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Abstract How adult stem cells maintain self-renewing tissues is commonly assessed by analysing

clonal data from in vivo cell lineage-tracing assays. To identify strategies of stem cell self-renewal

requires that different models of stem cell fate choice predict sufficiently different clonal statistics.

Here, we show that models of cell fate choice can, in homeostatic tissues, be categorized by

exactly two ‘universality classes’, whereby models of the same class predict, under asymptotic

conditions, the same clonal statistics. Those classes relate to generalizations of the canonical

asymmetric vs. symmetric stem cell self-renewal strategies and are distinguished by a conservation

law. This poses both challenges and opportunities to identify stem cell self-renewal strategies:

while under asymptotic conditions, self-renewal models of the same universality class cannot be

distinguished by clonal data only, models of different classes can be distinguished by simple

means.

Introduction
Adult stem cells are the key players for maintaining and renewing biological tissue, due to their abil-

ity to persistently produce tissue cells through cell division and differentiation (National Institute of

Health, 2009). For maintaining tissues in a homeostatic state, it is crucial that stem cells adopt suit-

able self-renewal strategies, a pattern of stem cell fate choices that balances proliferation and differ-

entiation; otherwise, imbalanced proliferation may lead to hyperplasia and cancer. Therefore, the

understanding and identification of stem cell self-renewal strategies has been a major goal of stem

cell biology ever since the discovery of adult stem cells.

Classically, two stem cell self-renewal strategies have been proposed (Potten and Loeffler,

1990; Simons and Clevers, 2011a): following the Invariant Asymmetric division (IA) strategy, stem

cells undertake only asymmetric divisions, whose outcome is one differentiating cell and one stem

cell as daughter cells. The other proposed strategy, Population Asymmetry (PA) (Potten and Loef-

fler, 1990; Simons and Clevers, 2011a; Watt and Hogan, 2000; Klein and Simons, 2011), features

additionally symmetric divisions, which produce either two stem cells or two differentiating cells as

daughters, yet in balanced proportions. Both patterns of cell fate choice leave the number of cells

on average unchanged and thus can maintain homeostasis. Assessing stem cell self-renewal strate-

gies experimentally is difficult in vivo, since direct observation of cell divisions is rarely possible. Yet,

through genetic cell lineage-tracing assays, the statistics of clones – the progeny of individual cells –

can be obtained, and via mathematical modeling assessing cell fate dynamics became possible. With

such an approach several studies suggested that population asymmetry prevails in many mouse tis-

sues (e.g. Clayton et al., 2007; Lopez-Garcia et al., 2010; Simons and Clevers, 2011b;

Doupé et al., 2012; Klein et al., 2010).
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However, the interpretation of those studies has been challenged by a suggested alternative self-

renewal strategy, called Dynamic Heterogeneity (DH), featuring some degree of cell fate plasticity

(Greulich and Simons, 2016). In this model, all stem cell divisions are asymmetric, yet it is in agree-

ment with the experimental clonal data that had previously been shown to agree also with the popu-

lation asymmetry strategy. Thus, those two strategies are not distinguishable in view of the clonal

data.

This raises the question to what extent different stem cell self-renewal strategies can be distin-

guished at all via clonal data (Klein and Simons, 2011; Greulich, 2019). Here, we address this ques-

tion by studying models for stem cell fate choice, which define the self-renewal strategies, in their

most generic form. We show that many cell fate models predict, under asymptotic conditions, the

same clonal statistics and thus cannot be distinguished via clonal data from cell lineage-tracing

experiments. In particular, we find that there exist two particular classes of stem cell self-renewal

strategies: one class of models which all generate an Exponential distribution of clone sizes (the

number of cells in a clone) after sufficiently large time, and one which generates a Normal distribu-

tion under sufficiently fast stem cell proliferation. Crucially, these two classes are not differentiated

via the classical definitions of symmetric and asymmetric stem cell divisions, but by whether or not a

subset of cells is conserved. These classes thus bear resemblance to ’universality classes’ known

from statistical physics, as suggested in Klein and Simons, 2011. This leads us to a more generic,

and in this context more useful, definition of the terms ‘symmetric’ and ‘asymmetric’ divisions. Nota-

bly, however, we find that the conditions for the emergence of universality are not always fulfilled in

real tissues, which provides chances, but also further challenges, for the identification of stem cell

fate choices in homeostatic tissues.

Strategies for stem cell self-renewal
The two classical stem cell self-renewal strategies, Invariant Asymmetry (IA) and Population Asymme-

try (PA) (Potten and Loeffler, 1990; Simons and Clevers, 2011a; Watt and Hogan, 2000;

Klein and Simons, 2011), are commonly described in terms of two cell types: stem cells (S) which

can self-renew (i.e. divide without reducing their potential to divide in the future); and differentiating

cells (D). Both strategies can be expressed in terms of a single parametrized stochastic model, a

multi-type branching process (Haccou et al., 2005), defined by the outcomes of cell divisions (the

cell fate choices),

S�!l
Sþ S with probability r

SþD with probability 1-2r

DþD with probability r

8

<

:

; (1)

where cells of type S divide with rate l. Here, a daughter cell configuration Sþ S corresponds to

symmetric self-renewal division and DþD to symmetric differentiation, while daughter cells of differ-

ent type, SþD, marks an asymmetric division. In the basic model version, a cell of type D is eventu-

ally lost with rate g , D�!g ; (corresponding to death, shedding, or emigration of D-cells), while other

versions may include the possibility of limited proliferation as committed progenitor cells. The two

self-renewal strategies, IA and PA, are distinguished by the value of the symmetric division fraction r:

the PA model corresponds to any 0<r� 1

2
; the IA model is defined by r¼ 0, that is, only asymmetric

divisions occur.

To maintain homeostasis, the number of cells must stay, on average, constant. Thus cells follow-

ing the PA strategy must regulate the probabilities of symmetric self-renewal and differentiation to

be exactly equal, whereas for the IA model this is trivially assured. However, only for the IA model is

the number of stem cells strictly conserved, that is, no gain or loss of stem cells is possible.

A way to assess self-renewal strategies experimentally is via genetic cell-lineage tracing

(Kretzschmar and Watt, 2012; Blanpain and Simons, 2013): By marking single cells with an inherit-

able genetic marker (through a Cre-Lox system [Soriano, 1999; Sauer, 1998]) each cell’s progeny,

called a clone, which retain that marker, can be traced. The number of cells per clone, that is the

clone size, is measured and the statistical frequency distribution of clone sizes (clone size distribu-

tion) determined. To test the cell fate choice models on that data, one evaluates the models with a

single cell as initial condition and samples the outcome in terms of the final cell numbers – the size
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of a virtual clone. In the basic version of the model (i.e. when D�!g ;), the IA and PA models predict,

respectively, a Poisson and an Exponential clone size distribution for large times (Klein and Simons,

2011; Antal and Krapivsky, 2010) (see also the Appendix, ’Invariant Asymmetry and Population

Asymmetry models’). Thus, they are fundamentally different and can easily be distinguished when

compared with clonal data. By a series of lineage-tracing experiments it was confirmed that Expo-

nential clone size distributions prevail for most mouse tissues, which thus exclude the IA model and

support the PA strategy (Clayton et al., 2007; Lopez-Garcia et al., 2010; Simons and Clevers,

2011b; Doupé et al., 2012; Klein et al., 2010).

While this seemed to settle the case in favour of the PA strategy, at least for most adult mouse

tissues, this was challenged by a third type of strategy, the DH model (Greulich and Simons, 2016).

Motivated by the emerging view of prevailing cell plasticity (Blanpain and Fuchs, 2014;

Tetteh et al., 2015; Tetteh et al., 2016; Donati and Watt, 2015), the DH model considers the pos-

sibility of reversible switching between two cell types:

S�!l SþD; S
!S

��*)��
!D

D; D�!g ; : (2)

where symbols at arrows denote the process rates (frequency of events). This strategy is also capable

of maintaining a homeostatic population if g=l¼ !S=!D. Notably, the DH model only features asym-

metric divisions (in that daughter cells are of different type), like the IA model, yet the DH model

predicts clonal statistics that are indistinguishable from the PA model (Greulich and Simons, 2016).

This means that in view of the existing clonal data for mouse tissues, the DH model, may as well

describe the real cell fate dynamics. More fundamentally, this implies that the PA and DH model can-

not be distinguished via plain clonal data, which poses fundamental limitations to the common

approach to use lineage tracing for determining cell fate choices.

This demonstrates that the classical definition of asymmetric and symmetric divisions is not always

suitable to distinguish cell fate strategies in view of clonal data alone. In general, cell fate dynamics

may be much more complex than the simplified models described above, as there may exists a

plethora of cell (sub-)types in a tissue. However, to what extent would it be possible to distinguish

details of potentially rather complex cell fate dynamics models through comparison with clonal data

at all? This is only the case if the clonal statistics are sufficiently different. In the following, we study

cell fate models in their most generic form, and analyze what clonal statistics would be expected.

Results

Model generalization
Let us consider the dynamics of a generic system of cells, characterized by a number m of possible

cell states Xi, i ¼ 1; :::;m. We define a cell state here as a group of cells showing common properties

(e.g. any cell sub-type classification). Most generally, cells in a state Xi may be able to divide, produc-

ing daughter cells of any cell states Xj and Xk (where i ¼ j ¼ k, that is, simple cell duplication, is possi-

ble). Furthermore, any cell state Xi may turn into another state Xj or may be lost (through

emigration, shedding, or death). Hence, we can write a generic cell fate model as,

cell division: Xi �!
lir

jk

i
XjþXk (3)

cell state change: Xi �!
!ij

Xj (4)

cell loss: Xi �!
gi ; ; (5)

where i; j;k¼ 1; :::;m. In this model, li is the rate of division of cells in state Xi and the parameter rjki
corresponds to the proportion of division outcomes producing daughter cells of state Xj and state

Xk; wij is the transition rate from state Xi to state Xj and gi the loss rate from state Xi.

The dynamics of each cell in Equations 3-5 could depend on the cell environment through spa-

tial, cell-extrinsic regulation of cell fate. However, the clonal statistics of spatial models that include
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cell-extrinsic regulation of cell fate (models of the voter type [Clifford and Sudbury, 1973]) are, in

the long term, the same as for the corresponding branching process models (Haccou et al.,

2005), as Equations 3-5 are, except for one-dimensional arrangements of cells (as shown in

Klein and Simons, 2011; Bramson and Griffeath, 1980). Here, we are focussing on the long-term

clonal statistics of self-renewal strategies, and since this is not affected by cell-extrinsic regulation,

for tissues with two-dimensional or three-dimensional arrangements of dividing cells (like epithelial

sheets, and volumnar tissue), we wish to keep the analysis simple and therefore choose dynamics

(and thus the parameters li; !ij; r
jk
i ; gi) to be independent of the cell environment.

In the following, we study the dynamics of cell numbers in each state Xi, ni. To gain initial insight

into those dynamics, let us first consider the time evolution of the mean cell numbers, �ni ¼ hnii, given
by,

d

dt
�ni ¼

X

j

lj2r
i
j þ!ji

� �

�nj �ðli þ
X

j

!ijþgiÞ�ni : (6)

in which r
j
i ¼
P

kðrjki þ r
kj
i Þ=2 is the probability of having a daughter cell in state Xj produced upon divi-

sion of a cell in state Xi. This linear system of differential equations can be written more compactly in

terms of the mean cell number vector �n¼ ð�n1;�n2; :::;�nmÞ,
d

dt
�n¼ A�n; (7)

with A being the m�m matrix

A¼
k11 � d1 k21 k31 � � �
k12 k22� d2 k32 � � �
k1m k2m � � � kmm � dm

0

B

@

1

C

A
; (8)

where we defined the total transition rate kij ¼ li2r
j
i þ!ij, combining all transitions from Xi to Xj by

cell divisions and direct transitions, and the local loss rate di ¼ li þ
P

j!ijþgi.

Models of the form Equations 3–5 are not generally in homeostasis, which in this context is

defined by the existence of a stationary state �n�, with d�n�=dt ¼ 0, that is (Lyapunov) stable and non-

trivial (for a discussion, see the Appendix ’Conditions for homeostasis’). This can in principle be

assessed through the spectral properties of A (Åström and Murray, 2008), but applying spectral

conditions explicitly is unwieldy and difficult to interpret biologically. For a more intuitive view, we

interpret the system, Equation 7, as a network (graph): the matrix A can be interpreted as the adja-

cency matrix of the cell state network. This is a weighted directed graph in which cell states corre-

spond to the graph’s nodes and a link from state Xi to Xj exists where a transition is possible, that is,

when kij>0. The value of kij also denotes the link weights (diagonal elements of A can be considered

as self-links). Now, we note that Equation 7 is linear and cooperative, that is, the off-diagonal ele-

ments of matrix A are non-negative, and for such systems more simple and intuitive conditions for

homeostasis exist (Greulich et al., 2019), based on a decomposition into the network’s Strongly

Connected Component (SCC). An SCC is a sub-graph that groups nodes which are strongly con-

nected, that is, which are mutually connected by paths (more accurately: two nodes, Xi and Xj are

strongly connected if there exists a path from Xi to Xj and from Xj to Xi on the network). An example

of such a decomposition, which yields an acyclic condensed network that contains SCCs as nodes

and directed links between them, is shown in Figure 1.

