the prediction of aneurysm stability (10, 11).

Paliwal et al. and Guédon et al. developed ML models to predict

occlusion outcomes from aneurysms following flow diverter

deployment (12, 13). However, research on the prediction of

periprocedural complications from endovascular treatment is

still scarce.

In this study, we exploited three ML algorithms to

develop predictive models for periprocedural complications

after endovascular treatment: artificial neural networks

(ANN), random forest (RF), and logistic regression (LR).

We then compared their prediction performance. To

improve model interpretability and identify significant

factors associated with periprocedural complications,

we applied the Shapley Additive Explanations (SHAP)

method and feature importance analysis. Our results provide

physicians with reference guidelines for the management

of UIAs.

Methods

Patient selection

This retrospective study was approved by the relevant

institutional ethics committee, and written informed

consent was obtained from patients or their relatives during

hospitalization. We included patients with solitary unruptured

saccular intracranial aneurysm that were treated endovascularly

between January 2016 and December 2019. We adopted the

following exclusion criteria: dissecting aneurysm, previous

treatment, covered stent deployment, treatment performed

by parent artery occlusion, and the existence of a brain

arteriovenous malformation. On the basis of these criteria, we

retained 443 cases for this study.

Endovascular procedures

The specific strategy for endovascular treatment was

determined by a neurovascular team and was individually

tailored to each case. Following general anesthesia, the

endovascular procedure was performed. All patients received

systemic intravenous heparin. If the team determined that

it was necessary to deploy a conventional stent or a flow

diverter, the endovascular procedure was preceded by a 5-day

dual antiplatelet therapy (100 mg/d of aspirin and 75 mg/d

of clopidogrel). If the team opted for a conventional stent,

patients were advised to take clopidogrel (75 mg/d) for 6 weeks

and aspirin (100 mg/d) for 6 months. If the flow diverter was

deployed, the patient would take clopidogrel (75 mg/d) for 3

months and aspirin (100 mg/d) on a permanent basis thereafter.

Outcome measures

We recorded periprocedural complications that occurred

within 30 days of the endovascular procedure. We divided the

443 cases into two groups: complication group and control

group. Patients with periprocedural complications were assigned

to the complication group. Periprocedural complications were

defined as any neurological adverse event (increase in modified

Rankin Scale score) resulting from the endovascular treatment.

An adverse event was defined as major if the associated

neurological deficit lasted longer than 7 days, otherwise it was

defined as minor (14).

Clinical and morphological features

We analyzed the following factors: age, elderly status (>65

years of age), gender, potential risk factors (history of cigarette

smoking and alcohol intake, hypertension, cardiovascular

disease, hyperlipidemia, diabetes, and previous cerebral

ischemic comorbidities), treatment modality (coiling only,

stent-assisted coiling, or flow diverter treatment), aneurysm

size (maximum size), presence of large aneurysm (size ≥

10mm), aneurysm neck size, presence of wide-neck aneurysms

(≥4mm or dome-neck ratio ≤2), location (anterior/posterior

circulation), shape (defined as irregular if presenting blebs,

nipples, or multiple lobes), and presence of distal aneurysm

(distally to the Circle of Willis).
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Machine learning model development

We randomly divided data samples into training set (310

cases) and testing set (133 cases) with a 7:3 ratio. Because

the dataset was imbalanced between complication and control

groups, we applied an adaptive synthetic (ADASYN) sampling

method to generate more synthetic data for the minority

class (complication group) in the training set (15). After

application of ADASYN, the training set was expanded to

553 cases (280 complication cases). We then trained three

ML algorithms (ANN, RF, and LR) on the training set

with ten-fold cross validation and grid search to optimize

hyperparameters for each model. Details of the ML models

are provided in Supplementary material. The testing set was

used to estimate model performance. Model performance was

evaluated via receiver operating characteristic (ROC) analysis.

To improve model interpretability and investigate important

features associated with perioperative complications, we used

the SHAP method and feature importance analysis (16). We

used the SHAP method to explore important features in ANN

models. We used feature score/coefficient to evaluate feature

importance in RF and LR models.

Statistical analysis

We performed statistical analyses using version 22.0 of

SPSS (IBM Corp., Armonk, NY, USA). Data are presented

as mean and standard deviation for quantitative variables,

and as frequency for qualitative variables. We used univariate

logistic analysis to analyze risk factors related to periprocedural

complications after endovascular procedure for UIA. Statistical

significance was defined as p<0.05.

Results

Patient and aneurysm characteristics

We enrolled a total of 443 patients (281 females and 162

males) for this study. Mean age was 55.97 ± 11.41 years. Mean

aneurysm size was 6.92 ± 5.08mm. Of the 443 cases, 75 cases

were treated with coil embolization only, 270 with stent-assisted

coiling, and 98 with flow diverter therapy.

