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Abstract Understanding how cellular identity naturally interconverts with high efficiency and

temporospatial precision is crucial for regenerative medicine. Here, we revealed a natural midgut-

to-renal lineage conversion event during Drosophila metamorphosis and identified the

evolutionarily-conserved homeodomain protein Cut as a master switch in this process. A steep

Wnt/Wingless morphogen gradient intersects with a pulse of steroid hormone ecdysone to induce

cut expression in a subset of midgut progenitors and reprogram them into renal progenitors.

Molecularly, ecdysone-induced temporal factor Broad physically interacts with cut enhancer-bound

Wnt pathway effector TCF/b-catenin and likely bridges the distant enhancer and promoter region

of cut through its self-association. Such long-range enhancer-promoter looping could subsequently

trigger timely cut transcription. Our results therefore led us to propose an unexpected poising-and-

bridging mechanism whereby spatial and temporal cues intersect, likely via chromatin looping, to

turn on a master transcription factor and dictate efficient and precise lineage reprogramming.

DOI: https://doi.org/10.7554/eLife.33934.001

Introduction
Classical regenerative strategies are facing challenges, including difficulties associated with the

acquisition, delivery and integration of proper cell types into a complex milieu of tissues. In vivo line-

age reprogramming, conversion of a highly specialized cell into the desired cell identity, has there-

fore emerged as an alternative and promising regenerative strategy (Heinrich et al., 2015;

Jopling et al., 2011). However, molecular mechanisms underlying in vivo lineage conversion

remained obscure (Heinrich et al., 2015; Jopling et al., 2011). Due to its high efficiency and tem-

porospatial precision, rare naturally-occurring lineage reprogramming events provide powerful

model systems for elucidating the molecular basis of cell plasticity and identity switch.

Here, we revealed a unique naturally-occurring midgut-to-renal lineage reprogramming event at

the onset of Drosophila metamorphosis. Drosophila excretory system, so-called Malpighian tubules,

are two pairs of tubules converge through common ureters onto midgut-hindgut junction (Figure 1—

figure supplement 1A) (Denholm and Skaer, 2009; Dow, 2009; Singh et al., 2007). Each pair of

renal tubules can be mainly divided into three segments: ureter, lower tubule and upper tubule

(Figure 1A,B and Figure 1—figure supplement 1A) (Singh et al., 2007; Sözen et al., 1997). The

ureter can be further divided into lower and upper regions (Figure 1B). Renal stem cells (RSCs) were

found to be dispersed in the adult ureter and lower tubule regions (Figure 1B) (Singh et al., 2007)

but not in the larval renal tubules, raising the question of how the adult RSCs emerge in develop-

ment. Earlier work (Takashima et al., 2013) and our independent observations found that adult

RSCs are likely to be derived from progenitors within the midgut region. Midgut progenitors (MPs)

and renal progenitors (RPs), although both express Snail-type transcription factor Escargot (Esg), are
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distinct populations of precursor cells in terms of lineage composition and functionality: midgut pro-

genitors/stem cells undergo asymmetric cell divisions to self-renew and meanwhile differentiate into

hormone/peptide-secreting enteroendocrine (EE) cells and nutrient-absorbing enterocytes (ECs)

(Micchelli and Perrimon, 2006; Ohlstein and Spradling, 2006); in contrast, renal progenitors

undergo asymmetric, self-renewing divisions to give rise to principal cells that mediate organic cat-

ion and solute transport (Singh et al., 2007). Intriguingly, we observed that, during metamorphosis,

a small subset of Esg+ progenitors appeared to migrate away from the midgut and onto the renal

tubules (Figure 1C–E), where they terminally differentiated into new Cut+principal cells (arrowheads

in Figure 1D), replacing the old Cut- principal cells in the lower ureter region (arrowheads in

Figure 1C) (Takashima et al., 2013). However, it remains enigmatic when, where and how the pool

of Esg+ midgut progenitors is selected and converted into renal identity during metamorphosis.

To ascertain this midgut-to-renal lineage conversion event and, more importantly, to probe its

underlying regulatory mechanisms and molecules, we carried out a genome-wide unbiased RNAi-

based genetic screen (Xu et al., unpublished) and identified the homeodomain protein Cut as a mas-

ter switch dictating this lineage reprogramming event. Cut is an evolutionarily-conserved homeodo-

main-containing transcription factor that has been shown to regulate various developmental events

in Drosophila and mammals, including sensory organ identity specification and dendritic morpho-

genesis in peripheral nervous system, dorsal-ventral boundary formation in the fly wings, projection

neuron dendritic targeting, as well as patterning and growth during fly airway remodeling

(Becam et al., 2011; Blochlinger et al., 1988; Bodmer et al., 1987; Cubelos et al., 2010;

Grueber et al., 2003; Komiyama and Luo, 2007; Ludlow et al., 1996; Pitsouli and Perrimon,

2013; Rodrı́guez-Tornos et al., 2016).

Here, we show that a steep Wnt/Wingless (Wg) morphogen gradient (Clevers and Nusse, 2012;

Loh et al., 2016) at the midgut-hindgut boundary intersects with a pulse of the steroid hormone

eLife digest As an embryo develops, an organism transforms from a single cell into an

organized collection of different cells, tissues and organs. Regulated by genes and messenger

molecules, non-specialized cells known as precursor cells, move, divide and adapt to produce the

different cells in the adult body.

However, sometimes already-specialized adult cells can acquire a new role in a process known as

lineage reprogramming. Finding ways to artificially induce and control lineage reprogramming could

be useful in regenerative medicine. This would allow cells to be reprogrammed to replace those that

are lost or damaged. So far, scientists have been unable to develop a clear view of how lineage

reprogramming happens naturally.

Here, Xu et al. identified a cell-conversion event in the developing fruit fly. As the fly larva

develops into an adult, a group of cells in the midgut reprogramme to become renal cells – the

equivalent to human kidney cells. The experiments revealed that a combination of signals from a cell

messenger system important for cell specialization (called Wnt) and the hormone that controls

molting in insects, activate a gene called cut, which controls the midgut-to-renal lineage

reprogramming.