The stability of systems like Equation 7 is then determined by the dominant eigenvalues �k of

each strongly connected component k, for k ¼ 1; :::;mS where mS is the number of SCCs, and their

topological arrangement (the Perron-Frobenius theorem assures that for adjacency matrices of SCCs

of cooperative systems, a unique, real, maximal eigenvalue exists, which is the dominant eigenvalue

[Arrow, 1989; Greulich et al., 2019]). In brief, according to Greulich et al., 2019, the conditions for

existence of a homeostatic state are that, at the apex of each lineage (the condensed cell state net-

work), there must be an SCC with dominant eigenvalue �k ¼ 0, while all SCCs downstream of the for-

mer must have �k<0 (see detailed discussion in the Appendix, ’Conditions for homeostasis’). Given

this structure of homeostatic models, we can define two compartments in the cell state transition

network: (1) the (self-) Renewing compartment (R), which is the SCC at the apex of the lineage tree;
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and (2) the Committed compartment (C), which consists of all SCCs with �k<0, that is, those down-

stream of the apex SCC. Importantly, cells in states forming R have the potential to return to any

state within the same compartment and this population maintains itself. Instead, the cell population

in C would vanish without external input, since the combined dominant eigenvalue of all those SCCs

is negative (it is the maximum of all SCCs’ �k<0), thus the progeny of each cell in the committed

compartment will eventually be lost. We can thereby classify cells as being of a (self-)Renewing type

(R) if their state is within R, and of a Committed type (C) if their state is in C. With this coarse-grained

classification, a generic homeostatic model can be represented in terms of compartments R and C
as,

R�!lR
RþR withprobability rRR

RþC withprobability1� rRR� rCC

CþC withprobability rCC

8

>

<

>

:

; (9)

R�!!RC
C; C�!lC CþC; C�!gC ;;

where the symbols above arrows are the effective rates of those events, denoting the average fre-

quency at which they occur (loss events R!; are not explicitly included, since they can be approxi-

mated by a short lived state Xd in C, as R! Xd !;). To be compatible with a homeostatic condition,

it is further required that (i) the R-population remains on average constant (�k ¼ 0), that is,

lRrRR ¼ lRrCC þ!, and (ii) the loss rate of C must exceed its proliferation rate (�k<0), that is, gC>lC.

Figure 1 shows how a generic homeostatic cell state network can be condensed into an effective

model of renewing and committed cell states, according to Equation 9. It has to be noted, however,

that the events depicted in Equation 9 are not Markovian, that is, the timing of events is not inde-

pendent from each other and depends on their history. Thus, the ‘rates’ lR, lC, !RC, and gC are not

constant rates in the Markovian sense, yet we can define them by the mean frequency of events

occurring (see Appendix ’Approximation of generic GIA models’ and ’Asymptotic clone size distribu-

tions: mathematical analysis’).

The formulation in terms of renewing and committed states can help us to gain insights into

potential behaviors of generic homeostatic cell fate models. In particular, we define generalized

asymmetric divisions as events of the type R ! Rþ C, and generalized symmetric divisions as events

of the type R ! Rþ R (symmetric renewal) and R ! C þ C (symmetric commitment). With these

Figure 1. Illustration of the decomposition of a homeostatic cell state network into SCCs and the compartment representation, Equation 9. (Left): An

example cell state network representing the matrix A in Equation 8 (self-links not displayed). The dashed circles denote the network’s Strongly

Connected Components (SCCs ) (see definition in text). (Middle): The Condensed network is the corresponding network of SCCs, Sk , wherein SCCs are

the nodes and a link between two SCCs exists if any of their states are connected. For homeostatic networks, an SCC with dominant eigenvalue � ¼ 0

is at the apex, while other SCCs have �<0. (Right): We distinguish two compartments, the Renewing compartment R, consisting of the apex SCC, with

� ¼ 0, and the Committed compartment C consisting of the remainder, with �<0.
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definitions, we can categorize homeostatic cell fate models into two classes: Generalized Invariant

Asymmetry (GIA) models are those which only exhibit R ! Rþ C divisions in the renewing compart-

ment, while Generalized Population Asymmetry (GPA) are models for which such restriction does

not hold. We note that the two classes are equivalently characterized by a conservation law: For GIA

models, the number of cells in R is strictly conserved, while for GPA models, no such conservation

law holds. Since � ¼ 0 is necessary for conservation, the only possible conserved cell states in

homeostasis are those in R. Naturally, the previously discussed IA model is a GIA model and the PA

model is a GPA model. Notably, the DH model (Equation 2) is of the GPA category, since in that

model S and D cells form a single SCC at the apex of the lineage hierarchy, and thus they are both

part of R. Therefore, a division S ! Sþ D in the DH model, which is asymmetric in the conventional

sense, corresponds to R ! Rþ R in terms of compartments (Equation 9) and thus it is a generalised

symmetric division. According to this classification, PA and DH models are both in the same cate-

gory (GPA), and indeed, both predict the same type of clone size distribution, an Exponential one

(Greulich and Simons, 2016).

Numerical simulation of random cell fate models
To check whether the correspondence between model class, GIA vs. GPA, and predicted clonal sta-

tistics holds in general, we analyze the clonal dynamics numerically, by generating and testing a

large number of random stochastic models, implemented via random generation of the parameters

li, wij, g i and r
jk
i . To simulate clones, we perform stochastic simulations based on the Gillespie algo-

rithm (Gillespie, 1977), assuming a Markov process following the rules of Equation 3-5. We run, for

each model, a large number of simulations with initially one cell in the compartment R, thus the cell

population of each simulation run represents one clone. Then we sample their outcomes, the total

cell numbers per clone (the clone size) n ¼Pi ni, to obtain predictions for clonal statistics, namely

the frequency distribution of clone sizes (clone size distribution) and mean clone sizes (see Materials

and methods).

We first study the mean clone size of surviving clones (with n>0), �ns ¼ hnijn>0, shown in Figure 2,

respectively, for the GIA and GPA models, as a function of time (the final time t ¼ 20=amin where

amin is the minimal process rate, amin ¼ minðl1; :::; !12; :::; dmÞ). We note that indeed a common

behavior is seen in each case. While for every simulated GIA model, �ns saturates at a plateau value,

it steadily increases for every GPA model. This is expected, and can be understood given that clones

in a GPA model can go extinct while those in a GIA model not. Assume that there are initially a large

number Nc of clones, such that the total number of cells is ntot ¼ Nc �ns. Since the system is homeo-

static, it will reach a constant steady state n�tot after a sufficient amount of time, meaning that the

mean clone size is �ns ¼ n�tot=Nc. If no clones go extinct, as in GIA models, Nc is constant and thus �ns

approaches a constant. However, in non-conserved multi-type branching processes, as GPA models

are, the clone number Nc decreases through progressive extinction of clones (Haccou et al., 2005),

and therefore �ns increases, despite the cell population as a whole staying stationary.

The resulting clone size distributions for the two model classes are shown in Figure 3. Here,

clones sizes n are rescaled by the mean value �ns and compared to an Exponential distribution of uni-

tary mean (green curve). As conjectured, all simulated GPA models shown in panel (b) predict

asymptotically the same rescaled clone size distribution, namely a standard Exponential distribution.

Deviations exist for small times and small clone sizes, but these deviations vanish in the large time

limit (details on the convergence are shown in the Appendix, ’Analysis of the generalized Population

Asymmetry model’). This means that different models within the GPA class cannot be distinguished

in the long-term limit, since they differ only by the mean clone size, which is a free fit parameter. In

analogy to statistical physics, we can categorize them as a universality class (Klein and Simons,

2011), meaning that the details of the model do not affect the (scaled) outcomes for assymptotic

conditions, which is a form of weak convergence of random variables (Billingsley, 1968). However,

the same cannot be said about the GIA models. In fact, we see all kind of shapes in the clone size

distributions, both peaked distributions and non-peaked ones, and in fact, some distributions are

even close to an Exponential form, and can thus not be distinguished from GPA models. The ques-

tion is whether we can yet find other parameters for which, when large, also GIA models exhibit uni-

versality, that is, yield the same rescaled clone size distribution. For this purpose, we will in the

following sections develop a deeper theoretical understanding of the model classes.
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Mathematical analysis: Markovian approximation of compartment
model
To obtain a deeper understanding of the numerical results, we study the cell fate models in terms of

the compartment representation, Equation 9. In this representation models are not Markovian, yet

we can study their Markovian counterpart, as an approximation. While this is not expected to yield

accurate clone size distributions in general, the limiting distributions of non-Markovian processes are

commonly well estimated by their Markovian counterparts.

For GIA models, which only feature R ! Rþ C transitions between the renewing compartment, C,
and the committed compartment, C, a corresponding Markovian model reads,

X1�!
l1

X1 þX2; X2�!
l2

X2þX2; X2�!
g ;; (10)

in which X1 represents a single state in R and X2 in C, and symbols at arrows are the process rates.

The number of cells in X1, n1, is conserved, that is, given an single X1-cell initially, it always remains at

n1 ¼ 1. Thus, we only need to consider the dynamics of cells in X2, n2. This Markov process can be

solved analytically, and for sufficiently large steady state mean number of X2-cells,

�n2 ¼ hn2i ¼ l1=ðg�l2Þ (see Appendix, ’GIA0 test case: steady state distribution and limiting behav-

ior’), the rescaled distribution of cells in X2 is,

Pðx2Þ ¼ ð1� l̂2Þ
l̂1

l̂2 l̂

l̂1x2

ð1�l̂2Þ
2

G l̂1
l̂2
þ l̂1

1�l̂2
x2

� �

x2G
l̂1
l̂2

� �

G l̂1
1�l̂2

x2

� � ; (11)

in which x2 ¼ n2=�n2, l̂1 ¼ l1=g and l̂2 ¼ l2=g and Gð:::Þ is the Gamma function (Abramowitz and

Stegun, 1972). We note that this distribution exhibits a large variety of shapes: for large l̂1 the dis-

tribution is peaked, while for small l̂1 is loses its peak. Notably, for l̂1 ! 1 and l̂2 ! 1, the distribu-

tion becomes Exponential and in this case it cannot be distinguished from the GPA case. On the

other hand, for l̂1 !¥, that is, when the ratio of asymmetric divisions over the loss rate is high, this

Figure 2. Mean size of surviving clones, �ns, as a function of time for random GIA models (a), and GPA models (b). In (a), t ¼ 20=amin, in (b), t is the

time at 98% clone extinction. The grey shade represents the percentile of all the simulations (black lines limit the 5-95%ile range); the blue curves

correspond to some illustrative selected simulations. Simulations for which the final mean is below two and where the final condition is not achieved

(due to computational limitations) are not included: this results in 238 and 571 models, respectively for the GIA and GPA cases.
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distribution tends to a Normal distribution with unitary mean and variance equal to 1=l̂1. These dif-

ferent behaviors are graphically shown in the Appendix (see Appendix 1—figure 6, 7 and 8).

For the GPA models, a Markovian approximation reads, accordingly,

X1�!
l1

X1 þX1 withprobability r1

X1 þX2 withprobability1� r1 � r2

X2 þX2 withprobability r2

8

>

<

>

:

; (12)

X1�!
!
X2; X2�!

l2
X2 þX2; X2�!

g ;:

whereby for homeostasis to prevail, l1r1 ¼ l1r2 þ! and l2<g must hold. We note that the dynamics

of X1 are independent of X2 and thus for the number of cells in X1 in homeostasis holds

n1 �!l1r1 n1
n1 � 1; (13)

which corresponds to a simple continuous-time branching process with two offspring, for which it is

known that the resulting distribution of cell numbers is Exponential, that is, P1ðn1Þ ¼ �n�1

1;s e
�n1=�n1;s ,

where �n1;s ’ l1r1t is the mean number of cells in the surviving clones (Haccou et al., 2005).

X2 cells produced according to 12 follow the same fate as in the two-state GIA model above.

While it is not assured that the distribution of X2 cells is identical to that of Equation 11 (due to

simultaneous production events of type X1 ! X2 þ X2), we show in the Appendix, ’Asymptotic clone

size distributions: mathematical analysis’, that for large rates of production of C-cells, the distribution

of C-cells – here: cells in state X2 – attains a Normal distribution with mean �n2 equal to its variance

s2

n2
¼ hðn2 � �n2Þ2i ¼ �n2. As each X1 cell contributes independently to the production of X2-cells, we

have that �n2 ~ n1;s ~ t. Crucially, this means that in terms of the rescaled variable x2 ¼ n2=�ns the stan-

dard deviation sx2 ¼
sn2

�ns
� 1

ffiffiffiffi

�n2
p ~ t�1=2 vanishes for large times, since �n2 ~ n1;s ~ t ! ¥. Hence, given

fixed x1, x2 can be approximated by a constant random number x2jx1 ~�x1 ¼ n1=�ns. Therefore, the

Figure 3. Rescaled clone size distributions (expected relative frequency P of clone sizes) for random GIA models (a), and GPA models (b), in terms of

the rescaled clone size x ¼ n=�ns, at final time t ¼ t (see Figure 2 for definition). The grey shade represents the percentile of all the simulations (black

lines limit the 5-95%ile range); the blue curves correspond to some selected simulations. A reference curve corresponding to an Exponential

distribution of unitary mean (’Exp(1)’) is shown in green.
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rescaled distribution of the total number of cells is PðxÞ ¼ P1ðx� x2Þ ¼ e�x, where �x ¼ �x1 þ �x2 ~�x1.

