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Abstract

One of the central challenges for cancer therapy is the identification of factors in the tumor

microenvironment that increase tumor progression and prevent immune surveillance. One

such element associated with breast cancer is stromal fibrosis, a histopathologic criterion

for invasive cancer and poor survival. Fibrosis is caused by inflammatory factors and remod-

eling of the extracellular matrix that elicit an immune tolerant microenvironment. To address

the role of fibrosis in tumorigenesis, we developed NeuT/ATTAC transgenic mice express-

ing a constitutively active NeuT/erbB2 transgene, and an inducible, fat-directed caspase-8

fusion protein, which upon activation results in selective and partial ablation of mammary fat

and its replacement with fibrotic tissue. Induction of fibrosis in NeuT/ATTAC mice led to

more rapid tumor development and an inflammatory and fibrotic stromal environment. In an

effort to explore therapeutic options that could reduce fibrosis and immune tolerance, mice

were treated with the oxysterol liver X receptor (LXR) pan agonist, N,N-dimethyl-3-β-

hydroxy-cholenamide (DMHCA), an agent known to reduce fibrosis in non-malignant dis-

eases. DMHCA reduced tumor progression, tumor multiplicity and fibrosis, and improved

immune surveillance by reducing infiltrating myeloid-derived suppressor cells and increas-

ing CD4 and CD8 effector T cells. These effects were associated with downregulation of an

LXR-dependent gene network related to reduced breast cancer survival that included Spp1,

S100a9, Anxa1, Mfge8 and Cd14. These findings suggest that the use of DMHCA may be a

potentially effective approach to reduce desmoplasia and immune tolerance and increase

the efficacy of cancer therapy.
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Introduction

Over the past decade, it has become increasingly apparent that the cell-centric hallmarks of

cancer must take into account the multi-faceted role of multiple cell types in the tumor micro-

environment (TME) [1–4]. During transition from pre-invasive to invasive breast cancer, the

TME undergoes extensive extracellular matrix remodeling [5] and expresses a stromal-derived

gene expression signature indicative of poor outcome in multiple breast cancer subtypes [6].

In hormone receptor-negative breast cancer, the repertoire of stromal cells in the TME [4, 7, 8]

produces fibrotic foci and earlier invasion [9], which elicit the secretion of inflammatory fac-

tors that contribute to immune suppression in multiple ways [4, 10, 11], including the secre-

tion of a dense fibrotic collagen matrix that impedes the penetration of cytotoxic CD8+

effector T cells (CTL) into the tumor [12]. Additionally, these inflammatory factors facilitate

the recruitment of regulatory T cells (Treg), myeloid-derived suppressor cells (MDSC) and

tumor-activated macrophages, which collectively inhibit CTL activation and antigen presenta-

tion [13–15]. Fibrosis is also accompanied by metabolic changes, including COX2/PTGS2 acti-

vation [16], which elicits an inflammatory stress response [17, 18] as well as the suppression of

CTL activation by glycolysis [19]. These outcomes suggest that therapy targeting the inflam-

matory and desmoplastic TME may be an effective approach to reduce immune tolerance and

enhance the efficacy of cancer therapy [13, 15]. LXRs play an important role in desmoplasia by

transrepression of NFκB-activated pro-inflammatory genes, including IL1, IL6, PTGS2/COX-

2, MMP9 and TNF [20, 21], which accounts in part for their anti-fibrotic activity in the kidney,

liver, heart, lung and retina [22–26]. To address the relationship between LXR activation and

fibrosis in mammary tumorigenesis, we determined whether treatment of fibrotic NeuT/

ATTAC mice [27] with the oxysterol liver X receptor (LXR) agonist, N, N-dimethyl-3-β-

hydroxy-cholenamide (DMHCA) [28], could reduce fibrosis, tumor progression and immune

tolerance. Our results suggest that DMHCA may be a promising therapeutic adjunct for

improving the outcome of HER2/ErbB2 breast cancer.

Materials and methods

Animals

MMTV-NeuT/ATTAC mice [27] were derived from MMTV-NeuT mice (FVB-Tg

(MMTV-Erbb2)NK1Mu/J, Jackson Labs) expressing a constitutively active rat ErbB2[V664E]

gene [29, 30], and FAT-ATTAC mice expressing an FKBPv-caspase-8 fusion protein under

the control of the FABP4 promoter (kindly provided by Dr. Philipp Scherer, University of

Texas Southwestern) [31, 32]. Animal studies were approved by the Georgetown University

Animal Care and Use Committee (GUACUC) in accordance with NIH guidelines for the ethi-

cal treatment of animals. Mice were not maintained for extended periods where tumors could

cause discomfort, and analgesics were not used due to their possible interference with

DMHCA bioavailability. Mice were observed daily for tumors, and when tumor volume

reached 5% of body wt or appeared necrotic, mice were euthanized in accordance with the rec-

ommendations of the American Veterinary Medical Association, https://www.avma.org/sites/

default/files/2020-02/Guidelines-on-Euthanasia-2020.pdf, using carbon dioxide inhalation fol-

lowed by cervical dislocation as stipulated by GUACUC.