Together, Wnt and the hormone ensure that cut is activated only in a small, specific group of

midgut precursor cells at a precise time. The reprogrammed cells then move into the excretory

organs, the renal tubes, where they give rise to renal cells. Midgut precursor cells in which cut had

been experimentally removed, still traveled into the renal tubes. However, they failed to switch their

identity and gave rise to midgut cells instead.

Further examination revealed that both Wnt and the ecdysone hormone are needed to activate

the cut gene. This is probably achieved by creating loops in the DNA to bring together the two

distantly located key regulatory elements of cut gene expression. If this mechanism can be seen in

other contexts it may be possible to adapt it for medical purposes. The ability to reprogramme

groups of cells with high specificity could transform medicine. It would make it easier for our bodies

to regenerate and repair.

DOI: https://doi.org/10.7554/eLife.33934.002
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Figure 1. Homeodomain transcription factor Cut is specifically expressed in Drosophila adult renal stem cells. (A) A schematic diagram of two pairs of

renal tubules (red) that converge at ureters and connect to the digestive tract at the midgut (green)-hindgut (grey) boundary of an adult fly (A). The area

encircled by dashed line in (A) is magnified and shown in (B). (B) Close-up schematics of larval (left) and adult (right) intestine and renal tubules. Note

that each pair of renal tubules merges together at the ureter that is further divided into lower and upper regions. Adult renal stem cells (RSC; yellow)

are present in adult but not larval renal tubules. The large principal cells (PC) in lower ureter (blue) during larval stage are replaced with intermediate

sized new principal cells (red) during adult stage. (C) Progenitors marked by esgts>CD8-GFP (green) reside in the third instar larval (L3) midgut. White

bracket indicates the lower ureter region containing Cut- principal cells (blue). (D–E) During adult stage, Esg+ stem cells are present in both midgut and

renal tubules. White bracket indicates lower ureter containing Cut+ Esg- principal cells (D). Arrows indicate furthest detectable RSCs on renal tubules

(E). (F–G’) Cut is expressed in adult renal stem cells (arrowheads in F, F’) but not intestinal stem cells (ISC; arrowheads in G, G’). (F’,G’) show single-

channel images for Cut immunostaining. (H) MARCM clones induced at early larval stages and examined at early adult stage. Clones containing

multiple cells appeared only at lower ureter (bracket), whereas single-cell clones containing Cut+ progenitors (arrowheads) appeared beyond that

region. (I, I’) MARCM clones induced at lower ureter contain Cut+ small diploid RSCs (white arrowhead) and Cut+ large polyploid principal cells (yellow

Figure 1 continued on next page
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ecdysone at the onset of metamorphosis (Yamanaka et al., 2013) to induce cut expression in a sub-

set of midgut progenitors and reprogram them into renal progenitors. Mechanistically, the Wg mor-

phogen gradient, through its pathway effector TCF/b-catenin, determines the pool of future renal

progenitors, presumably by poising a distal cut enhancer for timely activation. On the other hand,

the hormone ecdysone-induced BTB-Zinc finger protein Broad determines the timing of lineage con-

version by physically interacting with enhancer-bound TCF/b-catenin complex and likely bridging the

distal enhancer and promoter region of cut through its self-association. Such long-range enhancer-

promoter looping could subsequently trigger timely cut transcription. Thus, integration of spatial

and temporal cues by a master cell identity switch, likely through a chromatin looping mechanism,

orchestrates natural lineage reprogramming with temporal and spatial precision.

Results

Adult renal stem cells specifically express homeodomain protein Cut
To identify key regulators governing midgut-to-renal lineage conversion, we carried out a genome-

wide RNAi-based screen. We used temperature-sensitive, midgut and renal progenitor-specific esg-

Gal4, UAS-CD8-GFP, tub-Gal80ts system to drive RNAi expression, transferred animals from permis-

sive temperature (18˚C) to restrictive temperature (29˚C) at mid third instar larval stage, approxi-

mately 48 hr before the lineage reprogramming event occurs, and analyzed the renal phenotypes at

early adult stages. Intriguingly, we found that midgut progenitor-specific knockdown of the tran-

scription factor Cut resulted in lack of the entire lower ureter region (brackets in Figure 1—figure

supplement 1B) and appearance of extra Esg- diploid cells along the renal tubules (arrowheads in

Figure 1—figure supplement 1B).

Such striking renal tubule phenotypes of cut-RNAi prompted us to carefully investigate the

expression pattern of Cut in adult intestine and renal tubules. Cut has previously been found to be

highly expressed in two types of post-mitotic, polyploid cells in the Drosophila digestive-excretive

system: the acid-secreting copper cells in the middle midgut region (Strand and Micchelli, 2011)

and the fluid-balancing principal cells within renal tubules (Singh et al., 2007; Singh et al., 2011).

Surprisingly, we detected moderate Cut expression in Esg+ diploid cells along adult renal tubules

(arrowheads in Figure 1F,F’). Knockdown or overexpression of Cut within adult renal stem cells, by

esg-Gal4, diminished or elevated the Cut expression levels respectively (Figure 1—figure supple-

ment 1C), indicating that such Cut expression is specific. In contrast, Cut was not detectable in adult

intestinal stem cells or enteroblasts (EBs) in midgut (arrowheads in Figure 1G,G’). To further confirm

the specific expression of Cut in renal stem cell lineages, we induced wild-type MARCM (mosaic

analysis with repressible cell marker) clones (Lee and Luo, 2001) at larval stages and analyzed Cut

expression pattern of clones at early adult stage. Using the MARCM system, the homozygous clones

are produced upon mitotic recombination and are positively labeled by GFP. MARCM clones

induced at the lower ureter region (bracket in Figure 1H) contained both diploid cells expressing

moderate levels of Cut (white arrowheads in Figure 1I,I’) and polyploid cells expressing high levels

of Cut (yellow arrowheads in Figure 1I,I’), indicating that new Cut+ principal cells are derived from

Cut+ renal progenitors (Figure 1B,D,I). By contrast, MARCM clones in the midgut region, composed

of diploid ISCs (cyan arrowheads in Figure 1I), EBs, EEs and polyploid ECs (pink arrowheads in

Figure 1I), did not exhibit Cut expression. Therefore, distinct from Cut- intestinal stem cells (ISCs)

that differentiate into Cut- EEs and ECs in the midgut (Figure 1J), Cut+ renal stem cells (RSCs) differ-

entiate into Cut+ principal cells (PCs) on the renal tubules (Figure 1K). Taken together, we identified

Cut as a specific marker that distinguishes adult RSCs from ISCs.