Thus, the rescaled distribution of the total clone size, x ¼ n=�ns, is as well an Exponential.

Universality of generic cell fate models
For generic GIA or GPA models, the compartment representation, Equation 9, is not Markovian and

one would not expect exactly the distributions we found in the previous section. Fortunately, the lim-

iting distributions of non-Markovian processes and their Markovian counterparts are often, under

certain conditions on the parameters, the same. While we reserve the technical arguments for the

Appendix (’Asymptotic clone size distributions: mathematical analysis’), we note that this indepen-

dence of the limiting distribution on the Markov property related to the central limit theorem, which

does not rely on the Markov property.

To identify the correct limiting parameters for more complex cell fate models, we need to express

the effective non-Markovian rates (i.e. the mean frequency of events) of representation nine in terms

of the original model, 3–5. As discussed in the Appendix (’Approximation of generic GIA models’

and ’Asymptotic clone size distributions: Mathematical analysis’), we identify those effective rates by

the total rates of cell divisions, lR ¼Pi2R liP
R
i , gC ¼Pi2C giP

C
i , and !RC ¼Pi2R;j2C !ijP

R
i where, for

each compartment, P
R;C
i ¼ �ni=

P

j2R;C �nj is the probability of a single cell being in state Xi of R,

respectively (�ni are the solutions to Equation 6). In the Appendix, ’Asymptotic clone size distribu-

tions: mathematical analysis’, we reason that all GPA models are expected to generate Exponential

clone size distributions for large times t. This is indeed what is observed in Figure 3(b). Correspond-

ingly, for GIA models we expect that for large l̂R ¼ lR=gC the clone size distribution of GIA models

would tend to a Normal distribution. To test this prediction, we simulated the same GIA models as

for Figure 3 before, but we tuned parameters in R such that the effective parameter l̂R becomes

large (see details in the Appendix, ’GIA model for large l̂R’). The result is shown in Figure 4: for an

illustrative case shown in panel (a), increasing l̂R changes the distribution from an exponential form

to a peaked form akin to a Normal distribution, and for all simulated random GIA models, shown in

panel (b), a Normal distribution is approached when l̂R becomes large.

We note that when taking the limit of large l̂R, as shown in Figure 4, also all other process rates

wij with i,j within R increased as well. What if instead some process rates in R do not scale to

become large with l̂R? To assess this situation, we studied a simple test case similar to model 10 but

containing two states in R, connected via direct state transition (see Appendix, ’GIAB test case:

bimodal distribution’). As discussed there, if all rates within R are large compared to the rates in C
then indeed we observe a Normal clone size distribution, as expected. However, if the direct transi-

tion rates between the states of R are smaller or of equal magnitude as gC, and in addition, one of

the two division rates is higher then the other, then we observe a bimodal clone size distribution.

The reason is that if the transitions between the two states in R are rare compared to the life time of

cells, 1=gC, they become essentially separated and each of those states generate separate Normal

distributions with different mean (due to different cell division rates in those two states) which, when

overlaid, generate a bimodal clone size distribution (see detailed arguments in the Appendix,

’Asymptotic clone size distributions: mathematical analysis’).

Finally, from those considerations follows:

1. GPA models attain an Exponential clone size distribution for time t ! ¥.
2. GIA models attain a Normal clone size distribution if all process rates within R are much larger

than the inverse lifetime of C-cells, gC.

Hence, the GIA and GPA model classes, each represent a universality class, that is, a scaling limit

exists in which all models of the same class yield the same rescaled clonal statistics.

Discussion
Our analysis shows that intrinsic limitations exist for identifying strategies of stem cell self-renewal

through clonal data from cell lineage-tracing experiments. This is due to different models of cell fate

choice generating the same type of clonal statistics (clone size distributions), so that model inference

based on clonal statistics – currently still the most prevalent method to determine stem cell self-

renewal strategies – fails to distinguish them. The feature that different models asymptotically
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generate the same statistics is a form of weak convergence of random variables (Billingsley, 1968)

and corresponds to universality, as known from statistical physics.

Cell fate models can in principle be very complex, with a plethora of cell (sub-)types in a tissue.

We introduced a new categorization of cell types, distinguishing between cell states that are com-

mitted (C-cells), whose progeny is inevitably lost eventually, and non-committed or (self-)renewing

cell states (R-cells), which retain the potential to remain or return to the apex of the lineage hierar-

chy. According to this categorization we classified generic models of cell fate choice as Generalized

Invariant Asymmetry (GIA), if only generalized asymmetric divisions of the form R ! Rþ C occur for

R-cells, and Generalized Population Asymmetry (GPA), when all kind of divisions can occur, as long

as gain and loss of R-cells are balanced. Models of the GIA category are also characterized by a con-

servation law, since the number of R-cells is strictly conserved, while GPA models do not exhibit

such a conservation law.

We found that the classification in GIA and GPA models mirrors the clonal statistics generated by

them: models of the GPA class all generate clonal statistics which with time converge to an Exponen-

tial clone size distribution. Thus, two GPA models can therefore not be distinguished through clonal

data, once some time has passed after induction of clones. For GIA models, distributions can gener-

ally vary, but if the rates of divisions and transitions in the R compartment are much larger that the

rate of cell loss, the clone size distribution of all those models becomes a Normal distribution. In

that case, two GIA models can not be distinguished by the clonal data. While here we do not explic-

itly consider cell-extrinsic regulation of cell fate, this kind of regulation does not affect long-term

clone size distributions, except when cells are arranged one-dimensionally (Klein and Simons, 2011;

Bramson and Griffeath, 1980). Thus, our results cover cell dynamics in most renewing tissues, such

as epithelial sheets or volumnar organs, but not (quasi-)one-dimensional arrangements of stem cells,

as found in the seminiferous tubule, or in intestinal crypts, where clonal statistics may differ. Hence,

our analysis shows that models of cell fate choice cannot in general be distinguished with further res-

olution beyond the R vs. C categorization of cell types. The universality of the model dynamics also

Figure 4. Rescaled clone size distributions (expected relative frequency P of clone sizes) for random GIA models as in Figure 3, at time t ¼ t (see

definition in Figure 2). Sensitivity to parameter l̂R is shown for one illustrative case in panel (a), and all GIA models for l̂R ¼ 30 in panel (b). The

distributions are shown in terms of the rescaled variables x ¼ n=�ns for panel (a) and ~x ¼ ðn� �nsÞ=sn, where sn is the distributions variance, in panel (b). In

(b), the grey shade represents the percentile of all simulations (black lines limit the 5-95%ile range); the blue curves correspond to some selected

simulations. A reference curve corresponding to a Normal distribution of zero mean and unitary variance is shown in green. Simulations for which t ¼ t

is not reached (due to computational limitations) are not included, resulting in 922 model instances.
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shows that effective, simplistic models are often equally accurate to model experimental data, yet

with a higher statistical power due to less free parameters.

While at first glance, this analysis seems to discourage efforts to unravel details of cell fate

dynamics, room remains in regimes where the limiting conditions for asymptotic distributions are

not fulfilled. In particular, if fast cycling committed progenitor cells are present, while stem cells are

slow cycling, then the condition that the division rate of R-cells is much larger than the cell loss rate

is not fulfilled. In that case, details of the model dynamics may affect the shape of the clone size dis-

tribution and thus allow distinction between models. However, caution should be given when an

Exponential clone size distribution is observed, since this could indicate either a GIA model with

high activity of committed progenitor cells, or a GPA model. In that case, the mean clone size needs

to be consulted to distinguish models (see Figure 2). Differentiating between models within the

GPA category is more difficult, since the predicted statistics from different models always become

more similar over time. Short-term measurements would in principle allow such a distinction, but

since in reality the underlying processes are not truly Markovian (as assumed for the modeling pur-

pose) they are not necessarily a good representation of the real cell dynamics at short times. At long

times, however, Markovian approximations are increasingly accurate, precisely because of the fea-

ture of universality.

How could the resolution of cell fate modeling be improved? The state-of-the-art approach to

determine cell fate trajectories is via analysis and modeling of single-cell RNA-sequencing (scRNA-

seq) data. However, many limitations to this method exist, discussed in Weinreb et al., 2018, and

neither reversible trajectories nor the modes of cell division, such as asymmetric vs symmetric divi-

sions, can be inferred. Intravital live imaging, on the other hand, allows to trace individual clones

over time (Ritsma et al., 2012; Pittet and Weissleder, 2011; Hara et al., 2014; Rompolas et al.,

2016), and thus can obtain details of cell fate trajectories, yet this technique is limited to few tissue

types which are accessible for invasive long-term imaging. Nonetheless, while each of those experi-

mental assays alone is prone to limitations in defining self-renewal strategies, advanced model infer-

ence schemes, that integrate data from different experimental sources, might be the way forward in

the future to finally reveal the details of stem cell self-renewal strategies.

Materials and methods
The numerical analysis of the random cell fate model was implemented in Matlab. The description of

the stochastic models definition, the random model generation and the simulation campaign is

detailed in the Appendix, ’Stochastic process modelling’. Additionally, as a validation of the imple-

mented simulator, based on the Gillespie algorithm (Gillespie, 1977), the IA and PA models were

simulated and the results analyzed in the Appendix, ’Invariant Asymmetry and Population Asymme-

try models’.

Analytical solutions were partially obtained using Mathematica.
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Appendix 1

Conditions for homeostasis
Here, we ‘translate’ the generic conditions for the existence of a Lyapunov stable stationary state for

Linear Cooperative Systems (LCS) (Greulich et al., 2019) into the biological context of clonal dynam-

ics. A linear cooperative system is one of the form d
dt
xðtÞ ¼ AxðtÞ where xðtÞ ¼ ðx1ðtÞ; x2ðtÞ; :::; xmðtÞÞ are

functions of time t and A is a constant m � m matrix for which all off-diagonal elements are non-neg-

ative (the latter condition defines the cooperativity of the system) (Hirsch and Smith, 2006;

Greulich et al., 2019). We note that the dynamics of mean cell numbers, Equations 6 and 7 in the

main text, indeed describe an LCS according to this definition. Now we use the following definitions:

. GðAÞ is the graph of A, that is, the graph for which A is the adjacency matrix, whose elements
aij give the weight of the links from i to j (aij ¼ 0 means that no link exists). In the following, we
use the terms graph and network synonymously.

. If in GðAÞ there exists a path from node i to node j and from j to i, then we call those nodes
strongly connected, i � j, which is an equivalence relation. A maximal set of nodes which are
are strongly connected with each other are called a Strongly Connected Component (SCC) of
the graph (the equivalence class of the equivalence relation ‘�’).

. The graph GðAÞ can be decomposed into its NS SCCs, Sk, k ¼ 1; :::;NS (Cormen, 2009), which
are sub-graphs associated with an adjacency matrix Ak, such that GðAkÞ ¼ Sk. Since the Ak have
non-negative off-diagonal elements, they are Metzler matrices for which the Perron-Frobenius
theorem ensures that a unique, simple and real maximal eigenvalue �k exists (Arrow, 1989).
The eigenvalue �k is called the dominant eigenvalue of Sk. Associated with this eigenvalue,

there is, for all k, a positive eigenvector xðkÞ ¼ ðxðkÞ
1
; x

ðkÞ
2
; :::Þ, that is, one with all entries x

ðkÞ
i >0.

. The condensed graph of GðAÞ is the graph where nodes are the SCCs of GðAÞ and a link from
SCC Sk to SCC Sl (k; l ¼ 1; :::;NS) exists if there is is at least one link from a node (in GðAÞ) in Sk
to a node in Sl.

. If there is a path from SCC Sk to SCC Sl, then we call Sk upstream of Sl and accordingly Sl
downstream of Sk. We note that there can never exist paths from Sk to Sl and from Sl to Sk,
since otherwise, by definition, their nodes would be strongly connected and both together
would form a single SCC (Cormen, 2009). Thus, there is a unique hierarchy of SCCs.

. A stationary state x� of a dynamical system is Lyapunov stable if a small initial deviation from x�

leads to a small final deviation xðtÞ (i.e. x� is not unstable). More accurately: there exists a con-
stant C>0 such that jxðtÞ � x�j<Cjx0 � x�j for all times t, where x0 ¼ xðt ¼ t0Þ is the initial condi-
tion, sufficiently close to x�. A stationary state of a linear system that is Lyapunov stable, yet
neither asymptotically stable nor has a limit cycle, is neutrally stable.