Treatments

Mammary gland fibrosis was induced in female six-week-old NeuT/ATTAC mice by i.p. injec-

tion of 0.4 mg/kg AP20187 (MedChemExpress) dissolved in a vehicle (4% ethanol, 10% PEG-

400 and 1.75% Tween-20 in water) three times per week, and are hereafter referred to as
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‘NeuT/ATTAC+AP’ mice. AP20187 is a dimer analog of FK506 and serves as a selective

FKBPv-caspase 8 dimerizer resulting in partial ablation of mammary fat and its replacement

by fibrotic tissue [31, 32]. At eight weeks of age, NeuT/ATTAC+AP mice were administered

ad libitum a diet (LabDiet 5053) supplemented with 0.05% (w/w) DMHCA (WuXi App Tec,

China), which is equivalent to a dose of ~100 mg/kg. No weight loss or overt toxicity resulted

from AP21087 or DMHCA treatment. The treatments are summarized in S1 Fig in S1 File.

Fluorescence-activated cell sorting (FACS)

Tumor and spleen were removed and digested with collagenase D (Roche) at a ratio of 15 ml

collagenase solution per 2 g of tissue for 1 hr at 37˚C with shaking [33]. The cell suspension

was filtered through a 70 μm strainer, washed and erythrocytes lysed before analysis of 1x106

cells by FACS. Viable cells were determined with the Live/Dead Fixable Dead Cell Stain Kit

(Invitrogen) and excluded from analysis, and non-specific binding was blocked with Fc anti-

body CD16/32 (Biolegend). Cells were sorted for CD45+ cells and subsequently for macro-

phages (F4/80+/MHCII+), G-MDSC (CD11b+/Gr-1+), M-MDSC (CD11b+/Ly6C+), dendritic

cells (CD11c+/MHCII+), T cells (CD4+/CD8+), NK cells (CD45+/NK1.1+) and Treg cells

(Foxp3+/CD25+ and Foxp3+ /PD-1-). Cells were analyzed for Foxp3 after fixation in 1% para-

formaldehyde and permeabilization (Permeabilization Buffer, eBioscience). Analysis was con-

ducted by the Flow Cytometry & Cell Sorting Shared Resource using a BD LSRFortessa

analyzer (BD Biosciences) and FCS Express 4 software (De Novo Software). Antibodies are

listed in S1 Table in S1 File.

Immunohistochemistry

Mammary tissue was excised and FFPE sections were prepared as previously described for

IHC [27, 34]. Antibodies are listed in S1 Table in S1 File. Tissues from HER2+ breast cancer

subjects were deidentified and hence did not require approval by an ethics committee.

Quantitative real-time polymerase chain reaction qRT-PCR

RNA was extracted and reverse transcribed using the Omniscript RT kit (Qiagen) as previ-

ously described [27, 34, 35]. PCR was performed in triplicate using an ABI-Prism 7700

(Applied Biosystems) and SYBRGreen I detection (Qiagen) according to the manufacturer’s

protocol. Amplification using the appropriate primers was confirmed by ethidium bromide

staining of the PCR products on an agarose gel. The expression of each target gene was nor-

malized to GAPDH and is presented as the ratio of the target gene to GADPH expression cal-

culated using the formula, 2-ΔCt, where ΔCt = CtTarget-Ct18s [35]. RT-PCR primers are listed in

S2 Table in S1 File.

Second harmonic generation (SHG) and fluorescence lifetime microscopy

(FLIM)

Phasor-mapped FLIM and SHG images were acquired with an Olympus FVMPE-RS (Olym-

pus, Waltham, MA) upright microscope equipped with an Insight X3 laser (Spectra-Physics,

Santa Clara, CA) and a DIVER (Deep Imaging Via Enhanced Recovery) detector [36, 37].