Figure 1 continued

arrowhead). The inset shows single-channel image for Cut immunostaining (I’). Neither ISCs (cyan arrowhead) nor polyploid enterocytes (ECs; pink

arrowhead) expressed Cut (I’). (J, K) Distinct composition of ISC (J) and RSC (K) lineages. EE: enteroendocrine. Scale bar: 50 mm (C–E); 25 mm (F–I’).

DOI: https://doi.org/10.7554/eLife.33934.003

The following figure supplement is available for figure 1:

Figure supplement 1. Identification of Cut as a specific adult renal stem cell marker.

DOI: https://doi.org/10.7554/eLife.33934.004
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Adult RSCs are originated from Cut+ progenitors within midgut
Utilizing Cut as a cell identity marker, we studied the emergence, proliferation, migration and differ-

entiation of RPs during metamorphosis. Cut was undetectable in any Esg+ progenitors in third instar

larval (L3) midguts (Figure 2A). At the onset of metamorphosis (0 hr after puparium formation

(APF)), a few clusters of Esg+ progenitors in closest proximity to the midgut-hindgut boundary

started to exhibit Cut expression (white arrowheads in Figure 2B). At 0.5 hr APF, 20–30 Esg+ pro-

genitors in 5–6 clusters specifically expressed Cut (yellow bracket in Figure 2C). By 1 hr APF, midgut

progenitor islands merged together and the Cut+ progenitors aligned along the midgut-hindgut

border in 1–3 rows (yellow bracket in Figure 2D). Starting at 3 hr APF, Esg+ Cut+ progenitors

migrated across the midgut border and entered the renal tubules (yellow bracket in Figure 2E).

Cut- principal cells in the lower ureter region were engulfed and expelled into the pupal midgut

(pink arrowheads in Figure 2E) (González-Morales et al., 2015). Cut+ progenitors in turn occupied

the lower ureter region (Figure 2F) and differentiated into Esg- Cut+ new principal cells (cyan arrow-

heads in Figure 2G). The dynamic changes in the number of Cut+ progenitors and the emergence,

proliferation, migration and differentiation of RPs during metamorphosis are schematically presented

in Figure 2H and I respectively.

At the onset of metamorphosis, Cut+ progenitors expressed midgut progenitor marker Delta (Dl)

(arrowheads in Figure 2—figure supplement 1A,B), indicating that Cut+ progenitors were transited

from MP to RP characteristics. Interestingly, immediately after the Cut+ progenitors migrated onto

renal tubules, they started to turn off Dl expression (arrowheads in Figure 2—figure supplement

1C). By 9 hr APF, Cut+ progenitors along the renal tubules completely shut down Dl expression

(arrowheads in Figure 2—figure supplement 1D). Therefore, Cut+ progenitors are progressively

reprogrammed from MPs to RPs.

RPs displayed MP characteristics upon Cut depletion
The highly specific and restrictive induction of Cut expression in RPs right before their migration

onto renal tubules prompted us to investigate whether Cut plays a critical role in the identity switch

and/or migration of future RPs. Upon cut knockdown by esg-Gal4, the migration of the small subset

of Esg+ progenitors onto renal tubules remained relatively normal (Figure 3A–D’), indicating that

Cut is dispensable for progenitor mobility. To investigate whether Cut is important for the identity

switch of Esg+ progenitors, we performed lineage-tracing experiments based on the G-TRACE (the

Gal4 Technique for Real-time and Clonal Expression) system (Evans et al., 2009). We used tempera-

ture-sensitive esg-Gal4, UAS-CD8-GFP, tub-Gal80ts system to drive FLP (flippase) expression, trans-

ferred animals from permissive temperature (18˚C) to restrictive temperature (29˚C) at late third

instar larval stage and analyzed the renal phenotypes at early adult stages (Figure 3A,B). Upon esg-

Gal4-driven expression of FLP recombinase, a transcriptional stop cassette flanked by FRT sites is

excised, resulting in lacZ expression in Esg+ progenitors and all their subsequent daughter cells (line-

age expression; Figure 3A). Meanwhile, GFP reveals the real-time expression of esg-Gal4

(Figure 3A). In wild type renal tubules, Esg- lacZ+ cells derived from Esg+ lacZ+ RPs (white arrow-

heads in Figure 3C,C’) were found in the lower ureter region (brackets in Figure 3C,C’). These Esg-

lacZ+ cells were polyploid, new Cut+ principal cells (white arrowheads in Figure 3C,C’), in accor-

dance with our earlier notion that Cut- principal cells are replaced with RP-derived new Cut+ principal

cells during metamorphosis. cut knockdown by esg-GAL4 caused the majority of flies to die at late

pupal or early adult stages (90.3%, n = 567). The adult escaper flies lacked the whole lower ureter

region (Figure 3D,D’), hinting that maldevelopment of the renal tubules contributed to the lethality

of the animals. In contrast to the wild type control (Figure 3C,E), Esg- lacZ+ cells derived from cut-

RNAi RPs were dispersed throughout the ureter and lower tubule regions (white arrowheads in

Figure 3D’). Strikingly, these Esg- lacZ+ cells were diploid, Cut- (Figure 3D,D’), and expressed Pros-

pero (Pros) (Figure 3F,F’), a typical marker for EE cells. These results strongly suggested that, upon

cut depletion, Esg+ progenitors migrate normally onto the renal tubules, yet fail to switch into renal

identity and differentiate into midgut cells along renal tubules.