. Homeostasis means that the cell numbers in each state, n ¼ ðn1; :::; nmÞ, stay on average con-

stant, d�n
dt
¼ 0 (where �n ¼ hni), and that this state is not unstable towards perturbations. This con-

dition corresponds to a Lyapunov-stable stationary state. Note that a linear system, as the one
described by Equations 6 and 7, main text, cannot have an asymptotically stable state except
for the trivial state �n� ¼ 0, which corresponds to a vanishing cell population. We note that
when considering the tissue cell population as a whole, dynamics can be non-linear through
interactions between cells and a non-vanishing asymptotically stable state may then exist.
However, since single clones do not significantly affect the total configuration of cells in a tis-
sue, the clones compete neutrally, when embedded in a homeostatic cell population, which
corresponds to a Lyapunov stable, but not asymptotically stable state. We therefore use Lya-
punov stability, a weaker form of stability, to define homeostasis, since an asymptotically sta-
ble vanishing state is not a biologically viable state.

Now, for an LCS holds, according to Greulich et al., 2019,

Theorem 1

An LCS, _x ¼ Ax, possesses a non-trivial Lyapunov stable stationary state (x�>0), if and only if,

1. G(A) does not contain any SCC, Sk, with �k>0.
2. There is at least one SCC, Sk, with �k ¼ 0.
3. There is no path between any two SCCs, Sk and Sl, which have �k ¼ 0 and �l ¼ 0.

Furthermore holds,
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Theorem 2

All nodes i upstream of an SCC Sl with �l ¼ 0 must be empty in the the stationary state, that is,

x�i ¼ 0, if i is upstream of the SCC Sl.

Since Equation 7, main text, is an LCS, we can apply theorems 1 and 2 to find conditions for

homeostasis, defined by a Lyapunov-stable configuration of mean cell numbers �n� ¼ ð�n1; �n2; :::Þ.
According to theorem 1 at least one SCC with �k ¼ 0 must then exist, and according to theorem 2

the stationary state of nodes upstream of it must be empty, that is, they do not exist in homeostasis.

Since the condensed graph of the SCCs does not have cyclic paths, an SCC Sk with �k ¼ 0 must

therefore always reside at the apex of all non-vanishing cell types. In principle, an acyclic graph may

have more than one apex, however, since, by definition, a stem cell clone always starts with a single

stem cell, and no other SCC with � ¼ 0 may be downstream of the latter, we only consider one apex

SCC with one initial cell when studying clonal dynamics.

Hence, in the context of homeostatic clonal dynamics, we can assume that there is a single SCC,

Sk with �k ¼ 0 at the apex of the cell state graph, while all other SCCs, Sl are downstream of it and

have �l<0. Since there are no paths from the non-apex SCC to the apex SCC (as the condensed

graph is acyclic) we can distinguish the two separate compartments R (the renewing compartment)

consisting of all nodes of the apex SCC, Sk, and C (the committed compartment), consisting of all

other nodes, whereby due to �l<0 for all SCCs in C, all progeny of cells in C will vanish in the long

term.

Stochastic process modelling

Model description

Since clonal dynamics start, by definition, with a single cell, we use stochastic dynamics to model

clones. Thus, we model cell fate dynamics as a continuous-time multi-type branching process

(Haccou et al., 2005), a Markov process following the rules of Equations 3-5, main text. As shown

later, without losing generality, here only two types of events are modeled; considering an arbitrary

number m of cell states, Xi, for i ¼ 1; :::m, the model includes

. Cell divisions: a cell in state Xi divides in two cells with rate li, respectively in state Xj and Xk at

a ratio r
jk
i .

Xi�!
lir

jk

i
Xj þXk, i; j;k¼ 1; :::;m; (1)

where li ¼ 0 if state Xi does not allow division. In this formulation of cell division events, which
we use for the generation and numerical simulations of random models, only one division out-
come is possible upon division of a particular cell state Xi. Nonetheless, multiple division out-
comes per state can be implemented as single outcomes if additional metastates are
introduced, which represent priming of a state Xi towards a certain division outcome option.
For example, if in the original model, state Xi has different outcome options,
Xj1 þ Xk1 ;Xj2 þ Xk2 ; :::, we can substitute this by, first, transitions from Xi to (new) states
Xm1

;Xm2
; ::: and subsequent divisions Xml

! Xjl þ Xkl . The use of metastates to model more

complex processes is discussed in detail in ’Population Asymmetry model using metastates’.

. Direct state transitions: a cell in state Xi changes to state Xj at a given rate wij.

Xi�!
!ij

Xj, i; j¼ 1; :::;m; i 6¼ j; (2)

where !ij ¼ 0 means that no transition from Xi to Xj is possible. Additionally, we include cell
loss in this scheme, by treating it as a transition to an additional special state, called hereafter
death and denoted by ; (cells in this state do not enter in the counting of the total number of
cells). In that formulation, the loss rates of the original model are di ¼ !i;.
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These events define a Markov process, which can be represented as a stochastic network (Bang-

Jensen and Gutin, 2007). In this view, each node can be related to a cell state, while the links repre-

sent transitions between states via cell divisions and the direct state transitions. It is noted that this

stochastic network is different from the network defined in the main text and in ’Conditions for

homeostasis’ of this SI, which describes the dynamics of mean cell number instead. Here, for the sto-

chastic modelling, let us define the adjacency matrix K of this network, through the elements

kij ¼ li2r
j
i þ !ij i; j ¼ 1; :::;m, in which kij are the total transition rates as defined in the main text. We

note that K is related to the matrix A used in the main text by A ¼ KT � D, where D is the diagonal

matrix with entries di; i ¼ 1; :::;m, as defined in the main text, with the slight difference that here the

loss state ; is treated as a separate state. Additionally, it is remarked that in this model interpreta-

tion, where only one division option for each state is possible, the term r
j
i � 1 is not a continuum

value, but instead it can only take the values 0; 1=2; 1 depending on the specific outcome of the divi-

sion of the cells in state Xi. Notably, more than one stochastic network may result in the same matrix

K, therefore, to uniquely define a process, we distinguish a matrix D which describes cell division

events (note that this is possible with just a single matrix as there is only one division option per

state) and a matrix T which describes direct transition events. The matrix K is the sum of both,

K ¼ N þ T.

Generation of random models

To test the behavior of the clonal dynamics in a generic homeostatic model, a large number of ran-

dom stochastic networks was generated, whereby each stochastic network corresponds to a distinct

set of parameters l1; :::; lm; !12; :::; !m; for the stochastic stem cell fate choice model. The strategy

detailed below is based on the following considerations which summarize the key requirements to

achieve homeostasis detailed in ’Conditions for homeostasis’: (a) each network is composed of

Strongly Connected Components (SCCs) that are randomly connected; (b) only one SCC, the one at

the apex of the network, forms the renewing compartment, R, (i.e. it is characterized by a dominant

eigenvalue � ¼ 0 with respect to A) and all the others form the committed compartment, C, (i.e. they
are characterized by a dominant eigenvalues �<0). It is further noted that the SCCs of the stochastic

network GðKÞ are the same as those of the matrix GðAÞ, where A ¼ KT � D defines the dynamics of

mean cell numbers. This is, since transposition of an adjacency matrix and altering of diagonal ele-

ments does not affect the network topology.

To generate the stochastic network, a two-step process is followed: (1) a large number of (ran-

dom) SCCs are generated; (2) a condensed network is randomly constructed and filled with ran-

domly picked SCC from step 1.

It is noted that unitary rates are assumed in step (1) and they are successively randomly modified

in step (2) to achieve the desired properties of the dominant eigenvalue m while ensuring

randomness.

Focusing now on step (1), that is, the generation of single SCCs, the following procedure is used.

a. The total number of states composing the SCC is defined, indicated as mS. An additional state
is added to represent whatever is outside the SCC. In the current analysis, we set 1 � mS � 4.

b. We build separately all the possible combinations of transition and division matrices, indicated
hereafter with MT and MD, respectively. These matrices are ordered for increasing number of
transitions NT and divisions ND. In case GIA networks are generated, the MD and MT combina-
tions are filtered, to remain just with those where the division outcome is one cell inside the
SCC and one outside the SCC, and where there are only transitions between states within the
SCC (i.e. where cell numbers are conserved). From a computational point of view, this process
is feasible up to mS ¼ 4.

c. The matrices stored in MD and MT are then combined together to form a model (which is
completely defined by one matrix in MD and one in MT ); MDT indicates the pool of possible
models. This process is done considering separately each mS, NT and ND. In this step, due to
technical limitations given by the high number of possible combinations, if the total number of

combinations exceed 5 � 104 then only 104 random matrices from MD and MT are combined.
d. Each model in MDT is then processed to check if the corresponding network is a SCC in the

first mS states. If not, then this model is discarded. In case GPA networks are generated, a fur-
ther check is performed to discard also those models consistent with a GIA network (they
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cannot be a priori excluded as done in point 2 for the GIA ones). These pools of models are
indicated as MGIA and MGPA for the GIA and GPA models, respectively.

e. For each SCC in MGIA and MGPA, the dominant eigenvalue � is estimated. For construction,
the generated GIA networks are all characterized by � ¼ 0, while in general any value can be
obtained within MGPA.

f. The SCCs in MGPA are additionally processed to check whether the network is compatible with
homeostasis by tuning the rates. Networks satisfying this condition are additionally stored
under a new pool of SCCs, called M�

GPA. If not, then they are discarded when �>0 (i.e. for any

combination of rates the number of cells in these networks is expected to grow).

This process results in three pools of SCCs classified for mS, NT and ND (i.e. number of states, tran-

sitions and divisions): (1) MGIA contains GIA models; (2) M�
GPA contains GPA models that can be

tuned to have � ¼ 0 and (3) MGPA contains GPA models characterized by �<0 or that can be tuned

to meet this condition.

In step (2), the generation of random networks starting from the individual SCCs is implemented

as follows.

a. A number of committed SCCs, Nc, between 1 and 3 is randomly chosen.
b. Nc SCCs are randomly picked from the pool of models MGPA. The selection is done consider-

ing equal probability in mS, NT and ND. For each SCC, the unitary rates a (where a stands for
any rate li or !ij) are modified by multiplying them for random numbers (exponentially distrib-
uted with mean �a ¼ 1 and minimum am ¼ 0:3). Additionally, a threshold on the dominant
eigenvalue is set, �max ¼ �1; if this condition is not satisfied, then the rates are tuned to meet
this requirement while maintaining the rates above the minimum.

c. The committed compartment of the condensed network is generated by randomly connecting
all the outgoing components of the k-SCC with states in the l-SCC for l ¼ k þ 1; ::;Nc. In this
way, the transposed adjacency matrix of the stochastic network has triangular block form:

KT ¼

B1

C12 B2 0

:::

C1;Nc
C2;Nc

BNc

C1; C2; CNc;; 0

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

: (3)

� The last SCC is forced to be linked to a single death state.
d. With a similar procedure described in point 2, two SCCs are randomly picked respectively

from the pool of SCCs in M�
GPA and MGIA; the unitary rates are modified (exponentially distrib-

uted with mean �a ¼ 1 and minimum am ¼ 0:3) and, in the GPA case, tuned to meet the condi-
tion � ¼ 0. They represent the renewing part of the network.

e. Two networks (one for the GIA and one for the GPA models) are produced by attaching the
selected renewing network upstream the committed one; this is done based on an analogous
procedure as described in step 3.

At the end of this process, we have two networks which are different in just the renewing part,

being one consistent with the GIA model and the other with the GPA one. In total 2000 networks

were built and analyzed.

Simulation campaign

An extensive simulation campaign was run to model the clone dynamics. The code implemented to

numerically simulate the stochastic process defined by events of type 1 and 2 is based on the Gilles-

pie algorithm (Gillespie, 1977). Since a clone is by definition the progeny of a single cell, we choose

as initial condition a single cell put randomly in a state within R. Concerning the final condition,

given the substantial difference in the dynamics in the two models, the final time, indicated by t , is

set equal to 20 times the inverse of the minimum process rate, amin ¼ minðl1; :::; lm; !12; :::; !m;;Þ, in
the GIA models, and to the time at which the fraction of extinct clones reaches 98% in the GPA

models. Note that all critical branching processes, as homeostatic clonal dynamics are, will go extinct

almost surely at some point in time (Haccou et al., 2005).
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To determine the clone size distribution, 103 and 5 � 104 simulations were run respectively in for

each GIA and GPA model (in this way, both models result in the same final number of clones when

98% extinction is taken into account).

Numerical simulation test cases

Invariant Asymmetry and Population Asymmetry models

To validate the simulation approach, we tested the procedure on simple cell fate models for which

analytical results are known, the Invariant Asymmetry (IA) and Population Asymmetry (PA) models.