Samples were excited with a 740 nm laser in a two-photon excitation scheme at a laser repeti-

tion rate of 80 MHz. Samples were placed directly on the acquisition window, excited with a

10X air objective (NA-0.3, UPLFLN10X2) (Olympus, Waltham, MA), and SHG signals were

collected with the DIVER detector [38, 39] at 370±10 nm with a combination of UG11 and

BG39 filters. Signals were recorded with a FLIMBox (ISS, Champaign, IL) and converted to a
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phasor plot with SimFCS that was developed by Dr. Enrico Gratton, Laboratory for Fluores-

cence Dynamics, University of California at Irvine (https://www.lfd.uci.edu/globals). Phasor

plots were calibrated using Rhodamine 110 in water, τ = 4.0 nsec [40]. The pixel dwell time

was 20 μsec, and the images scanned 16 times to increase the signal to noise ratio of the phasor

plot. The scanner was controlled by the Olympus microscope and images were collected in the

passive mode with a zoom of 1 corresponding to an image size of 1.2 mm. FLIM data were

analyzed graphically by phasor plots to obtain information on multiple fluorescence compo-

nents [41–43]. The distribution of phasor points originating from FLIM measurements for

mono-exponential and multi-exponential decays appear on or inside, respectively, the univer-

sal semicircle [42] (see Fig 4A and 4B). For SHG microscopy, there is no delay between the

laser pulse and fluorescence, and therefore SHG appears at S = 0, G = 1 in the phasor plot,

which distinguishes it from autofluorescence [38, 39, 42] (see Fig 4E).

RNAseq analysis

RNA was extracted and its quality assessed as previously described [27, 33]. RNAseq was done

by 10X Genomics. Raw data quality was checked using FastQC (v0.11.9), and adapter trim-

ming on raw data was performed using Cutadapt (v2.9). The reference genome was down-

loaded from Ensembl mm10 release 99, and the reference genome index was built using

Bowtie2 (v2.4.1) software. Paired-end trimmed reads alignment and raw read count calcula-

tion were performed using RSEM software (v1.3.1). Statistical analysis were performed using

the DESeq2 package (v1.26) in R (v3.6). Genes with q-value <0.05 were considered as differen-

tially expressed and used as input for Gene Set Enrichment Analysis (GSEA) (v3.0, Broad

Institute). RNAseq data have been deposited in the GEO database under accession no.

GSE166864; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE166864.

Fig 1. DMHCA reduced tumor progression and tumor multiplicity. Fibrosis was induced by i.p. injection of 0.4 mg/kg AP three

times weekly beginning at 6 weeks of age and throughout the interval noted (‘Days on AP’). Beginning at 8 weeks of age, animals

were administered a diet containing 0.05% DMHCA (100 mg/kg) until tumors appeared. A, Survival analysis of tumor progression

following DMHCA treatment of NeuT/ATTAC+AP mice. Statistical significance was determined by the log rank Mantel-Cox test.

B, Tumor multiplicity following DMHCA treatment. Statistical significance was determined by the two-tailed t test.

https://doi.org/10.1371/journal.pone.0248996.g001
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Table 1. Disease networks enriched in genes downregulated in tumors from NeuT/ATTAC+AP mice treated with DMHCA.

Disease Overlap Overlapping Entities p-value Jaccard

similarity

neutrophil infiltration 22 CD14;ANXA1;PTGS2,S100A9;MFGE8;SPP1;CXCL13;CLEC7A;CSF3;CCL5;ENPP2;ADORA1;

MMP12;SFTPD;ANGPT1;SLPI;

1.94E-16 2.81E-02

SLC12A2;MMP3;PTGER4;PTN;SELL;NPY

chronic inflammation 23 CD14;PTGS2;S100A9;MFGE8;SPP1;CXCL13;CSF3,CCL5;MMP12;PTGES;AURKA;SPARCL1;

ENPP2;AREG;SFTPD;ANGPT1;

2.29E-15 2.34E-02

ARG1;LTB;MMP3;PTGER4;SELL;NPY

inflammatory disease 25 CD14;ANXA1;PTGS2;S100A9;MFGE8;SPP1;CSF3;CCL5;CXCL13;CLEC7A;ENPP2;SFTPD;CD83;

SLPI;PTGES;MMP3;PTGER4;

1.46E-14 1.90E-02

WNT7B;ADORA1;MMP12;AREG;ANGPT1;ARG1;SELL;NPY

leukocyte infiltration 20 CD14;ANXA1;PTGS2,S100A9;SPP1;CSF3;CCL5;MMP12;CSN2;ENPP2;AREG;SFTPD;ANGPT1;

CD83;SLPI;PTGES;LTB;