Importantly, upon cut depletion, Esg+ progenitors along renal tubules behaved essentially the

same as MPs at pupal stages (Guo and Ohlstein, 2015): (1) they produced ectopic Pros+ diploid

cells along renal tubules at the same developmental stages as wild type MPs giving rise to EEs in

midgut (arrowheads in Figure 3—figure supplement 1A,B); (2) The ectopic Pros+ cells derived from
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them expressed additional EE markers such as exocytosis regulator Rab3 (Dutta et al., 2015;

Patel et al., 2015), synaptic protein Bruchpilot (Brp) (Zeng et al., 2013), and secretory neuropeptide

hormone Allatostatin A (Ast A) (Beehler-Evans and Micchelli, 2015) (yellow arrowheads in Fig-

ure 3—figure supplement 1C–E), indicating that they are bona fide EE cells; (3) they underwent

asymmetric cell divisions, resulting in unidirectional Notch activation in progenitors (open

Figure 2. Emergence, migration and differentiation of Cut+ renal progenitors during metamorphosis. (A–G) Midgut-hindgut boundary and lower ureter

region at the stages of (A) third instar larvae (L3), (B) 0 hr, (C) 0.5 hr, (D) 1 hr, (E) 3 hr, (F) 9 hr or (G) 10 hr after puparium formation (APF) stained with

Cut (red). Note that Cut+ progenitors are marked with white arrowheads (B) or yellow brackets (C–G). Also note that Cut- principal cells in the lower

ureter (pink arrowheads in A–D) are engulfed and deposited to the intestinal lumen at 3 hr APF (pink arrowheads in E). Upon differentiation into

Cut+ principal cells (cyan arrowheads in F and G), Esg+ progenitors exhibit reduced levels of Cut expression (white arrowheads in G). (H) Quantification

of the number of Cut+ progenitors per intestine-renal tubule (I-R) sample at different developmental stages (n = 7–13). (I) Schematic representations of

emergence, migration and differentiation of Esg+ Cut+ RPs. Scale bar, 25 mm.

DOI: https://doi.org/10.7554/eLife.33934.005

The following source data and figure supplement are available for figure 2:

Source data 1. Input data for bar graph Figure 2H.

DOI: https://doi.org/10.7554/eLife.33934.007

Figure supplement 1. Cut+ renal progenitors are converted from Dl+ midgut progenitors.

DOI: https://doi.org/10.7554/eLife.33934.006
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Figure 3. Cut dictates midgut-to-renal progenitor identity switch. (A–B) Genetic schema (A) and experimental timeline (B) of the lineage-tracing

experiment. (C–F’) Lineage-tracing analysis of Esg+ progenitors in ureter and lower tubule regions. Wild type RPs in lower ureter (white brackets in C,

C’) differentiate into Cut+ polyploid principal cells (white arrowheads in C, C’). Upon cut depletion, Esg+ progenitors in ureter and lower tubule regions

give rise to Cut- Pros+ diploid cells (white arrowheads in D’, F, F’). Note that the cut-RNAi renal tubules lack the entire lower ureter region (D, D’). (G–J)

Figure 3 continued on next page
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arrowheads in Figure 3—figure supplement 2A–D) and asymmetric localization of Pros to the basal

context (Figure 3—figure supplement 2E); and (4) their cell fate decisions were tightly regulated by

the strength of Notch signaling (Figure 3—figure supplement 2F–H).

To further confirm the notion as proposed above, we carried out MARCM clonal analysis. GFP-

marked clones were induced at second instar stage and analyzed at mid pupal (Figure 3G,H) or

early adult stages (Figure 3I,J). Pros+ EEs or Pdm1+ polyploid ECs were present in wild type

MARCM clones in the midgut (white arrowheads in Figure 3G,I) but not renal tubule regions (pink

arrowheads in Figure 3G,I). In sharp contrast, both EEs and ECs were found within cut mutant

MARCM clones in the renal tubule regions (yellow arrowheads in Figure 3H,J). Moreover, as a con-

sequence of cut depletion from Esg+ progenitors, both the total length of the ureter region

(Figure 3K) and the number of principal cells in ureter (Figure 3L) were sharply reduced. Taken

together, our results clearly demonstrated that Cut is necessary for MP-to-RP identity switch.

To test whether Cut is sufficient in dictating midgut-to-renal lineage conversion, we overex-

pressed Cut in MPs and analyzed their lineage progression using MARCM clonal analysis. In wild

type MARCM clones derived from single MPs, GFP+ polyploid cells were Pdm1+ ECs (white arrow-

heads in Figure 3M). In contrast, MARCM clones derived from Cut-overexpressing MPs mainly con-

tained Pdm1- Cut+ polyploid cells (yellow arrowheads in Figure 3M), strongly suggesting that MPs

were converted into RPs that in turn differentiated into principal cells in midgut region. Collectively,

our observations reinforced the idea that Cut acts as a master switch in dictating natural midgut-to-

renal progenitor identity conversion (Figure 3N).

Wnt/Wg morphogen acts as a spatial cue in inducing Cut expression in
MPs
We next sought to identify the signaling cues that induced Cut expression in the specific subsets of

MPs. The spatially restricted distribution of Cut+ MPs hinted that Cut expression might be induced

by a morphogen gradient emanating from proximal cells. After examining the distribution pattern of

various signaling molecules or receptors at the onset of metamorphosis, we found that, in accor-

dance with previous observations (Fox and Spradling, 2009; Takashima et al., 2008; Tian et al.,

2016), the Wnt/Wingless (Wg) ligand (Clevers and Nusse, 2012; Loh et al., 2016) was expressed in

a narrow zone of 2–3 rows of cells right at the midgut-hindgut boundary, starting from early larval

stages (Figure 4A,B and Figure 4—figure supplement 1A,B). At the onset of metamorphosis, 2–3

clusters of progenitors in closest proximity to the stripe of Wg-producing cells started to turn on Cut

expression (arrowheads in Figure 4C and Figure 4—figure supplement 1C). Around 0.5 hr APF,

Cut was expressed in 5–6 progenitor islands adjacent to the Wg-secreting cells (arrowheads in

Figure 4D). Some Cut+ progenitor islands were not in direct contact with the Wg-producing band

(arrowheads in Figure 4D), suggesting the existence of Wg morphogen gradient. At 1 hr APF,

peripheral cells surrounding progenitor islands (Mathur et al., 2010) partially opened up, allowing

Cut+ progenitor islands to merge with each other (Figure 4E). A clear boundary between Cut+ and