Periprocedural complications

In total, 48 (10.83%) procedure-related complications

occurred: 4 intraprocedural aneurysm ruptures (0.90%), 2

postprocedural aneurysm ruptures (0.45%), 2 cases of cranial

nerve palsy (0.45%), and 40 ischemic events (9.03%). The

40 ischemic events included 26 ischemic strokes, 7 transient

ischemic attacks, 4 intra-stent thrombosis and 3 thrombosis

resulting from coil migration. Of these 48 procedure-related

complications, 27 cases (6.09%) were associated with minor

adverse events that resolved on discharge, and 21 (4.74%) were

associated with major adverse events.

Risk factors for periprocedural
complications

Table 1 shows results from univariate logistic regression

analysis of risk factors for periprocedural complications. The

age of the complication group was significantly older than

that of the control group (59 ± 12 vs. 56 ± 11, p = 0.043),

and the complication group included a higher proportion of

elderly patients than the control group (35.4% vs. 16.2%, p =

0.002). Patients with hypertension and distal aneurysm showed a

tendency toward more periprocedural complications (p= 0.006

and p = 0.045, respectively). Aneurysm size was significantly

larger in the complication group than in the control group

(8.67 ± 5.54mm vs. 6.71 ± 4.98mm, p = 0.014), and the

complication group had larger aneurysms than the control

group (31.3% vs. 16.7%, p = 0.016). Moreover, the incidence

of periprocedural complications was higher in cases treated by

flow diverter therapy (13.3%) or stent-assisted coiling (11.1%)

than cases treated by coiling only (6.7%), although this difference

did not reach statistical significance (p = 0.167 and p = 0.265,

respectively).

Model performance and identification of
important features

With relation to the training set, the area under the curve

(AUC) value for the ANN model [0.993; 95% confidence

interval (CI) 0.985–0.999] was similar to the AUC value for

the RF model (0.999; 95% CI 0.998–1.000), followed by that

associated with the LR model (0.768; 95% CI 0.729–0.808).

When applied to the testing set, the ANN model produced

the highest AUC value (0.761; 95% CI 0.634–0.888; Figure 1).

The RF model also achieved an acceptable AUC value (0.735;

95% CI 0.616–0.854), while the AUC for the LR model was

0.668 (95% CI 0.480–0.857).

As shown in Figure 2, SHAP analysis on the ANN model

showed that presence of a distal aneurysm and treatment

modality were the most important features associated with

periprocedural complications. These were also identified as

important features for the RF model by feature importance

analysis. Aneurysm size was one of the top features for all three

ML models. Overall, we identified distal aneurysm, aneurysm

size, and treatment modality as important features associated

with endovascular treatment.
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FIGURE 1

Receiver operating characteristic (ROC) curves for the three machine learning models (ANN, RF, and LR) on the testing set. ANN, artificial neural

network; RF, random forest; LR, logistic regression.

FIGURE 2

Identification of important features for the three machine learning models. (A) SHAP analysis for the ANN model. (B) Feature importance analysis

for the RF model. (C) Feature importance analysis for the LR model. ANN, artificial neural network; RF, random forest; LR, logistic regression. For

categorical variables, gender (male), potential risk factors (≥2), location (posterior circulation), and shape (irregular) were analyzed as potential

risk factors. Receiver operating characteristic (ROC) curves for the three machine learning models (ANN, RF, and LR) on the testing set. ANN,

artificial neural network; RF, random forest; LR, logistic regression.
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TABLE 1 Results from univariate logistic regression analysis for all

variables.

Characteristics Control group

(N = 395)

Complication

group (N = 48)

P-value

Age (y) 55.59± 11.25 59.13± 12.28 0.043

Elderly 64 (16.2) 17 (35.4) 0.002

Gender (%) 0.276

Male 141 (35.7) 21 (43.8)

Female 254 (64.3) 27 (56.3)

Cigarette smoking

(%)

41 (10.4) 6 (12.5) 0.653

Alcohol intake (%) 36 (9.1) 7 (14.6) 0.232

Hypertension (%) 195 (49.4) 34 (70.8) 0.006

Hyperlipidemia 108 (27.3) 13 (27.1) 0.970

Cardiovascular

disease

17 (4.3) 2 (4.2) 0.965

Diabetes 35 (8.9) 2 (4.2) 0.279

Previous ischemic

stroke

106 (26.8) 17 (35.4) 0.212

Potential risk factors

(≥2)

165 (41.8) 27 (56.3) 0.058

Aneurysm size (mm) 6.71± 4.98 8.67± 5.54 0.014

Large aneurysm (%) 66 (16.7) 15 (31.3) 0.016

Neck size (mm) 5.21± 3.82 5.80± 2.61 0.301

Wide-neck aneurysm 349 (88.4) 47 (97.6) 0.075

Shape (%) 0.731

Regular 305 (77.2) 36 (75.0)

Irregular 90 (22.8) 12 (25.0)

Location (%) 0.906

Anterior

circulation

364 (92.2) 44 (91.7)