8.56E-14 2.44E-02

MMP3;PTGER4;SELL

fibrosis 31 CD14;ANXA1;PTGS2,S100A9;MFGE8;SPP1;CSF3;CCL5;CLEC7A;AURKA;SPARCL1;ENPP2;

SFTPD;SLPI;PTGES;SREBF1;

1.10E-13 1.31E-02

ADAM33;MMP3;PTGER4;LOXL4;WFDC2;SMOC1;ADORA1;MMP12;AREG;ANGPT1;ARG1;

PDGFD;PTN;SELL;NPY

metastasis 46 ANXA1;PTGS2;S100A9;MFGE8;SPP1;CSF3;CCL5;CXCL13;CLEC7A;PIR;PARD3B;FAM20C;

AURKA;SPARCL1;ENPP2;SEMA3B;

1.34E-13 8.08E-03

SOX13;KRT7;SLPI;PTGES;SLC12A2;SREBF1;AJAP1;MMP3;PTGER4;TYRO3;LOXL4;WNT7B;

DEPTOR;LEF1;WFDC2;S100A6;

MMP12;SEMA3D;AREG;ANGPT1;S100A14;PIK3R5;STARD13;ARG1;LTB;PDGFD;PKP1;PTN;

SELL;NPY

macrophage

infiltration

20 CD14;ANXA1;PTGS2;S100A9;SPP1;CLEC7A;CSF3;CCL5;;ADORA1;MMP12;ENPP2;SFTPD;

ANGPT1;ARG1;SREBF1;PDGFD;

5.52E-13 2.22E-02

MMP3;PTGER4;LOXL4;NPY

inflammation 42 CD14;ANXA1;PTGS2;S100A9;MFGE8;SPP1;CSF3;CXCL13;;PIR;AURKA;SPARCL1;ENPP2;

SFTPD;SOX13;CD83;SLPI;PTGES;

3.53E-12 8.23E-03

SLC12A2;SREBF1;ADAM33;MMP3;PTGER4;TYRO3;DEPTOR;CCL5;WFDC2;SMOC1;ADORA1;

S100A6;MMP12;CSN2;AREG;

IL18R1;ANGPT1;MAL;ARG1;LTB;PDGFD;PTN;SELL;NPY

neoplasm 49 CD14;ANXA1;PTGS2;S100A9;MFGE8;SPP1;CXCL13;CSF3;CCL5;CLEC7A;;NEXMIF;AURKA;

KRT7;SLC12A2;SREBF1;PTGER4;

3.93E-11 6.53E-03

LOXL4;DEPTOR;LEF1;ADORA1;AREG;MAL;STARD13;ARG1;LTB;PDGFD;PKP1;PTN;CD37;

SPARCL1;ENPP2;SEMA3B;SFTPD;

CD83;SLPI;PTGES;ADAM33;AJAP1;MMP3;TYRO3;WNT7B;SMOC1;MMP12;SEMA3D;IL18R1;

ANGPT1;S100A14;SELL;NPY

neutrophil

accumulation

12 CD14;ANXA1;PTGS2;S100A9;SPP1;CLEC7A;CSF3;CCL5;ADORA1;AREG;SLPI;SELL 6.74E-10 2.97E-02

lung metastasis 20 ANXA1;PTGS2;S100A9;SPP1;CSF3;CCL5;MMP12;AURKA;ENPP2;SFTPD;S100A14;KRT7;PTGES;

AJAP1;PDGFD;MMP3;

1.78E-09 1.44E-02

LOXL4;SELL;WNT7B;LEF1

adenocarcinoma 15 ANXA1;PTGS2;S100A9;CSF3;MMP12;AURKA;ANGPT1;S100A14;MAL;LTB;MMP3;PTGER4;

WNT7B;LEF1;WFDC2

2.85E-09 1.98E-02

neoplasm invasion 20 ANXA1;PTGS2;S100A9;SPP1;CCL5;MMP12;ENPP2;AURKA;AREG;ANGPT1;SLPI;PIK3R5;

SLC12A2;CSF3;PDGFD;MMP3;

7.88E-09 1.32E-02

LOXL4;PTN;SELL;LEF1

breast cancer 31 CD14;ANXA1;PTGS2;S100A9;SPP1;MFGE8;CSF3;CCL5;CLEC7A;ENPP2;SEMA3B;KRT7;

AURKA;SPARCL1;SREBF1;AJAP1;

9.12E-09 8.54E-03

MMP3;PTGER4;TYRO3;WNT7B;ADORA1;MMP12;AREG;ANGPT1;S100A14;PIK3R5;STARD13;

ARG1;PDGFD;PKP1;PTN

cancer 41 CD14;ANXA1;PTGS2;S100A9;MFGE8;SPP1;CSF3;CCL5;CXCL13;AURKA;CD37;SPARCL1;

ANXA1;ENPP2;SEMA3B;CD83;

2.11E-08 6.51E-03

(Continued)
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Statistical analysis

Statistical significance of means±S.E. were evaluated using the two-tailed Student’s t test at a

significance of P<0.05. Differences in tumor growth were determined by the log rank Mantel-

Cox test at a significance of P<0.05 using Prism GraphPad software.