As described in the main text, in the simplest version, these are defined as,

S�!l
Sþ S Pr. r

SþD Pr. 1-2r

DþD Pr. r

8

<

:

; D�!g ;: (4)

In these processes, cells of type S represent the stem cells (called hereafter also progenitor),

which divide with stochastic rate l, and cells of type D are the differentiated cells, which are shed

with rate g . While in the PA model the three possible outcomes of the division of a progenitor are

controlled by a probability parameter 0<r� 1=2, in the IA model r = 0, meaning that there are strictly

asymmetric division and the number of S-cells is conserved. It is remarked that in the definition of

the stochastic networks given in ’Model description’ only one division option for each state is mod-

elled; however, the code implemented for the numerical simulations of the stochastic process allows

for an arbitrary number of division options for each state as well (see ’Population Asymmetry model

using metastates’).

Considering the dynamics at tissue level, the system of ODEs describing the average number of

cell �nS and �nD respectively of type S and D is,

d�nS
dt
¼ 0

d�nD
dt

¼ l�nS �g�nD

(

: (5)

It is clear that, on average, the number of S-cells remains constant. Additionally, in homeostasis,

the average total number of D-cells stabilizes around a constant value �n�D ¼ ðl=gÞ�nS that uniquely

depends on the number of stem cells, �nS which equals the initial number of stem cells �nS;0 ¼ �nSðt¼ 0Þ,
Thus, the (Lyapunov stable) stationary state of total cell numbers �n¼ �nS þ �nD is given by,

�n� ¼ 1þ l

g

� �

�nS;0: (6)

Based on Equation 6, the process rates l and g determine the proportion of cells of type D with

respect to cells of type S. Importantly, there is no difference at tissue level between the IA and PA

models.

A distinction is instead evident when we look at the dynamics at the single-cell level, and study

the clone size distribution, that is, the distribution of the progeny of a single cell. For the IA model,

the number of S-cells is strictly constant, and thus the joint probability distribution PðnS; nDÞ of both
S-cells and D-cells, respectively indicated as nS and nD, is fully determined by the distribution of D-

cells, PðnDÞ. The IA model’s master equation for PðnDÞ, considering a single initial cell of type S, is

given by,

dPðnDÞ
dt

¼ lPðnD� 1ÞþgðnDþ 1ÞPðnDþ 1Þ� lþgnDð ÞPðnDÞ: (7)

This corresponds to a simple birth-and-death process for which the distribution is Poissonian with

mean l=g, (Van Kampen, 1981).

Considering now the PA model, the master equation is instead given by,
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dPðnS;nDÞ
dt

¼ lðrðnS � 1ÞPðnS � 1;nDÞþ ð1� 2rÞnSPðnS;nD� 1Þþ rðnSþ 1ÞPðnS þ 1;nD� 2ÞÞ
þgðnDþ 1ÞPðnS;nDþ 1Þ
� lnS þgnDð ÞPðnS;nDÞ:

(8)

In Antal and Krapivsky, 2010, an exact result for the distribution of total cell numbers n¼ nS þ nD

is found when l¼ g and r¼ 1=4. For different values of the process parameters, the long-term distri-

bution is shown to be Exponential.

Numerical simulations for the clonal dynamics were run, considering the above models and three

different sets of test parameters each, indicated as IA# and PA#i for i ¼ 1; 2; 3, which are reported in

Appendix 1—table 1. It is noted that the time unit is arbitrary and therefore omitted. Simulations

are based on 104 and 5 � 104 runs respectively for the IA and PA test cases. The initial condition is a

single stem cell and the final simulation time, indicated as t , is equal to 10: this value is well repre-

sentative of a steady state condition (for the IA test cases) and at which the total extinction of the

process is not yet achieved (for PA test cases only). The clone size distribution at t in the IA test

cases is shown in Appendix 1—figure 1: in this figure, each profile is compared to the correspond-

ing Poisson distribution shifted by one (i.e. plus the stem cell). Concerning the results for the PA test

cases, they are shown in Appendix 1—figure 2. In this case, the profiles are compared to the

numerical integration of the master Equation 8. Additionally, for the PA# test case, where l ¼ g and

r ¼ 1=4, the reference analytic solution provided in Antal and Krapivsky, 2010 is also shown. In gen-

eral, a good agreement is obtained in all of the cases.
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Appendix 1—figure 1. Invariant Asymmetry (IA) test cases clone size distribution PðnÞ, that is the
distribution of the total number of cells n forming the progeny of a single initial cell in R. For each

case, the distribution is shown at t (defined in Figure 2, main text), which is well representative of

the steady state condition. Tested parameters for cases IA#1-3 are provided in Appendix 1—table

1; the numerical simulation results are compared to the expected Poisson distribution. The detailed

discussion is reported in ’Invariant Asymmetry and Population Asymmetry models’.
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Appendix 1—figure 2. Population Asymmetry (PA) test cases clone size distribution PðnÞ, that is the
distribution of the total number of cells n forming the progeny of a single initial stem cell. For each

case, the distribution is shown at the final time t, at which the total extinction of the process is not

yet achieved. Tested parameters for cases PA#-3 are provided in Appendix 1—table 1; the

numerical simulation results are compared to the solution of the numerical integration of the master

Equation 8 and, for test case PA#1, also to the reference analytic solution from Antal and

Krapivsky, 2010. The detailed discussion is reported in ’Invariant Asymmetry and Population

Asymmetry models’.

Population Asymmetry model using metastates

As argued before, we assume in the random model generation that cell division in state Xi has a

unique outcome, Xi ! Xj þ Xk (Equation 1), since thereby the stochastic process can be uniquely

defined by the two matrices D and T . To accommodate for the possibility of different division out-

comes from the same state Xi, as in Equation 4 and Equations 3-5 in the main text, we introduce

metastates, which represent short-lived states that indicate priming for either outcome, from which

the cell division outcomes are unique. This is a small modification of the original model, which, how-

ever, does not lead to significant deviations if the metastates are traversed sufficiently quickly (which

can be assured by a choice of high direct state transition rates in the metastates).

To illustrate this, let us consider the PA model described by 4; instead of having three different

outcomes upon division of an S-cell we define the corresponding Metastate (MS) model with three

primed states, M1;2;3, as,

S�!!1

M1,M1�!
l1

Sþ S;

S�!!2

M2,M2�!
l2

SþD;

S�!!3

M3,M3�!
l3

DþD;

D�!g ;;

(9)

in which S and D correspond to the same cell type of the PA model (i.e. the stem and the differenti-

ated cells, respectively), while Mi, for i¼ 1;2;3, represent the metastates. These states are temporary

Parigini and Greulich. eLife 2020;9:e56532. DOI: https://doi.org/10.7554/eLife.56532 20 of 44

Research article Computational and Systems Biology Developmental Biology

https://doi.org/10.7554/eLife.56532


states that are used to model each one of the three different possible division options of the S-cells.

The rates li and !i, for i¼ 1;2;3, are chosen such that the time scales of division and outcome proba-

bilities are the same as in the original PA model:

!1=!2 ¼ r=ð1� 2rÞ, !2=!3 ¼ ð1� 2rÞ=r, (10)

1

ð1=!1 þ 1=l1Þ
¼ lr,

1

ð1=!2 þ 1=l2Þ
¼ lð1� 2rÞ, 1

ð1=!3 þ 1=l3Þ
¼ lr. (11)

Equations 10 assure that outcome probabilities are the same as in the original model, while

Equations 11 are needed to have the same total average time between two consecutive events. As

there are six unknowns and only five relations, the following additional equation is added

l1 ¼ !1D; (12)

in which D is an additional parameter that is used to control how fast cells in metastate M1 divide.

Low values of D imply that as soon as an S-cell transits to the metastate M1, it divides in two S-cells.

Globally, this results in

!1 ¼ !3 ¼ lrðDþ 1Þ=D
!2 ¼ lð1� 2rÞðDþ 1Þ=D
li ¼ !iD for i¼ 1;2;3:

(13)

Numerical simulations for the two models were run and compared, based on the parameters

reported in Appendix 1—table 1, and specifically the PA#1 and PA#3 test cases. The time unit,

which is arbitrary, is omitted. The process rates for the corresponding MS model, which are indi-

cated in the figures as MS#1 and MS#3, are computed based on Equation 13 and D¼ 1=500. As well

as for the PA test cases, the initial condition is one cell of type S and the final time, t, is equal to 10;

simulations are based on 5 � 104 trajectories.

Appendix 1—table 1. IA and PA test cases simulation parameters (see ’Invariant Asymmetry and

Population Asymmetry models’).

Case l g r

IA#1 1.0 1.0 -

IA#2 2.0 1.0 -

IA#3 5.0 1.0 -

PA#1 1.0 1.0 1/4

PA#2 2.0 1.0 1/4

PA#3 2.0 1.0 1/6

The mean number of cells in the surviving clones and the extinction probability as function of

time (scaled by t) are shown in Appendix 1—figure 3. The clone size distribution at t is shown in

Appendix 1—figure 4. Both MS simulations agree very well with the corresponding PA ones, which

justifies the use of metastates for our simulation campaign.
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Appendix 1—figure 3. Metastate (MS) test cases simulation results in terms of mean number of cells

in the surviving clones �ns and extinction probability Pðn ¼ 0Þ as function of time (scaled by the final

simulation time t ). As well as for the PA test cases, at t the total extinction of the process is not yet

achieved. Profiles from the numerical simulation for cases MS#,3 are compared to the corresponding

PA#1,3 test cases which are based on parameters provided in Appendix 1—table 1. The detailed

discussion is reported in ’Population Asymmetry model using metastates’.
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Appendix 1—figure 4. Metastate (MS) test cases simulation results in terms clone size distribution

PðnÞ, that is the distribution of the total number of cells n forming the progeny of a single initial

stem cell. As well as for the PA test cases, the distribution is shown at the final time, t, at which the

total extinction of the process is not yet achieved. Profiles from the numerical simulation for cases

MS#,3 are compared to the corresponding PA#1,3 test cases which are based on parameters

provided in Appendix 1—table 1. The detailed discussion is reported in ’Population Asymmetry

model using metastates’.

Analysis of the Generalized Invariant Asymmetry model

GIA0 test case: Steady state distribution and limiting behavior

A simple Generalized Invariant Asymmetric model, indicated hereafter as GIA0, was analyzed to

identify the causes of the different clone size distribution behaviors observed in the randomly gener-

ated models (see main text). Thus, in this section, we study the Markov process defined by,

X1�!
l1

X1 þX2; X2�!
l2

X2þX2; X2�!
g ;: (14)

Here, the renewing compartment is composed of just a single state X1 and cells in this state asym-

metrically divide with rate l1. The committed compartment is formed of state X2; cells in this state

can either divide to duplicate, with rate l2, or die, with rate g. It is noted that for l2 ¼ 0, this model

is reduced to the previously analyzed Invariant Asymmetric (IA) model (see ’Invariant Asymmetry and

Population Asymmetry models’).

As for the IA model, here the number of cells in state X1, indicated as n1, is conserved. It is there-

fore sufficient to determine the statistics of n2, defined by the master equation for Pðn2Þ, the proba-

bility of having n2 cells in state X2, provided that there are n1 cells in state X1. The master equation is

given by,
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dPðn2Þ
dt

¼ � l1n1 þl2n2þgn2ð ÞPðn2Þ
þ l1n1 þl2ðn2� 1Þð ÞPðn2 � 1Þ
þgðn2þ 1ÞPðn2 þ 1Þ;

(15)

also written as,

dPðn2Þ
dt

¼ � gðn2Þþ rðn2Þð ÞPðn2Þ
þgðn2� 1ÞPðn2 � 1Þþ rðn2þ 1ÞPðn2 þ 1Þ;

(16)

in which rðn2Þ ¼ gn2 and gðn2Þ ¼ l1n1 þl2n2. Considering that we are interested in clonal dynamics,

meaning that we start from a single stem cell, n1 is equal to one.

In this simple case, the steady state distribution P�ðn2Þ, corresponding to the solution of

dPðn2Þ=dt ¼ 0, can be analytically derived. Defining the net flux between states n2 and n2 � 1 as

In2 ¼ rðn2ÞP�ðn2Þ� gðn2 � 1ÞP�ðn2 � 1Þ; (17)

and considering that In2þ1 ¼ In2 for every n2, it follows that In2 ¼ I0 ¼ rð0ÞP�ð0Þ� gð�1ÞP�ð�1Þ ¼ 0,

which means that

P�ðn2Þ ¼
gðn2 � 1Þ
rðn2Þ

P�ðn2 � 1Þ ¼
Y

n2�1

l¼0

gðlÞ
rðlþ 1ÞP

�ð0Þ; (18)

where P�ð0Þ is the steady state probability of having 0 cells in state X2. Finally, by applying the con-

servation of the total probability,
P

¥

n2¼0
P�ðn2Þ ¼ 1, and rearranging the terms we obtain,

P�ðn2Þ ¼ 1�l2

g

� �l1=l2 l2

g

� �n2 G l1
l2
þ n2

� �

Gðn2þ 1ÞG l1
l2

� � : (19)

In the main text, we defined the dimensionless parameters l̂1 ¼ l1=g and l̂2 ¼ l2=g, representing

the rescaled division rates for cells in state X1 and X2, respectively. For clarity and readability, in this

section, we simplify the notation using p¼ l̂1 and q¼ l̂2. Equation 19 is then rewritten as,

P�ðn2Þ ¼ 1� qð Þp=qqn2
G p

q
þ n2

� �

Gðn2þ 1ÞG p

q

� � : (20)

It is noted that while p varies between 0 and ¥, q is defined between 0 and 1.