Posterior

circulation

31 (7.8) 4 (8.3)

Distal aneurysm 109 (27.6) 20 (41.7) 0.045

Treatment modality

(%)

Coiling 70 (17.7) 5 (10.4) Ref

Stent-assisted

coiling

240 (60.8) 30 (62.5) 0.265

Flow diverter 85 (21.5) 13 (27.1) 0.167

Discussion

Periprocedural complications associated with endovascular

treatment for UIA represent a source of serious concern

for practitioners. In the current study, we developed three

ML models to predict these events and investigate risk

factors associated with periprocedural complications. First and

foremost, our results demonstrate that it is feasible to predict

periprocedural complications associated with endovascular

treatment using ML. Distal aneurysm, aneurysm size, and

treatment modality may be key risk factors associated with

endovascular treatment. Our findings may serve as a reference

for physicians, and aid their decision-making process prior to

UIA treatment.

ML is advantageous in exploring complex non-linear

relationships across large datasets, and is a promising tool

for clinical decision-making (17). Although many studies

have reported successful ML prediction of risk for aneurysm

rupture, there is little research on the application of ML to

the prediction of periprocedural complications associated with

endovascular treatment (18, 19). Ji et al. developed a scoring

system for predicting the risk of neurological complications

after endovascular treatment of UIAs, but their system was

based on only three key factors (aneurysm size, aneurysm

location, and cerebral ischemic comorbidity). Their approach

may therefore be unsuitable for real-world applications (20).

Staartjes et al. explored the feasibility of predicting neurological

deficits after microsurgery for UIAs via application of ML

techniques, and found that these methods support adequate

prediction of early clinical endpoints after microsurgery for

UIAs (21). However, their study did not include endovascularly

treated UIA patients, and their models may therefore perform

poorly when applied to such cases. In this study, we developed

three ML models to predict perioperative complications

associated with endovascular treatment for UIAs. Our results

show that the ANN and RF models deliver satisfactory

performance, indicating that ML is a valuable tool for prediction

of perioperative complications after endovascular treatment

for UIAs.

Distal aneurysm is an important predictor of periprocedural

complications. In distal aneurysms, diameter of the parent

artery and aneurysm size are often relatively small (22). In

addition, the parent artery often presents several anatomical

variants with numerous perforators or important small vessels

that cannot be displayed on digital subtraction angiography.

At the same time, sacrificing such vessels can result in

neurological deficits (20), and distal location can increase

arterial tortuosity. These factors pose serious challenges for

successful endovascular treatment. Furthermore, they restrict

the movement of endovascular devices, thus resulting in a

higher rate of periprocedural complications. In this study, distal

aneurysm was the most important feature for both ANN and

RF models.

The modality of endovascular treatment has been

demonstrated to be closely associated with periprocedural

complications. Piotin et al. reported results from 1137

patients treated by coiling only or stent-assisted coiling (23).

These authors found that stent-assisted coiling caused more

permanent neurologic complications than coiling only (7.4 vs.

3.8%, p= 0.64) and a higher procedure-related mortality (4.6 vs.

1.2%, p = 0.006). Algra et al. reported that stents are associated

with a higher complication risk than coiling (24). Naggara
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et al. found that the use of a flow-diverter device doubled

the risk of unfavorable outcomes compared with simple coil

placement (25). In accordance with these previous studies, we

found that coiling was the safest treatment modality. Compared

with coiling only, both flow-diverter devices and stent-assisted

coiling resulted in more periprocedural complications. We

also found that treatment modality was one of the most

important features for both ANN and RF models, although

this result did not reach statistical significance after univariate

logistic regression analysis. This apparent discrepancy may

be due to the advantage of ML over conventional statistical

methods in dealing with complex non-linear relationships

across large datasets.

Larger aneurysm size has been reported to be associated

with increased risk of periprocedural complications after

endovascular treatment (26). Larger aneurysm size increases

the complexity of endovascular procedures, and impedes good

wall apposition for stent deployment (27). Furthermore, the

embolization rate of intracranial aneurysm decreases with

increasing aneurysm size, which means that larger aneurysms

are more likely to carry residual flow within the coil mass

(28–30). Our results confirm and extend these findings by

demonstrating that aneurysm size is larger in the complication

group compared with the control group. Furthermore, we found

that aneurysm size was an important feature for all three

ML models.

Limitations

Our study presents several limitations. Our dataset is

relatively small and may involve patient selection bias.

Therefore, our results may not generalize well to other patients

and settings. Moreover, the synthetic data generated by the

ADASYN procedure may not adequately represent less frequent

cases. Future verification of our findings and validation of our

models will require larger datasets from multiple centers.

Conclusion

Periprocedural complications after endovascular treatment

for UIA can carry substantial consequences for patients. We

show that these complications can be successfully predicted

using ML models. These models represent promising tools for

aiding decision-making prior to UIA treatment.
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