Figure 3 continued

Wild type control MARCM clones residing in the midgut but not ureter region (pink arrowheads in G and I) contain Pros+ EE cells (white arrowhead in

G) and Pdm1+ ECs (white arrowhead in I). In sharp contrast, cut mutant clones at ureter region contain Pros+ EEs (yellow arrowheads in H) or Pdm1+

ECs (yellow arrowheads in J). (K–L) Quantification of the length of ureter (K; **p<0.001 (n = 11)) and the total number of principal cells (L; **p<0.0001

(n = 7–9)) in wild type or esgts >cut-IR adult animals. (M) Control or Cut-overexpressing (Cut-OE) MARCM clones were induced at third instar larval

stages, dissected at late-pupal stage and stained with Pdm1 (red) and Cut (gray). Note that 100% polyploid cells in WT control clones are Pdm1+ Cut-

(n = 69). By contrast, 91% polyploid cells in Cut-OE clones are Pdm1- Cut+, with the rest 9% expressing low levels of Pdm1 and Cut (n = 66). (N)

Schematic depiction of Cut as a MP-to-RP identity switch. Scale bars, 50 mm (C–D’), 25 mm (E–F’, I, J) and 10 mm (G, H, M).

DOI: https://doi.org/10.7554/eLife.33934.008

The following source data and figure supplements are available for figure 3:

Source data 1. Input data for bar graph Figure 3K,L.

DOI: https://doi.org/10.7554/eLife.33934.011

Figure supplement 1. Cut-depleted Esg+ progenitors in renal tubules behave exactly like midgut progenitors.

DOI: https://doi.org/10.7554/eLife.33934.009

Figure supplement 2. Notch signaling modulates EE and EC differentiation on renal tubules.

DOI: https://doi.org/10.7554/eLife.33934.010
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Figure 4. Wg morphogen acts as a spatial cue selecting the pool of future RPs. (A–E) Wg ligand expression, as labeled by wg-Gal4 >CD8-RFP, is highly

restricted to a narrow band of cells proximal to the midgut-hindgut boundary at the stages of second instar (A) or third instar larva (B), or 0 hr (C), 0.5 hr

(D) or 1 hr (E) APF. NRE-GFP marks peripheral cells encasing midgut progenitor islands. Note that Cut+ progenitors (red, nuclear signal; indicated by

arrowheads) are in close proximity to the Wg-producing band. Cyto: cytoplasmic; nuc: nuclear. (F) Expression pattern of Wg signaling reporter Fz3-GFP

at different developmental stages. Closed and open arrowheads indicate Fz3-GFP+ and Fz3-GFP- progenitors respectively. (G,H) wg-Gal4>white-RNAi

or wg-Gal4>wg-RNAi midgut-hindgut boundary region stained with Cut (nuclear signal; arrowheads in G). Note that white-RNAi serves here as a

negative control. (I) Upon overexpression of Sgg-CA or TCF-DN, Esg+ progenitors in closest proximity to the band of wg-producing cells (brackets) fail

to express Cut. (J) Upon overexpression of Wg or Arm-S10, Esg+ progenitors far away from the midgut-hindgut boundary ectopically turn on Cut

expression (arrowheads). (K) Schematic drawings of the progressive MP (green)-RP (yellow) identity switch in the range of Wg morphogen gradient

(purple) along the developmental axis. Scale bars, 25 mm.

DOI: https://doi.org/10.7554/eLife.33934.012

The following figure supplement is available for figure 4:

Figure supplement 1. Wg signaling is both necessary and sufficient for inducing cut expression in Esg+ progenitors.

DOI: https://doi.org/10.7554/eLife.33934.013
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Cut- progenitors could be delineated (dashed lines in Figure 4E and Figure 4—figure supplement

1D), suggesting the spatial precision of the inductive cue. Wg signaling activity, as faithfully reflected

by the Fz3-GFP reporter (Sivasankaran et al., 2000; Tian et al., 2016), was only detectable in a few

rows of MPs proximal to Wg-secreting cells (closed arrowheads in Figure 4F), further supporting

Wg signaling as a spatial cue in selecting future RPs.

If Wg signaling provides an inductive cue, we reasoned that downregulation of Wg signaling in

future RPs should abolish Cut expression. Indeed, specific knockdown of Wg within Wg-producing

cells at midgut-hindgut boundary, by wg-Gal4 (Alexandre et al., 2014), resulted in diminished Cut

expression in Esg+ progenitors (arrowheads in Figure 4G,H). Furthermore, inhibition of Wg signaling

through overexpression of either a dominant-negative form of the Wnt pathway effector TCF (DN-

TCF) (van de Wetering et al., 1997) or a constitutively-active form of the Wnt pathway inhibitor

GSK3b/Shaggy (Sgg-CA) (Bourouis, 2002) in Esg+ progenitors completely abolished Cut induction

(brackets in Figure 4I). Consistently, MARCM clonal analysis revealed that, upon depletion of the

Wnt/Wg pathway positive component Disheveled (Dsh), ectopic Pros+ EEs appeared in renal tubes

(yellow arrowheads in Figure 4—figure supplement 1E). Therefore, Wg signaling is essential for the

MP-to-RP identity switch.

We next investigated why Cut was expressed in only a small subset of Esg+ progenitors by prob-

ing the competence of MPs to respond to Wg signaling. Upon overexpression of Wg ligand in all

MPs, high levels of Cut expression were detected in all Esg+ progenitors dispersed throughout the

midgut (arrowheads in Figure 4J). As a consequence, elevated number of Cut+ progenitors

migrated onto renal tubules (Figure 4—figure supplement 1F,G). In accordance, activation of Wg

signaling in all MPs through overexpression of a constitutively-active form of the Wnt pathway effec-

tor b-catenin/Armadillo (Arm-S10) (Pai et al., 1997) exhibited similar effects as Wg overexpression

(arrowheads in Figure 4J), demonstrating that all MPs are competent to respond to Wg signaling.

Taken together, our data strongly support the notion that a steep Wg morphogen gradient provides

a spatial cue to precisely select the pool of future RPs during metamorphosis (Figure 4K).