The mean number of cells in each state, indicated respectively as �n1 and �n2, satisfies the system of

ODEs

d�n1

dt
¼ 0

d�n2

dt
¼ l1�n1 þðl2�gÞ�n2

8

>

<

>

:

: (21)

Based on this, the steady state average number of cells is

�n�
1
¼ 1

�n�
2
¼ l1

g�l2
¼ p

1� q

8

<

:

: (22)

When the mean number of cells in state X2 is sufficiently large, that is, for large p or in case q is

close to one, the discrete distribution given by Equation 20, can be approximated by a continuous

probability density function P�ðx2Þ, given by,
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P�ðx2Þ ¼ ð1� qÞp=qqpx2=ð1�qÞ
G p

q
þ p

1�q
x2

� �

x2G
p

q

� �

G p

1�q
x2

� � ; (23)

in which x2 ¼ n2=�n
�
2
. We note that Equation 23 corresponds to Equation 11 in the main text.

To better understand the distribution for different values of the parameters p and q, the limit

behavior are analyzed below.

1. q ! 0 (i.e. l̂2 ! 0Þ
When q ! 0, Equation 20 can be simplified considering that

lim
q!0

G p

q
þ n2

� �

G p

q

� �

q

p

� �n2

¼ 1; (24)

lim
q!0

ð1� qÞp=q ¼ e�p (25)

and

Gðn2þ 1Þ ¼ n2!: (26)

Thus, the distribution results in

lim
q!0

P�ðn2Þ ¼
pn2e�p

n2!
¼ PoissonðpÞ; (27)

that is a Poisson distribution with mean equal to p. This agrees with what we were expecting consid-

ering that when q¼ 0 the model is reduced to the IA model for which the distribution in n2 is known

to be poissonian.

Additionally, for large mean number of cells, which are obtained for large p (when q ¼ 0, then

�n�
2
¼ p), the Poisson distribution tends to a Normal distribution with mean and variance equal to p.

Therefore,

lim
ðq;pÞ!ð0;¥Þ

P�ðn2Þ ¼
1
ffiffiffiffiffiffiffiffiffi

2pp
p e

�
ðn2� pÞ2

2p ¼Normalðp;pÞ: (28)

Rescaling the distribution, and considering x2 ¼ n2=�n
�
2
, results in

lim
ðq;pÞ!ð0;¥Þ

P�ðx2Þ ¼Normalð1;1=pÞ; (29)

that is a Normal distribution with unitary mean and variance equal to 1=p.

2. q ! 1 (i.e. l̂2 ! 1Þ
For q ! 1 the steady state mean number of cells �n�

2
! ¥ and Equation 23 holds. This equation

can be rewritten as,

P�ðx2Þ ¼ qp=ð1�qÞx2þ1
ð1� qÞp=q

qðx2 � 1Þþ 1

G p
qðx2�1Þþ1

qð1�qÞ þ 1

� �

G
p

q

� �

G
p

1� q
x2 þ 1

� � : (30)

If the Stirling’s approximation is applied

Gðzþ 1Þ ¼
ffiffiffiffiffiffiffiffi

2pz
p z

e

� �z

; (31)

we obtain,
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P�ðx2Þ ¼
pp=qe�p=qqðq�2pÞ=ð2qÞðqðx2 � 1Þþ 1Þp=ð1�qÞðx2�1þ1=qÞ�1=2

G p

q

� �

x
x2p=ð1�qÞþ1=2
2

: (32)

Considering now that

lim
q!1

ðqðx2 � 1Þþ 1Þp=ð1�qÞðx2�1þ1=qÞ�1=2

x
x2p=ð1�qÞþ1=2
2

¼ epð1�x2Þxp�1

2
; (33)

it follows that

lim
q!1

P�ðx2Þ ¼
pp

GðpÞx
p�1

2
e�px2 ¼Gammaðp;1=pÞ; (34)

that is a Gamma distribution with unitary mean and shape parameter given by p. Importantly, the

Gamma distribution for p!¥ tends to a Normal distribution with unitary mean and variance 1/p.

For p¼ 1, it corresponds instead to an Exponential distribution with unitary mean.

3. p ! ¥ (i.e. l̂1 ! ¥Þ
When p is large, the mean number of cells is large for any value of q. Thus, Equation 32 is valid.

By applying the Stirling’s approximation also to the term Gðp=qÞ, we obtain,

P�ðx2Þ ¼
ffiffiffiffiffiffi

p

2p

r

x
�p=ð1�qÞx2�1=2
2

ðqðx2� 1Þþ 1Þp=ð1�qÞðx2�1þ1=qÞ�1=2: (35)

This expression can be also rewritten as,

P�ðx2Þ ¼
ffiffiffiffiffiffi

p

2p

r

ep=ð1�qÞððx2�1þ1=qÞ logðqðx2�1Þþ1Þ�x2 logðx2ÞÞ�1=2ðlogðx2Þþlogðqðx2�1Þþ1ÞÞ: (36)

Considering now that p is large, then �1=2ðlogðx2Þþ logðqðx2 � 1Þþ 1ÞÞ�p=ð1� qÞððx2� 1þ 1=qÞ
logðqðx2 � 1Þþ 1Þ� x2 logðx2ÞÞ, so the term on the right can be neglected. Additionally, for x2 ! 1 the

following expansions can be applied:

logðqðx2 � 1Þþ 1Þ ¼
X

¥

k¼1

ð�1Þkþ1 ðqðx2 � 1ÞÞk
k

 !

; (37)

and

logðx2Þ ¼
X

¥

k¼1

ð�1Þkþ1 ðx2 � 1Þk
k

 !

: (38)

Finally, if we consider that

x2 � 1þ 1

q

� �

P

¥

k¼1
ð�1Þkþ1 ðqðx2�1ÞÞk

k

� �

� x2
P

¥

k¼1
ð�1Þkþ1 ðx2�1Þk

k

� �

ðx2 � 1Þ2
¼� 1

2ð1� qÞ ; (39)

then Equation 36 results in

lim
p!¥

P�ðx2Þ ’
ffiffiffiffiffiffi

p

2p

r

e�1=2pðx2�1Þ2 ¼Normalð1;1=pÞ; (40)

that is a Normal distribution with unitary mean and variance equal to 1=p.

Importantly, it is noted that the limiting behavior of P�ðx2Þ for q ! 0 and q ! 1 in case of large p,

are both consistent with the results obtained for p ! ¥ and any q. In other words, remembering that

p ¼ l̂1 and q ¼ l̂2, the steady state distribution for l̂1 ! ¥ and any value of l̂2 is a Normal distribu-

tion of unitary mean and variance equal to 1=l̂1.

To globally verify these results, numerical simulations of the stochastic process associated with

model 14 for different values of l̂1 and l̂2 were run. The following curves were compared:
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. Stochastic simulation: distribution at the final simulation time, t, of the number of cells in state
X2. The final time was chosen here as t ¼ 20=amin, where amin ¼ minðl1; l2; gÞ; this value is well
representative of a steady state condition. Furthermore, the process rates considered are

based on a unitary g (i.e. l1 ¼ l̂1, l2 ¼ l̂2 and g ¼ 1). It is noted that the time unit is arbitrary
and therefore omitted.

. Analytic distribution: based on Equations 20, for low mean values, and 23, for large mean
values.

. Approximate distributions: Poisson, Gamma and Normal distributions respectively given by
Equations 27, 34 and 40.

The tested parameters l̂1 and l̂2 are graphically shown in Appendix 1—figure 5 a contour map

showing the expected steady state mean number of cells �n�
2
over the ðl̂1; l̂2Þ-parameter plane. The

curves from the numerical simulations and the corresponding exact and approximated solutions are

shown in Appendix 1—figure 6, Appendix 1—figure 7 and Appendix 1—figure 8: the tested con-

ditions are divided into three groups (one figure each) representing the limiting behaviors discussed

above. Generally, analytical and numerical results agree very well. This also demonstrates that GIA

models can show both peaked and non-peaked distributions, depending on the model parameters.

Appendix 1—figure 5. GIA0 test case parameters l̂1 and l̂2 over the contour map of the expected

steady state mean number of cells in state X2, �n
�
2
. The tested conditions are divided in three groups

representing the limiting behaviors discussed in in ’GIA0 test case: steady state distribution and

limiting behavior’, and for which the steady state distribution is shown respectively in Appendix 1—

figure 6, Appendix 1—figure 7 and Appendix 1—figure 8.

Parigini and Greulich. eLife 2020;9:e56532. DOI: https://doi.org/10.7554/eLife.56532 27 of 44

Research article Computational and Systems Biology Developmental Biology

https://doi.org/10.7554/eLife.56532


0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Appendix 1—figure 6. GIA0 test case (see GIA0 test case: steady state distribution and limiting

behavior’) results in terms of steady state distribution P�ðn2Þ of the the number of cells in state X2,

n2. The tested parameters correspond to the condition l̂2 ¼ 0:01, as representative of the limiting

case l̂2 ! 0, and to different values of l̂1. The results from the numerical simulations are compared

to the analytic solution (Equation 20), and its approximation, that is, the Poisson distribution

(Equation 27).
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Appendix 1—figure 7. GIA0 test case (see ’GIA0 test case: steady state distribution and limiting

behavior’) results in terms of steady state rescaled distribution P�ðx2Þ of the the number of cells in

state X2, where x2 ¼ n2=�n
�
2
. The tested parameters correspond to the condition l̂2 ¼ 0:99, as

representative of the limiting case l̂2 ! 1, and to different values of l̂1. The results from the

numerical simulations are compared to the analytic solution (Equation 23), and its approximation

that is the Gamma distribution (Equation 34).
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Appendix 1—figure 8. GIA0 test case (see ’GIA0 test case: steady state distribution and limiting

behavior’) results in terms of steady state rescaled distribution P�ðx2Þ of the the number of cells in

state X2, where x2 ¼ n2=�n
�
2
. The tested parameters correspond to the condition l̂1 ¼ 60, as

representative of the limiting case l̂1 ! ¥, and to different values of l̂2. The results from the

numerical simulations are compared to the analytic solution (Equation 23), and its approximation

that is the Normal distribution (Equation 40).

Approximation of generic GIA models
As shown in the main text, a generic GIA model can be expressed in terms of the compartments R
and C (Equation 9 in the main text). We note that the the GIA0 model discussed in the previous sec-

tion corresponds to the general compartment dynamics of GIA models, Equation 9, main text, if the

dynamics of compartments are assumed to be Markovian. Thus, we can treat the GIA0 model as a

Markovian approximation of generic GIA models. In this section, we test this approximation

numerically.

To this end, we first wish to relate the effective (non-Markovian) rates lR;C and gC of a generic

GIA model to the rates of the Markovian approximation, the GIA0 model. We refer to this model –

the GIA0 model matched to the effective rates of a particular more complex GIA model – as the

equivalent model to the latter. The equivalent rates lR, lC and gC are computed considering the

same steady state condition in terms of mean number of cells. To this aim, we rewrite the dynamics

of mean cell numbers, Equation 7 in the main text, in block form as,

d�nR

dt
¼ ARR�nR

d�nC

dt
¼ ACR�nRþACC�nC

d�n;
dt

¼ A;C�nC

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

; (41)

in which �nR;C denote the vectors of mean cell numbers of states restricted to compartments R;C,
respectively, and n; the number of lost cells (not considered for total cell numbers and homeostasis
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condition). It is noted that ARC ¼ 0, since there cannot be links from C to R. Also A;R ¼ 0 as we do

not consider loss from R (see main text for the arguments).