Results

The LXR pan agonist DMHCA reduces fibrosis in several non-tumorigenic disease models

[23, 38, 44, 45], and therefore we evaluated its efficacy in our conditional NeuT/ATTAC+AP

mammary fibrosis model expressing a constitutively active ErbB2 gene and LXRβ/NR1H2 as

Table 1. (Continued)

Disease Overlap Overlapping Entities p-value Jaccard

similarity

KRT7;SLPI;PTGES;SREBF1;MMP3;PTGER4;TYRO3;LOXL4;SGSM1;WNT7B;DEPTOR;LEF1;

WFDC2;SMOC1;S100A6;MMP12;

SEMA3D;AREG;ANGPT1;S100A14;MAL;PIK3R5;PDGFD;PTN;SELL;NPY

autoimmunity 17 CD14;ANXA1;PTGS2;S100A9;MFGE8;SPP1;CXCL13;CSF3;CLEC7A;CCL5;MMP12;SFTPD;

CD83;LTB;TYRO3;SELL;NPY

8.97E-08 1.35E-02

Genes are from the RNAseq results in S3 Table in S1 File. Genes depicted in Fig 2C containing an LXR response element are in BOLD. Shown are groups containing

�12 genes with a p-value <0.05.

https://doi.org/10.1371/journal.pone.0248996.t001

Table 2. Genes modulated by DMHCA that positively correlate with increased progression-free survival in breast cancer subjects.

Gene Symbol Gene Name FC padj Ctl Mean DMHCA Mean

Arg1 Arginase 1 10.3 1.54E-02 1,489 15,384

Nrg1 Neuregulin 1 5.4 2.71E-02 249 1,333

Scd2 Stearoyl-CoA Desaturase 4.4 3.37E-05 21,644 95,956

Srebf1 Serum response element binding protein 1 4.3 3.35E-07 23,854 102,661

Arfgef2 ADP Ribosylation Factor Guanine Nucleotide Exchange Factor 2 3.8 2.28E-02 2,447 9,221

St3gal5 ST3 Beta-Galactoside Alpha-2,3-Sialyltransferase 5 3.5 3.09E-05 2,739 9,673

Tnfrsf19 TNF Receptor Superfamily Member 19 3.2 6.71E-02 867 2,817

Stard13 StAR Related Lipid Transfer Domain Containing 13 3.2 6.86E-03 674 2,184

Lhpp Phospholysine Phosphohistidine Inorganic Pyrophosphate Phosphatase 3.2 3.39E-03 343 1,098

Eng Endoglin 3.2 4.13E-02 1,584 5,060

Bckdha Branched Chain Keto Acid Dehydrogenase E1 Subunit Alpha 3.2 1.21E-03 4,328 13,821

Cpd Carboxypeptidase 3.1 1.28E-02 27,885 85,878

Sox13 SRY-Box Transcription Factor 13 3.0 1.46E-03 1,289 3,808

Abca1 ATP Binding Cassette Subfamily A Member 1 2.8 2.45E-03 4,862 13,428

Wnt5a Wnt Family Member 5A -3.1 6.59E-02 1,660 533

S100a9 S100 Calcium Binding Protein A9 -3.3 3.46E-02 303 87

Cd14 CD14Molecule -3.6 5.34E-05 17,094 4,758

S100a6 S100 Calcium Binding Protein A6 -5.8 6.54E-07 15,295 2,619

CD209b Dendritic Cell-Specific Intracellular Adhesion Molecules -9.4 3.06E-03 743 80

Lyz1 Lysozyme -9.8 4.45E-02 1,348 138

Spp1 Secreted Phosphoprotein 1 -15.7 1.33E-12 624,507 39,662

Tumors from NeuT/ATTAC+AP mice were analyzed by RNAseq (see S3 Table in S1 File) and include genes with a raw score >300,�3-fold change in expression and a

padj <0.05. Genes in bold contain an LXRE response element.

https://doi.org/10.1371/journal.pone.0248996.t002
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the major isoform [27]. In this transgenic model, forced dimerization of the fat-directed

FKBPv-caspase transgene by dimerizer AP21087 results in partial ablation of mammary fat,

but not visceral fat [31, 32], and its replacement with fibrotic tissue [31, 32]. Continuous treat-

ment of two month-old NeuT/ATTAC+AP mice with a diet containing 0.05% DMHCA over

several months significantly increased survival (Fig 1A) and reduced tumor multiplicity by

four-fold (Fig 1B).