To find out to what extent the spread of Wg is required for Cut induction, we employed a mem-

brane-tethered form of Wg, wg(KO; NRT-Wg) (Alexandre et al., 2014). While membrane-tethered

Wg sufficed to control fly patterning and growth (Alexandre et al., 2014), it failed to induce Cut

expression in future RPs (Figure 4—figure supplement 1H), indicating that the spread of Wg is nec-

essary for activating Wg signaling in these progenitors.

Ecdysone hormone as a temporal cue in midgut-to-renal lineage
conversion
The subset of MPs in close proximity to Wg-producing cells do not turn on Cut expression until the

onset of metamorphosis, raising the question of how Cut induction is temporally controlled. Since

the expression levels of wg-Gal4, wg-lacZ or Wg signaling reporter Fz3-GFP at the midgut-hindgut

boundary remained relatively constant from second instar larval to early pupal stages (Figure 4A–F

and Figure 4—figure supplement 1A–D), temporal cue(s) other than Wg ligand triggers Cut expres-

sion in future RPs at the onset of metamorphosis.

The induction of Cut coincided with the pulse of the steroid hormone ecdysone released from

the ring glands (Ou and King-Jones, 2013; Yamanaka et al., 2013), hinting that the ecdysone hor-

mone may serve as a temporal cue (Praggastis and Thummel, 2017; Uyehara et al., 2017). Indeed,

Cut induction was abolished upon Esg+ progenitor-specific expression of a dominant-negative form

of the Ecdysone receptor (EcR-DN) (Brown et al., 2006) (Figure 5A). Since EcR was widely

expressed in all cell types in the midgut at different developmental stages (Figure 5—figure supple-

ment 1A,B), we considered the possibility that the strong pulse of ecdysone at metamorphosis was

translated into a temporal patterning of early response genes downstream of EcR. Supporting this

notion, Esg+ progenitor-specific depletion of the Broad complex (Br-C) (Figure 5A), a crucial early

response gene of the ecdysone signaling (Fletcher and Thummel, 1995; Karim et al., 1993), phe-

nocopied the effects of EcR-DN. In comparison, Cut expression was normally turned on in future RPs

upon downregulation of E74 and E75, the other two well-characterized ecdysone early response

genes (Figure 5—figure supplement 1C). These observations indicated that the steroid hormone

ecdysone executed its control on Esg+ progenitor identity through specific downstream effector Br-

C. Strongly supporting this idea, the temporally dynamic expression pattern of Br-C coincides with

the strong pulse of ecdysone during metamorphosis: Br-C protein expression was barely detectable
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in early third instar larvae, progressively increased starting mid third instar larval stage and peaked

at the onset of metamorphosis, followed by a gradual decline (Figure 5B and Figure 5—figure sup-

plement 1D–H). Together, our results revealed an ecdysone-EcR-Br regulatory axis, which induces

Cut expression and dictates progenitor identity switch with temporal precision.

Cut induction in RPs requires a gene-specific integration of spatial and
temporal cues
The above findings identified the Wnt/Wg ligand and the steroid hormone ecdysone as spatial and

temporal cues respectively in turning on the master identity switch Cut. This leaves us with the

important question of how the spatial and temporal signaling is integrated at molecular level. To

address this question, we first carried out epistatic analysis. Depletion of Br-C abolished ectopic Cut

expression induced by Wg or Arm-S10 overexpression in MPs (Figure 5C and Figure 5—figure sup-

plement 1I), demonstrating that Br-C acts downstream of or in parallel with the Wg pathway tran-

scription activation complex TCF/Arm in cut induction. Furthermore, Wg pathway activity, as

indicated by the Fz3-GFP reporter, was highly responsive to a reduction in Wg signaling, but

remained unaltered upon downregulation of ecdysone signaling (Figure 5D). This rules out the pos-

sibility of a general modulation of the Wg signaling output by the ecdysone pathway. Therefore, it is

Figure 5. Ecdysone hormone acts as a temporal cue and synergizes with Wg signaling in cut induction. (A) Cut expression in Esg+ progenitors (yellow

brackets) is diminished upon expression of EcR-DN or br-RNAi. (B) Quantification of the relative Br-C fluorescent intensity (FI) in Esg+ progenitors at

different developmental stages. *p<0.0001 (n = 14–16). Note that the Br-C expression levels here are assessed with Br-core antibody that detects all Br

isoforms. (C) Wg overexpression-induced ectopic expression of Cut in Esg+ MPs (arrowheads) is completely abolished upon br knockdown. (D)

Expression pattern of Wg signaling reporter Fz3-GFP of indicated genotypes at 0 hr APF. Note that Fz3-GFP expression in Esg+ progenitors is

diminished upon TCF-DN but not br-RNAi expression. (E) Wg and ecdysone signaling pathways converge on cut induction.

DOI: https://doi.org/10.7554/eLife.33934.014

The following source data and figure supplement are available for figure 5:

Source data 1. Input data for bar graph Figure 5B.

DOI: https://doi.org/10.7554/eLife.33934.016

Figure supplement 1. Dynamic expression of Broad, in comparison to EcR, and its epistatic interaction with Armadillo in inducing cut expression.

DOI: https://doi.org/10.7554/eLife.33934.015
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likely that Wg and ecdysone signaling converge on the control of cut expression in a gene-specific

manner (Figure 5E).

Broad forms a transcription activation complex with TCF/Arm in cut
induction
Given that Br itself is a BTB-ZF transcription factor, it may physically associate with TCF/Arm to form

a transcription activation complex and synergistically trigger cut transcription. To test this idea, we

first carried out coimmunoprecipitation (coIP) assays. The Br-C gene locus encodes four distinct

splicing isoforms, Br-Z1, Br-Z2, Br-Z3 and Br-Z4, which share a common N-terminal core domain but

have distinct C-terminal zinc-finger domains (Figure 6A) (Mugat et al., 2000). Indeed, we found

that Arm could be specifically coimmunoprecipitated with Br-C isoforms from HEK293T cell extracts

and exhibited relatively strong binding affinity to Br-TNT-Z1, Br-Z2 and Br-Z4 (Figure 6B).