Thus, summing up all the components in each compartment, �nR ¼Pið�nRÞi ¼ 1 and �nC ¼Pið�nCÞi,
results in

d�nR

dt
¼ 0

d�nC

dt
¼
X

i

ðACR�nRÞiþ
X

i

ðACC�nCÞi

d�n;
dt

¼ A;C�nC

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

: (42)

The equivalent parameters are then estimated from the steady state condition �n�X and �n�X , for

X ¼ R;C;;, as,

lR ¼
X

i

ðACR�n
�
RÞi, gC ¼

P

iðA;C�n
�
CÞi

�n�C
and lC ¼ gC �

lR

�n�C
: (43)

The applicability of this approximation was evaluated by comparing the clone size distribution

obtained from the random GIA models (generated as described in ’Generation of random models’

and analyzed in the main text) with that from the corresponding equivalent GIA0 model with param-

eters l̂1 ¼ l̂R ¼ lR=gC and l̂2 ¼ l̂C ¼ lC=gC. The values of l̂1 and l̂2 for all the GIA random models

are shown in Appendix 1—figure 9 in the contour map of the expected mean number of cells in C
(in compartment R there is always one single cell). In general, l̂1 remains below five and l̂2 is spread

between zero and one. As measure of the error of the equivalent model, �, we choose the maximum

difference between the distributions of a particular random GIA model and that of the correspond-

ing equivalent model, relative to the peak of the distribution of the random model. For low mean

cell numbers, the distribution is compared to Equation 20; for large mean number instead, the

rescaled distribution is compared to Equation 23. A threshold on the mean cell number equal to 10

was chosen to distinguish between the two cases. This relative error � as function of l̂2 is presented

in Appendix 1—figure 10, where it is evident that large errors are obtained only for large values of

this parameters. Some illustrative cases, representative of different value of l̂2, were selected and

their distribution is shown in Appendix 1—figure 11, Appendix 1—figure 12 and Appendix 1—fig-

ure 13. The following considerations are made:

. Two cases for l̂2<0:2 are presented in Appendix 1—figure 11. In these cases, the distribution
obtained from the random models agrees with the analytic solution from the equivalent
model, which in turn is well approximated by a Poisson distribution. As expected, larger devia-
tions between the equivalent model’s analytic solution and the approximation are noted for

increasing values of l̂2. In general, all the models in this range are well approximated by the
equivalent model.

. The two cases presented in Appendix 1—figure 12 have l̂2>0:8, for which the Gamma distri-
bution is an approximation of the equivalent model’s analytic solution. The distribution in
some cases (see for instance the top figure), presents some deviations with respect to the
equivalent model. However, globally a good agreement is obtained in most of the cases (fail-
ing ratio, based on a 0.5 maximum error is 21.7%).

. Two cases in an intermediate range 0:2<l̂2<0:8 are shown in Appendix 1—figure 13. Again,
the equivalent model’s analytic solution is well representative of the distribution (failing ratio,

based on a 0.5 maximum error is 3.2%). It is noted that for such values of l̂2 an approximation
of the equivalent model analytic solution is not available.
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Appendix 1—figure 9. GIA random models (generated as described in ’Generation of random mod-

els’ and analyzed in the main text) equivalent parameters l̂1 ¼ l̂R and l̂2 ¼ l̂C (see section Approxi-

mation of generic GIA models) over the contour map of the expected steady state mean number of

cells in the committed compartment, �n�C. Some illustrative cases, for which the steady state

distribution is shown in Appendix 1—figure 11, Appendix 1—figure 12 and Appendix 1—figure

13, are highlighted.
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Appendix 1—figure 10. Relative error of the the equivalent model approximation, �, (see definition

in ’Approximation of generic GIA models’) as function of l̂2 ¼ l̂C for the GIA random models (gener-

ated as described in ’Generation of random models’ and analyzed in the main text). The selected

cases correspond to some illustrative cases for which the steady state distribution is shown in

Appendix 1—figure 11, Appendix 1—figure 12 and Appendix 1—figure 13.
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Appendix 1—figure 11. GIA random models selected cases (see Appendix 1—figure 9 and Appen-

dix 1—figure 10) where l̂2<0:2: the steady state distribution P�ðnCÞ of the number of cells in the

committed compartment, nC, is compared to that of the equivalent model (Equation model in the

legend) analytic solution and its approximation for low l̂2 (i.e. the Poisson distribution, Poisson ðl̂1Þ).
Results discussion is reported in ’Approximation of generic GIA models’.
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Appendix 1—figure 12. GIA random models selected cases (see Appendix 1—figure 9 and Appen-

dix 1—figure 10) where l̂2>0:8: the steady state rescaled distribution P�ðxCÞ of the number of cells

in the committed compartment, where xC ¼ nC=�n
�
C, is compared to that of the equivalent model

(Equation model in the legend) analytic solution and its approximation for high l̂2 (i.e. the Gamma

distribution, Gamma ðl̂1; 1=l̂1Þ). Results discussion is reported in ’Approximation of generic

GIA models’.
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Appendix 1—figure 13. GIA random models selected cases (see Appendix 1—figure 9 and Appen-

dix 1—figure 10) where 0:2<l̂2<0:8: the steady state distribution P�ðnCÞ (or the rescaled distribution

P�ðxCÞ) of the number of cells in the committed compartment, nC (or in the rescaled case

xC ¼ nC=�n
�
C), is compared to that of the equivalent model (Equation model in the legend) analytic

solution. Results discussion is reported in ’Approximation of generic GIA models’.

Thus, in most of the tested cases the equivalent model is able to catch the behavior of a generic

random GIA model, and thus represents a good approximation (global failing ratio, based on a 0.5

maximum error is 6%). In the cases where the equivalent model does not yield a good approxima-

tion, the internal structure of the R and C compartments become relevant and subsequent events

that affect nR and nC become dependent on each other, and thus are non-Markovian.

GIA model for large l̂R

To test the behavior of a generic GIA model in case of large l̂R, the GIA random models (generated

as described in ’Generation of random models’ and analyzed in the main text) were modified by

changing the process rates associated to the renewing compartment to achieve l̂R ¼ 30. To this aim,

considering that infinite solutions are possible, we applied a global search method, and more specif-

ically a Genetic Algorithm (Goldberg, 1989). We therefore setup an optimization problem, where

the process parameters are the optimization variables and the cost function is the error of the cur-

rent l̂R with respect to the target.
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The envelope of curves obtained in all the random models and some illustrative profiles are

shown in Appendix 1—figure 14. A reference Normal distribution, characterized by unitary mean

and variance equal to 1=l̂R ¼ 1=30 is also reported: this curve corresponds to the distribution

expected in the equivalent model for which l̂1 ¼ l̂R. Deviations become relevant, when the internal

structure of compartments in a random model leads to subsequent events that are not independent

from each other. These effects alter the variance of the Normal distribution. In fact, Figure 4 in the

main text is based on the same simulation results, but in this case the rescaling is done considering

both the mean number of cells and its variance (a Normal distribution is a two-parameter

distribution).

Appendix 1—figure 14. Rescaled clone size distribution for the random GIA models when l̂R ¼ 30

at the final simulation time, which corresponds to 20=amin (amin is the minimum process rate). The

grey shade represents the percentile of all the simulations (black lines limit the 5-95%ile range); the

blue curves correspond to some illustrative selected simulations. A reference curve corresponding to

a Normal distribution of unitary mean and variance equal to 1=l̂R ¼ 1=30 is shown in green.

Distributions of the total number of cells n are scaled by the mean number of cells �n, being x ¼ n=�n.

Simulations for which the final condition (20 times the inverse of the minimum process rate) is not

achieved (due to computational limitations) are not included, resulting in 922 models. Results

discussion in provided in ’GIA model for large’.

GIAB test case: bimodal distribution

In the previous subsection we increased lR in a way which assures that other parameters within R
stay of the same order of magnitude. Here, we address the question what happens if some parame-

ters within R are much smaller than parameters of C, such as gC. For that purpose, we study another

simple GIA model, let us call it GIAB, as a modification of the GIA0 test model defined by 14. In the

GIAB model the renewing compartment is composed by two states X1 and X2, instead of only one.

Cells in these states divide asymmetrically (i.e. one daughter cell remains within the renewing com-

partment while the other enters the committed compartment) or change state between X1 and X2

(cell state switching) while still remaining within the renewing compartment. The committed com-

partment of the system is composed just by a single state, X3, and cells in this state either duplicate

or die (as the previous state X2 in Equation 14). This corresponds to the model
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X1�!
l1

X1 þX3; X2�!
l2

X2 þX3; X1�!
!12

X2; X2�!
!21

X1; X3�!
l3

X3þX3; X3�!
g ;: (44)

In this model, the effective parameters as defined in ’Approximation of generic GIA models’,

lR ¼ l1P
�
1
þl2P

�
2
, where P�

i ¼
!ji

!ijþ!ji
, i; j¼ 1;2; i 6¼ j, and gC ¼ g. As before, we define the non-dimen-

sionalized parameters l̂R ¼ lR=gC and here we also define !̂¼ !12=gC, and further the parameter

ratios a¼ l1=l2 and b¼ !12=!21. In the following, we test this model for different values of a and !̂ as

reported in Appendix 1—table 2, while fixing l̂R ¼ 30, which is our main scaling parameter, as well

as l̂C ¼ 0 and b¼ 1.

Appendix 1—table 2. GIAB test case simulation parameters (see ’GIAB test case: bimodal

distribution’).

Case !̂ l1=l2

GIAB#1 3 101 1

GIAB#2 3 10-2 1

GIAB#3 3 102 10

GIAB#4 3 101 10

GIAB#5 3 100 10

GIAB#6 3 10-1 10

GIAB#7 3 10-2 10

The rescaled distribution of the number of cells in the committed compartment C (i.e. in state X3),

nC, obtained at the final simulation time t , is shown in Appendix 1—figure 15. A value of t equal

to 20=amin (where amin is the minimum of all rate parameters) was chosen to assure that the steady

state is reached. Considering first the test cases GIAB#1 and GIAB#2 according to Appendix 1—

table 2, which are characterized by a ¼ 1 (i.e. there is no difference in the division timescales for the

two renewing states), they both lead to a Normal distribution, independently on the value assumed

by !̂. Test cases GIAB#3 to GIAB#7 instead are all characterized by a ¼ 10, and different orders of

magnitude for !̂ are tested. The distribution in these cases is Normal until !̂ � l̂R=10 (see cases

GIAB#3 to GIAB#5); when !̂ is significantly lower than l̂R, then bimodality emerges (see cases

GIAB#6 and GIAB#7). Looking at the extreme case, GIAB#7, cells in each renewing state, if analyzed

independently, would result in a Poisson distribution in the committed compartment with different

mean values (low for the slow-dividing state and large for the fast-dividing one). Thus, globally the

distribution is in line with a bimodal distribution computed as
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Appendix 1—figure 15. Rescaled distribution of the cells number in the committed compartment in

the GIAB test cases at time t , which is 20=amin (amin is the minimum process rate). The distributions

Pð~xCÞ of the number of cells in the committed compartment nC is rescaled considering that

~xc ¼ ðnC � �nCÞ=snc , where snc is the variance of nc. In addition to the stochastic simulation results for

different settings (see Appendix 1—table 2), the reference Normal and bimodal distributions are

also shown. Results discussion is provided in ’GIAB test case: bimodal distribution’.

PðnÞ ¼ bPoissonðl̂ð1ÞR Þþ ð1�bÞPoissonðl̂ð2ÞR Þ; (45)

in which b is the mixing parameter, computed as,

b¼ �n� �n2

�n1 � �n2
; (46)

and the parameters l̂
ðiÞ
R and �ni for i¼ 1;2 correspond to the parameter l̂R and to the mean number

of cells of a system in which the renewing compartment would be composed just by state Xi. The

total mean number of cells is instead indicated by �n. The bimodal distribution given by Equation 45

is indicated as a black dashed-dotted line in Appendix 1—figure 15.

Analysis of the Generalized Population Asymmetry model
In the main text, it is shown that GPA models predict asymptotically, for large times t, the same

rescaled clone size distribution, that is, an Exponential distribution of unitary mean.

In Appendix 1—figure 16, the 50%tile distribution of all the GPA models analyzed is shown at

different levels of extinction (which are related to the different time points), showing a gradual con-

vergence to the expected Exponential distribution.
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Appendix 1—figure 16. Clonal size distribution (corresponding to the 50%ile curve) in the GPA ran-

dom models at different extinction fraction (i.e. different time). The curves are compared to the

expected Exponential distribution (see ’Analysis of the generalized Population Asymmetry model’).

Thus, the Markov approximation to all GPA models, Equation 12 in the main text (the equivalent

model of GPA models), becomes accurate for sufficiently large t and no significant deviations are

observed. This also means that for large t, the distribution is independent of the choice of parame-

ters, since only the mean value of surviving clones, �ns, depends on parameters, which however, does

not affect the rescaled distribution in terms of x ¼ n
�ns
. We can therefore abstain from an extended

study of different parameter regimes. This is in contrast to the GIA model class where distributions

depend sensitively in the choice of parameters if we are not in the scaling regime of large l̂R, and

the non-Markovian nature of GIA models can become relevant, as we showed in the previous

section.

Asymptotic clone size distributions: Mathematical analysis
In the previous two sections, we studied numerically how a Markovian representation can approxi-

mate general cell fate models (GIA and GPA) models. Here, we study from an analytical view point

how generic GIA and GPA models converge to the respective limiting distributions, for large time t

(GPA models) and large l̂R (GIA models).

Similar to ’Approximation of generic GIA models’, we define nR and nC as the cell number vectors

(here: actual cell numbers of the stochastic model, not mean cell numbers) restricted to the states of

compartments R and C, respectively. We further define the accumulated cell numbers nR ¼PiðnRÞi
and nC ¼PiðnCÞi in R and C, respectively. Considering nR and nC as observables of our compartment

model, this corresponds to a Hidden Markov Model in that the dynamics of the observables are not

Markovian, yet they are entirely determined by a set of states which follow a Markov process.