To provide context for the inhibitory effects of DMHCA, tumors from three control mice

and three DMHCA-treated mice were analyzed by RNAseq. Although this few number of

tumors might be considered a limitation, only genes with a raw score�300 representing a

�3-fold change with a p-value adjusted for multiple comparisons (padj) of<0.05 were evalu-

ated for functional significance (Tables 1–4 and S3 Table in S1 File). RNAseq analysis revealed

Table 3. Genes related to immune suppression that are negatively regulated by DMHCA in tumors from NeuT/ATTAC+AP mice.

Gene Symbol Gene Name Fold Change padj Immune Cell

S100a9 S100 Calcium Binding Protein A9 -3.3 3.46E-02 M-MDSC

Anxa1 Annexin A1 -3.3 1.73E-04 M-MDSC

Cd14 Myeloid Cell-Specific Leucine-Rich Glycoprotein -3.6 5.34E-05 MDSC

Clec7a C-Type Lectin Domain Containing 7A -3.9 1.72E-02 MDSC

Ptgs2 Prostaglandin-Endoperoxide Synthase 2 -4.4 2.95E-02 MDSC

Mfge8 Milk Fat Globule EGF And Factor V/VIII Domain Containing -5.0 1.31E-08 Treg

Wfdc2 WAP Four-Disulfide Core Domain 2 -7.5 6.17E-08 MDSC

Ccl5 C-C Motif Chemokine Ligand 5 -8.9 4.21E-02 MDSC

Lyz Lysozyme -9.8 4.45E-02 M-MDSC

Spp1 Secreted Phosphoprotein 1 -15.7 1.33E-12 G-MDSC

Csf3 Colony Stimulating Factor 3 -20.7 3.31E-03 M-MDSC

Cxcl13 C-X-C Motif Chemokine Ligand 13 -24.9 4.54E-02 MDSC

Sell Selectin L -48.8 1.08E-02 M-MDSC

The immune suppressive cell type is based on the Human Protein Atlas (https://www.proteinatlas.org) and UniProt (https://www.uniprot.org/uniprot) databases. Genes

with a padj <0.05 are listed and those containing an LXRE are in bold. Data are taken from S3 Table in S1 File.

https://doi.org/10.1371/journal.pone.0248996.t003

Table 4. Damage-associated molecular patterns downregulated by DMHCA in tumors from NeuT/ATTAC+AP mice.

Gene Symbol Gene Name FC padj Ctl Mean DMHCA Mean

PRR Ligands

S100A14 S100 Calcium Binding Protein A14 -8.1 4.92E-02 1,119 139

S100A6 S100 Calcium Binding Protein A6 -5.8 6.54E-07 15,295 2,619

HMGN3 High Mobility Group Nucleosomal Binding Domain 3 -4.8 2.00E-03 1,814 377

PTGS2 Prostaglandin-Endoperoxide Synthase 2 -4.4 2.95E-02 635 144

PTGES Prostaglandin E Synthase -3.9 7.14E-02 843 218

HSPB8 Heat Shock Protein Family B (Small) Member 8 -3.5 4.21E-02 2,216 630

S100A9 S100 Calcium Binding Protein A9 -3.3 3.46E-02 302 87

ANXA1 Annexin A1 -3.3 6.82E-02 16,053 4,153

PRRs

CD209B C-Type Lectin Domain Family 4 Member L -9.4 3.06E-03 743 80

CLEC7A C-Type Lectin Domain Containing 7A -3.9 1.72E-02 658 171

Shown are genes from S3 Table in S1 File with a raw score >300,�3-fold change in expression and a padj <0.05. Genes in bold contain an LXR response element.