The results described above prompted us to probe the functional significance of the physical

interaction between Br-C and TCF/Arm. While overexpression of Br-Z1, Br-Z2 or TCF alone was

barely able to precociously induce cut transcription at 9 hr before puparium formation (BPF) (induc-

tion rate of 0, 36 and 0% respectively; n = 11–12; arrowheads in Figure 6C), coexpression of Br-Z1

or Br-Z2 with TCF dramatically enhanced Br activity in premature induction of cut expression (induc-

tion rate of 70 and 100% respectively; n = 9–17; arrowheads in Figure 6C), providing compelling evi-

dence for a combinatorial regulation of cut transcription by Br and Arm/TCF. Simultaneous

overexpression of TCF and either Br-Z3 or Br-Z4 failed to induce premature cut expression,

highlighting the importance of the isoform-specific C-terminal domain for Br functionality.

We next examined the temporal expression pattern of Br-Z1 and Br-Z2. While Br-Z2, as stained

by our newly-raised antibody (Figure 6—figure supplement 1A), exhibited prominent and specific

expression in Esg+ progenitors at 0 hr APF, Br-Z1 was undetectable in the midgut region (Figure 6D

and Figure 6—figure supplement 1B). Significantly, the temporal expression pattern of Br-Z2 in

Esg+ progenitors fully recapitulated that of Br-C (Figure 6E). Therefore, our results clearly indicated

that, although Br-Z1 has moderate ability to precociously induce cut transcription, Br-Z2 is the most

likely isoform that governs Cut induction at the onset of metamorphosis.

We next sought to investigate how Br-Z2 synergized with TCF/Arm to induce precocious cut

expression. We first carried out coimmunoprecipitation assay and found that both TCF and Arm

were specifically coimmunoprecipitated with Br-Z2 from 293 T cell extracts (Figure 6F,G). To confirm

the physical interaction between Arm and Br-Z2 in the nucleus, we next performed proximity ligation

assay (PLA), which detects protein-protein interaction in situ with high specificity (Söderberg et al.,

2006) (Figure 6H). Strong PLA signal was detected in the nuclei of S2 cells coexpressing Br-Z2 and

Myc-tagged Arm (Arm-Myc) (Figure 6I,J). By contrast, PLA signal was barely detectable in S2 cells

expressing Br-Z2 or Arm-Myc alone or coexpressing Br-Z2 and Myc-tagged ELL, a subunit of the

transcription regulatory complex SEC (Super Elongation Complex) (Figure 6I,J) (Liu et al., 2017).

These results clearly demonstrated that Arm and Br-Z2 physically interact within the nucleus. Further-

more, our detailed domain-mapping analysis revealed that the C-terminal domain but neither the ZF

nor the BTB domain was crucial for Br-Z2 to physically interact with TCF (Figure 6F,K). Together,

our results strongly suggested that Br-Z2 forms a transcription activation complex with TCF/Arm in

inducing cut expression in future RPs.

Identification of a distal intronic enhancer for the temporospatial
induction of cut
We next sought to identify cis-regulatory elements of cut that confer its response to Wg and ecdy-

sone signaling in future RPs. Since a cut-lacZ reporter harboring a well-characterized enhancer

upstream of cut promoter (Jack et al., 1991; Jia et al., 2016) did not exhibit expression in RPs dur-

ing metamorphosis, we systematically screened a series of cut enhancers. Out of 22 cut enhancer-

Gal4 driver lines from the Janelia Gal4 collection, in which Gal4 is expressed under the control of cut

enhancer fragments (Pfeiffer et al., 2008) (Figure 7—figure supplement 1A), we identified one

line, R35B08-Gal4, which drove UAS-CD8-RFP expression specifically in future RPs at metamorphosis

(Figure 7—figure supplement 1B). R35B08 is a previously-uncharacterized 3.2 kilobases (kb)

enhancer fragment in the second intron of cut, approximately 50 kb downstream of cut promoter

(cut-intron2-enhancer in Figure 7A). The temporal and spatial expression pattern of cut-intron2-
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Figure 6. TCF/Arm physically associates with Br-Z2 in inducing cut transcription. (A) Schematic drawings of Br isoforms. Note that BTB and ZF indicate

BTB (Broad-Complex, Tramtrack and Bric a brac) domain and Zinc Finger domain respectively. (B) Coimmunoprecipitation (CoIP) of Br isoforms and

Arm in HEK293T cell extracts. In these and subsequent panels, GFP served as a negative control. (C) Cut expression pattern in Esg+ progenitors of

indicated genotypes at 9–10 hr before puparium formation (BPF). (D) Expression pattern of Br-Z1 and Br-Z2 at midgut-hindgut boundary region at 0 hr

Figure 6 continued on next page
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enhancer-GFP, a GFP reporter that we generated for this intronic enhancer, was essentially identical

to that of endogenous Cut protein (Figure 7B), indicating that the temporospatial induction of cut in

future RPs is regulated at transcriptional level and primarily, if not solely, through this distal

enhancer. Consistent with this idea, cut-intron2-enhancer-GFP expression in future RPs was highly

responsive to alterations in Wg or ecdysone signaling (Figure 7C,D).

TCF/Arm/Br-Z2 complex induces cut transcription likely via enhancer-
promoter looping
The long distance between the intron2-enhancer and the promoter of cut suggested that chromatin

looping might juxtapose the distal enhancer with cut promoter, crucial for cut induction. We there-

fore considered the tantalizing scenario whereby Br-Z2 self-association promotes the enhancer-pro-

moter communication and cut transcription, based on the following observations: (1) cut intron2-

enhancer contains closely-spaced putative TCF- and Br-Z2-binding sites (Figure 7E)

(Archbold et al., 2014; Chang et al., 2008; von Kalm et al., 1994); (2) cut promoter region harbors

putative Br-Z2-binding site but not TCF-binding site (Figure 7E); and (3) Br-Z2 contains BTB domain

at its N-terminus (Figure 6D), which is likely to mediate protein dimerization or oligomerization

(Perez-Torrado et al., 2006). To test this looping hypothesis, we first investigated whether TCF and

Br-Z2 binds to their putative bindings site in the cut locus. Indeed, our electromobility shift assay