General dynamics of C-cells for GIA and GPA models

Comments on the effective rate parameter lR
For general GIA and GPA models in the compartment representation of Equation 9, main text, the

effective rate parameter lR (i.e. the frequency of cell divisions in R per cell), is defined similar as in
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’Approximation of generic GIA Models’, yet, here we take into account that lR can depend on time

via the – not necessarily stationary – distribution of cells within R (since the process is non-Markov-

ian). Hence, in these more general terms, we define lRðtÞ ¼
P

i2R liP
R
i ðtÞ where PR

i ðtÞ ¼
�niðtÞ
�nRðtÞ is the

probability of a single cell to be in state i at time t. PR
i ðtÞ may variate after each event E, as the condi-

tional probability PRjE, provided that an event E has just occurred, differs from the stationary state

distribution.

In homeostasis, where the number of R-cells must on average stay constant, lR is also the rate,

per R-cell, at which C-cells are created from R-cells, via events R ! Rþ C;R ! C þ C, or direct tran-

sition, R ! C. Thus, the total rate of C-cells being created from the R-cells by such events – let us

call them RC-events – is lRnR. While the non-Markovian nature of the process does not assure that

such events are distributed exponentially, we can state that, by definition, the number of such crea-

tion events in a time period Dt, NRC, has mean value hNRCðDtÞi ¼
R Dt
0

lRðtÞnRðtÞ dt.
While, lRðtÞ may in principle depend on time, we note that when internal rates of R are fast com-

pared to the time period Dt above (an internal rate of R is a rate !ij where states i,j are both in R),

then lRðtÞ fluctuates quickly and we can make an adiabatic approximation, replacing lRðtÞ by its

average �lR ¼Pi2R liP
R
i , where PR�

i ¼ �n�
i

�n�
R

is the steady state value of PR
i ðtÞ (this corresponds for GIA

models to the definition of lR in ’Approximation of generic GIA models’). This is fulfilled in our simu-

lations of large l̂R, since internal rates, such as !̂ defined in ’GIAB test case: bimodal distribution’,

scale with l̂R when lR ! ¥ (see ’GIA model for large’). Hence, the time scales of internal rates are

substantially smaller than the relevant time scale Dt ¼ 1=�gC, the lifetime of generated C-cells. There-

fore, when comparing with simulation results, it is generally appropriate to assume that lRðtÞ» �lR is

constant. In the following subsection, we will discuss this case. The case when internal rates are

slower than the time scale gC is discussed in the subsequent subsection.

Asymptotic distributions of C-cells
Each C-cell created by an RC-event initiates a sub-clone within C, defined through its progeny, which

then follows the dynamics of C. Such sub-clones evolve independently of each other (a defining char-

acteristic of branching processes [Haccou et al., 2005]). Let us call the number of cells of a sub-clone

created by an RC-event at time ti, which evolves over time t, as �iðtÞ. We denote two RC-events

which happen at the same time via a symmetric division of type R ! C þ C by different indices i and

iþ 1, yet with ti ¼ tiþ1. Therefore, the total number of cells in C is the sum of independent random

numbers �i,

nCðtÞ ¼
X

NRC

i¼1

�iðtÞ (47)

Note that the random numbers �iðtÞ are not identically distributed, since their statistics depend

on the time point of the i-th RC-event. In particular, the mean value, ��iðt� tiÞ ¼ h�iðtÞi and variance

s2

�ðt� tiÞ ¼ hð�iðtÞ� ��iÞ2i depend on the time passed since the respective RC-event at time ti. Thus,

we cannot apply the central limit theorem in its original form to the sum of random numbers, Equa-

tion 47. However, a variation of the central limit theorem states that sums of non-identically distrib-

uted random variables,
P

i �i, converge to normally distributed random variables, if mean and

variance of �i are finite, and they fulfill Lindeberg’s condition (Billingsley, 1995).

The (strict) Lindeberg’s condition is said to be fulfilled for a sequence of random numbers

�i,i ¼ 1; :::;N, if

max
i

s2

i

s2
N

! 0; for N !¥ (48)

where s2

i ¼ hð�i � ��iÞ2i and s2

N ¼PN
i¼1

s2

i . If this is fulfilled, then nC ¼PN
i¼1

�i converges for N !¥ to a

random variable that is normal distributed.

To show that the �i fulfill Lindeberg’s condition, we note that �iðt � tiÞ follow a sub-critical multi-

type branching process, for which ��iðtÞ ! 0 for t ! ¥, which is assured since the eigenvalues of the

adjacency matrix of C are all negative (since dominant eigenvalues of all SCCs in C are negative
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[astrom_murray_feedback_book]). For multi-type branching processes, the variance s2 is propor-

tional to the mean value, hence s2

i ðt � tiÞ ~ ��ðt � tiÞ. Therefore, s2

i ! 0 for t ! ¥, hence it is bounded,

i.e there exists C > 0 such that s2

i ðtÞ < C for all t. Furthermore, since initially, at t ¼ ti, ��iðtiÞ ¼ 1, we

know that there exist t1 > 0 and d > 0 such that ��iðtÞ > d for t � ti<t1. Now we recall that, since here

we assume the validity of the adiabatic approximation discussed in the previous subsection, the

number of RC-events within a time period Dt is NRCðDtÞ ~lR
R Dt
0

nRðt0Þ dt0. For generic lR, NRC is finite

and thus is sN , since all siðtÞ ! 0 for large t. However, for lR ! ¥ or nR ! ¥, we get that

NRCðt1Þ~ �lRnR ! ¥ and thus s2

N ¼PNRC

i¼1
s2

i ðtÞ > NRCd ! ¥. On the other hand, all s2

i < C, which

means that all
s2

i

s2

N

< C
s2

N

! 0 for lR ! ¥ or nR ! ¥. Hence, Lindeberg’s condition is fulfilled if lR ! ¥

or nR ! ¥ and thus, nC becomes normally distributed,

nCðtÞ ¼
X

NRC

i

�iðtÞ!Normalðmean¼ �nC;variance~�nCÞ (49)

The variance scales with nC since variances of independent random numbers add linearly and

each s2

i ~
��i. The exact value of �nC and the pre-factor of the variance of nC in this limit depend on the

(non-Markovian) model details.

Deviations from a normal distribution in the asymptotic case

The arguments leading to Equation 49 hold for large l̂R if the internal rates of R are comparable to

�lR ¼Pi li
�n�
i

�n�
R

, which is satisfied for all cases we sampled randomly for numerical simulations, see ’GIA

model for large’. However, if internal rates of R are much smaller than lR, then the adiabatic approx-

imation PR
i ðtÞ»

�n�
i

�n�
R

does not apply and lRðtÞ may vary slower than the time scale 1=�gC. For example,

consider a GIA model in which R can be decomposed into two sub-compartments, say R1 and R2,

whereby any rates !ij; !ji with i 2 R1; j 2 R2 have !ij; !ji � �lR, as the example discussed in ’GIAB test

case: bimodal distribution’. Then, the single cell in R (note that always nR ¼ 1 in GIA models) may

spend long time periods in R1 and R2 respectively. Now, if �lR1
¼Pi2R1

li
�ni
�nR1

6¼Pi2R2
li

�ni
�nR2

¼ �lR2
,

then, for time periods exceeding 1=�gC, the effective asymmetric division rates are �lR1
and �lR2

respec-

tively, and during these time periods the distribution of nC cells has mean �n
ð1Þ
C ~ �lR1

and �n
ð2Þ
C ~ �lR2

respectively. Hence, the total clone size distribution will be the mix of two Normal distributions with

mean �n
ð1Þ
C and �n

ð2Þ
C , respectively, that is, a bimodal distribution. This scenario is discussed in

’GIAB test case: bimodal distribution’, for the specific case of two states in R.

GIA models

In GIA models, the number of R-cells is conserved, and in particular, for clones, we have nR ¼ 1 for

all times. Hence, the rate of RC-events is simply lR. Now, if internal rates are fast and lR ! ¥, then

nC becomes normally distributed, as argued above. Hence, also n ¼ nR þ nC ¼ 1þ nC follows a Nor-

mal distribution, with mean nC þ 1 instead.

Nonetheless, if internal rates are less than gC then bimodal distributions may be observed, as dis-

cussed in ’GIAB test case: bimodal distribution’.

GPA models

The dynamics of GPA models read, in compartment formulation,

R�!lR
RþR Pr: rRR

RþC Pr:1� rRR� rCC

CþC Pr: rCC

8

>

<

>

:

; (50)

R�!!RC
C; C�!lC CþC; C�!gC ; (51)
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Since the dynamics of R-cells do not depend on C-cells, we can first consider the formers’ dynam-

ics separately. In homeostasis, where lRrRR ¼ lRrCC þ!RC, we have thus for R-cells,

nR �!lRrRRnR
nR � 1 (52)

This is a simple continuous time branching process with two offspring; yet it is non-Markovian:

subsequent events may be correlated, since each event imbalances the internal distribution PR
i of

cells in the compartment R. Yet, as for C-cells, we can write the number of R-cells as a sum of inde-

pendent (but not identically distributed) random variables. Let us consider for each R-cells, born at

time ti, the random variable �Ri describing its ’survival’ state, that is, �Ri ¼ 1 if that cell is still in R, and

�Ri ¼ 0 if that cell has left R via symmetric differentiation, R!CþC or direct transition,

R!C. Essentially, the random numbers �Ri are the ‘branches’ of the branching process. Since these

events do not depend on other cells, the random numbers �Ri are independent of each other, and

thus,

nRðtÞ ¼
X

NbðtÞ

i¼1

�Ri ðtÞ ; (53)

is a sum of independent, not identically distributed random variables. Here,NbðtÞ is the total number

of birth events occurring at rate lRrRRnR, R! RþR, up to time t. Since �Ri ðtÞ � 1 and �Ri ðt¼ tiÞ ¼ 1, we

can argue analogue to above for Equation 49 that the sequence of �Ri fulfills Lindeberg’s condition

and thus nR converges to a Normal distribution, whereby the mean value �nR ¼ 1 (since due to homeo-

stasis the mean number is constant and the initial condition is nRðt¼ 0Þ ¼ 1). Hence, the probability

to have nR cells in R is

PðnRÞ / e
�ðnR�1Þ2

2s2
R ~e

� n2
R

2s2
R for nR � 1 : (54)

However, here, the variance s2

R is a random variable itself: Since the �Ri are independent,

s2

R ¼
PNbðtÞ

i¼1
s2

i , where s2

i ¼ hð�Ri � ��RÞ2i, and where NbðtÞ is a random variable. The random numbers �Ri
can only have the values �i ¼ 1 or �Ri ¼ 0 and they follow a simple death process, so for �R ¼ 0, it must

be s2

i ¼ 0, while for �Ri ¼ 1, the variance must be finite, let’s say, s2

i ¼ bðtÞ>0 where b can in principle

depend on time, yet is not known (it depends on the non-Markovian details of the model). Hence,

s2

R ¼
X

NbðtÞ

i¼1

bðtÞ�Ri ¼ bðtÞnR (55)

since the number of summands with �Ri ¼ 1 is the number of surviving R-cells, that is, nR. Substituting

s2

R ¼ bðtÞnR into Equation 54 gives,

PðnRÞ~e
�

n2R
2bðtÞnR ¼ e

�
nR

2bðtÞ (56)

This is an Exponential distribution with mean value �nR ¼ hnRi ¼ 2bðtÞ. Finally, when we enforce nor-

malisation of the probability distribution, we get,

PðnRÞ ¼
1

�nRðtÞ
e
�

nR

�nRðtÞ for nR � 1 : (57)

Eventually, we also have to ’add’ the C-cells. Since for t� 1, also nR � 1, individual events nR !
nR� 1 do not significantly affect the distribution of R-cells, PR

i ¼ �ni
�nR

(in contrast to the case of nR ¼ 1

for GIA models), and hence we can assume the adiabatic approximation discussed above, where

PR
i »P

R�
i and thus lR »const. Therefore, C-cells are distributed according to a Normal distribution with

mean �nC and variance s2

n2
~�nC ~lRnR. As argued in the main text, the mean value of nR, conditionend

on survival of a clone, nR>0, must grow over time, without bound if t!¥. Therefore, we can gener-

ally assume that nR � 1, and hence both �nC ~nR !¥ and s2

C ~nR !¥. However, if we express the
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clone size in form of a rescaled variable x¼ n
�ns
(�ns is the mean of surviving clones) we can write x¼

xRþ xC with xR ¼ nR
�ns

and xC ¼ nC
�ns
, and note that the rescaled standard width of the distribution of xC,

sxC ¼ sC

�n
~

ffiffiffiffi

�nC
p
�nRþ�nC

~
ffiffiffiffi

nR
p
nR

vanishes for t!¥. Therefore, xC is effectively a constant in that limit, xC »�xC / xR.

Hence, also x¼ xRþ xC / xR and thus, the rescaled clone size, x¼ n
�ns
, is distributed according to an

Exponential distribution (here: a probability density function) with unit mean, and after renormalisa-

tion, we get that

PðxÞ ¼ e�x for t!¥: (58)

This distribution is indeed observed in all our simulations of GPA models for large t.
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