PRRs, pattern recognition receptors.

https://doi.org/10.1371/journal.pone.0248996.t004
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statistically significant changes in 289 genes, of which 78 were upregulated and 211 downregu-

lated by DMHCA treatment (Fig 2A and S3 Table in S1 File). Approximately 14% of the upre-

gulated and 6% of the downregulated genes contained an LXR response element (LXRE) [46],

and many of the downregulated genes are known to be enriched in malignancies, fibrosis,

immune cell infiltration and inflammatory disorders (Table 1). There was close agreement

between the results of RNAseq and qRT-PCR for the downregulated genes in Fig 2C (S2 Fig in

S1 File). Several of the LXRE genes predicted increased regression-free survival in breast can-

cer subjects (Table 2 and Fig 2B), among which Ptgs2, Mfge8, Anxa1, Spp1, S100a9 and Cd14

are biomarkers for MDSC and Treg cells (Table 3). Interestingly, many of the DMHCA-modu-

lated genes are classified as damage-associated molecular patterns (DAMPS) known to pro-

mote pathological inflammatory responses [47] (Table 4).

Comparison of tumors from NeuT/ATTAC+AP mice with biopsies of HER2+ breast cancer

for fibrosis markers indicated several commonalities, including FAP (fibroblast activation pro-

tein), Ccl5, S100aA9 and collagen expression (Fig 3). Both human and murine tumors exhib-

ited similar patterns (Fig 3A and 3B), and DMHCA treatment reduced fibrosis and expression

of these biomarkers (Fig 3C). To further characterize the link between fibrosis and tumor pro-

gression, we applied the combinatorial approach of FLIM and SHG microscopy [48] used pre-

viously to analyze non-malignant fibrotic tissues [38, 39, 45, 49] (Fig 4). FLIM determines the

spatial distribution of fluorescence decay at each pixel of an image to measure the cellular envi-

ronment by its autofluorescence, and when used with phasor analysis provides a 2-D represen-

tation of the abundance of collagen present [50, 51]. The phasor plot of tumor tissue from

control mice (Fig 4A) showed a greater spread of phasor points compared to the tumor follow-

ing DMHCA treatment (Fig 4B) that is indicative of tumor heterogeneity. The FLIM image of

the control tumor showed an abundance of collagen I (green) & collagen III (dark red) (Fig

4C), which were largely absent after DMHCA treatment (Fig 4D). The phasor signature of

SHG microscopy (Fig 4E, red) indicated separation from fluorescence at G = 1, S = 0 within

the universal semi-circle (black), and the SHG image showed an abundance of collagen I and

III in the control tumor (Fig 4F), whereas markedly less collagen was present after DMHCA

treatment (Fig 4G).

We then determined whether DMHCA treatment resulted in changes in the immune TME

of NeuT/ATTAC+AP mice. DMHCA produced a significant increase in CD4 and CD8 effec-

tor T cells (CD44+/CD62L-) (Fig 5A and 5B) as well as a reduction in both naïve (CD44-/

CD62L+) T cell populations (Fig 5A). Although DMHCA did not reduce the primary popula-

tion of circulating Treg cells (CD4+/Foxp3+/PD-1-) [52], it did reduce the percentages of both

M-MDSC and G-MDSC in tumor infiltrates (Fig 5A) and G-MDSC in the spleen (Fig 5B) and

increased the percentages of macrophages and dendritic cells in the spleen (Fig 5B), but not in

the tumor.

Discussion

The present study has assessed the role of the LXR agonist DMHCA in reducing tumorigenesis

and ameliorating fibrosis and immune tolerance in the NeuT/ATTAC fibrosis model of ErbB2

neoplasia [27]. DMHCA was highly effective in reducing collagen and fibroblast markers in

mammary tumors (Figs 3 and 4) that was consistent with its efficacy in ameliorating fibrosis in

Fig 2. RNAseq analysis of tumors from NeuT/ATTAC+AP mice treated with DMHCA. A, Volcano plot comparing up- and downregulated

genes with a p-value<0.05 and a�3-fold change. B, Kaplan-Meier analysis of survival probability in all breast cancer subjects with high or low

expression of LXR-modulated genes. C, The interrelationship of LXR-modulated genes downregulated in tumors from NeuT/ATTAC+AP mice

after DMHCA treatment.

https://doi.org/10.1371/journal.pone.0248996.g002
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non-malignant disease models of the kidney, liver, lung, heart and retina [38, 39, 53, 54] as

well as in carcinogen [55] and MMTV-PyMT mammary tumorigenesis [56]. The fibrotic

changes in the mammary gland of NeuT/ATTAC+AP mice (Figs 2 and 4) were similar to

Fig 3. Comparison of FAP, CCL5, S100A9 and collagen expression in HER2+ breast cancer and in tumors from NeuT/ATTC

+AP mice and following DMHCA treatment. NeuT/ATTAC mice were administered AP20187 and DMHCA as in Fig 1 and tissues

assessed by H&E staining, FAP, CCL5 and S100A9 by IHC and collagen by PicroSirius Red staining.

https://doi.org/10.1371/journal.pone.0248996.g003
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those described for invasive ductal breast carcinomas in terms of collagen abundance in

fibrotic foci and its association with tumor progression and poor survival [9].

The major transcriptional effects of DMHCA were linked to transrepression of a network

of LXR-responsive genes, including PTGS2, S100A9, SPP1, CD14, CCL5 and ANXA1, which

are overexpressed in MDSC [57–62] and in a significant proportion of breast cancers [63],

where they denote poor survival [57]. Breast cancer cell lines MDA-MB-231 and MDA-MB-

435 are known to secrete CCL5 to increase the development of MDSC [64] and metastasis

[65]. In a similar context, PTGS2 and its product PGE2 increase the differentiation of MDSC

[66, 67] and their capacity to generate Treg cells [68]. LXR agonists were previously found to

inhibit MDSC through the upregulation of ApoE and binding to the low density lipoprotein

receptor LRP8 [69, 70], and the increase in ApoC1 transcription by DMHCA may have a

Fig 4. FLIM and SHG analysis of mammary tumors from control and DMHCA-treated NeuT/ATTAC mice receiving AP21087. FLIM: The red cursor shows the

collagen I phasor signature, where the control tumor (A) has a larger spread of phasor points compared to the tumor from the DMHCA-treated animal (B), and indicates

tumor heterogeneity. Multiple cursors selected areas of the phasor clouds for the control tumor (A) DMHCA-treated tumor (B). The control tumor shows excessive

collagen I deposition shown by the red shading (C), as well as pink and cyan shading, which are largely absent in the DMHCA-treated tumor (D). The orange and olive

green shading in the DMHCA-treated tumor (D) emphasize the changes occurring in the TME as a result of DMHCA treatment. SHG: SHG is generated from the

interaction of light with the non-centrosymmetric structure of collagen I fibers (red shading), and indicates fibrosis. E, The phasor signature of SHG (red shaded cursor) is

separated from fluorescence and appears at G = 1, S = 0), since the harmonic generation signal is not delayed compared to fluorescence, and the phasor from fluorescence

appears inside the universal black semi-circle. Extensive collagen deposition is present in the control tumor (F) and is largely absent in the DMHCA-treated tumor (G),

indicating a marked reduction in fibrosis. The areas represented in F and G are the same areas shown in C and D, respectively. Scale bar, 1.2 mm.

https://doi.org/10.1371/journal.pone.0248996.g004
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Fig 5. DMHCA reduces tumor infiltrating MDSC and increases CD4+ effector T cells. A, Flow cytometry analysis of immune cell subsets

from tumor infiltrates and spleen after DMHCA treatment. There was a significant increase in CD4 effector T cells and a reduction in

M-MDSC and G-MDSC in tumors as well as a reduction of G-MDSC in the spleen. N = 5 per group. G, granulocytic; M, monocytic.

Statistical significance was determined by the two-tailed Student’s t test. B, Representative FACS analyses of tumor infiltrates from control and

DMHCA-treated mice.

https://doi.org/10.1371/journal.pone.0248996.g005
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similar function. Conversely, DMHCA increased expression of several LXR target genes,

including SCD2, SREBF1, CPD and ABCA1 (S4 Table in S1 File), which positively correlate

with increased survival in breast cancer subjects (Table 2).

Associated with reduction of tumor progression and fibrosis by DMHCA were its inhibi-

tory effects on MDSC infiltration coincident and an increased percentage of CD4 and CD8

effector T cells. The latter changes occurred concurrently with a reduction in both naïve T cell

populations in tumor infiltrates, but not in the spleen suggesting their differentiation in

peripheral tissues [71]. This reduction in immune tolerance denoted in interactive LXR-down-

regulated mechanism (Fig 2C) that may have contributed to increased survival, and suggests

that DMHCA may have further therapeutic potential in combination with immune checkpoint

inhibitors.

Overall, the present study suggests that the pleiotropic actions of DMHCA and other LXR

agonists work collectively to reduce collagen deposition and fibrosis [25, 26], proliferation

[72–75] and the immune tolerant TME. The present findings offer the first evidence of the

effectiveness of an LXR agonist in a stringent transgenic model of breast cancer fibrosis, and

suggests a rationale for a new therapeutic approach to enhance the efficacy of therapies for

HER2+ breast cancer and other malignancies.
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