(EMSA) results demonstrated a direct and sequence-specific binding of TCF and Br-Z2 to their puta-

tive binding sites in the cut promoter or intron2-enhancer region (Figure 7F). Next, we assessed

whether Br-Z2 can self-associate. Our coIP data clearly showed that Br-Z2 formed protein dimer in a

BTB domain-dependent manner (Figure 7G). Furthermore, deletion of only five amino acids (5AA;

aa 46–50) in the BTB domain was sufficient to completely abolish the ability of Br-Z2 to self-associate

(Figure 7H,I). Finally, we assayed the functional significance of Br-Z2 protein dimerization. Deletion

of the whole BTB domain or only five amino acids in this domain (aa 46–50) abolished the activity of

Br-Z2 to precociously induce cut expression within future RPs (Figure 7J), indicating that the ability

to form protein dimer per se is crucial for Br-Z2 to control cut transcription. ZF domain-deleted form

of Br-Z2 also failed to prematurely induce cut expression (Figure 7J), demonstrating that the

sequence-specific DNA-binding ability is equally important for Br-Z2 to dictate cut transcription.

Taken together, our results identified the homeodomain protein Cut as a master switch that con-

verts MPs into RPs in the right place at the right time (Figure 8A). RPs in turn migrate onto renal

tubules and differentiate into renal cells (Figure 8A). When Cut is depleted, Esg+ progenitors

migrate normally, yet fail to switch identity and differentiate into midgut cells along renal tubules

(Figure 8A). Mechanistically, the temporal and spatial signals inducing cut transcription in future RPs

seem to intersect by facilitating enhancer-promoter looping of cut: At the onset of metamorphosis,

the pulse of hormone ecdysone induced peak expression of Br. Br in turn acts as a transcription acti-

vator through its physical interaction with TCF/Arm and meanwhile likely serves as a looping factor

juxtaposing the TCF/Arm-bound enhancer with cut promoter, triggering timely cut transcription.

(Figure 8B).

Figure 6 continued

APF. (E) Quantification of relative Br-Z2 fluorescent intensity (FI) in Esg+ progenitors at different developmental stages. *p<0.0001 (n = 11–16). (F)

Schematic drawings of Br-Z2 domains and truncated constructs. (G) CoIP of FLAG-tagged Br-Z2, HA-tagged Arm and Myc-tagged TCF in HEK293T cell

extracts. (H–J) Specific Arm and Br-Z2 interaction detected by in situ PLA (proximity ligation assay) in the nuclei of Drosophila S2 cells. (H) Schematic

diagram showing the principles of PLA. (I) S2 cells transfected with the indicated plasmids were detected for PLA signal (red). Note that the bottom

panel shows single-channel images for PLA signal. Also note that ELL is a subunit of the Super Elongation Complex (SEC) that regulates gene

transcription. Myc-tagged ELL serves here as a negative control. Quantification of the percentage of PLA foci number per transfected cell is shown in (J;

n = 20–44). (K) CoIP of full-length (FL) or truncated FLAG-Br-Z2 and Myc-TCF. Scale bars, 25 mm (C, D) and 5 mm (I).

DOI: https://doi.org/10.7554/eLife.33934.017

The following source data and figure supplement are available for figure 6:

Source data 1. Input data for bar graph Figure 6E,J.

DOI: https://doi.org/10.7554/eLife.33934.019

Figure supplement 1. Dynamic expression of Br-Z2 and Br-Z1 during metamorphosis.

DOI: https://doi.org/10.7554/eLife.33934.018
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Figure 7. Self-association of Broad likely mediates enhancer-promoter looping of cut locus. (A) Schematic representation of the cut genomic locus.

Exons, introns/non-coding regions and flanking genomic regions are represented as black bars, black lines and gray lines respectively. Purple bar

indicates intron2-enhancer. (B) cut-intron2-enhancer-GFP, a reporter for the intron2 enhancer of cut, specifically colocalizes with endogenous Cut in

future RPs. (C) The expression of cut-intron2-enhancer-GFP is abolished upon expression of TCF-DN or br-RNAi in Esg+ progenitors. (D) cut-intron2-

enhancer-GFP is ectopically induced in MPs far away from the midgut-hindgut boundary upon Wg overexpression. (E) Schematic drawing of a portion

Figure 7 continued on next page
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One important predication of this model is that cohesin (Dorsett, 2011; Dorsett and Mer-

kenschlager, 2013; Dowen and Young, 2014) and its loading factor Nipped-B, which facilitates and

stabilizes enhancer-promoter looping (Rollins et al., 1999), are essential for cut induction in future

RPs. Indeed, cut expression at metamorphosis was markedly decreased upon depletion of cohesin

subunit Stromalin (SA) or Nipped-B (Figure 8C). Significantly, in sharp contrast, the expression of

Fz3-GFP (Figure 8D) or cut-intron2-enhancer-GFP (Figure 8E) remained unaltered upon downregu-

lation of cohesin or Nipped-B, indicating that cohesin is specifically required for chromatin looping-

dependent cut transcription in future RPs.

Discussion

Homeobox protein Cut dictates a unique and natural lineage
conversion event
Here we revealed a naturally-occurring midgut-to-renal lineage conversion event at the onset of Dro-

sophila metamorphosis. Compared with experimentally induced reprogramming, natural reprogram-

ming events in physiological settings are relatively rare, yet much more efficient, predictable and

robust (Gettings et al., 2010; Jarriault et al., 2008; Red-Horse et al., 2010; Schaub et al., 2015).

The lineage reprogramming process unveiled in our studies represents a unique natural lineage con-

version event in that (1) The cell identity switch occurs between organ-specific progenitors, not fully-

differentiated cells; (2) the reprogramming event takes place at postembryonic stages, when cells

are much less plastic; and (3) the cell identity fully converts from one organ-specific characteristics to

another. Thus, this midgut-to-renal lineage conversion event provides a previously unexplored physi-

ological context for elucidating the detailed molecular mechanisms underlying cell plasticity.

Our results further show that the homeodomain protein Cut is a master cell identity switch con-

trolling the natural conversion of midgut progenitors into renal identity. Cut was originally identified

as a binary identity switch between subtypes of neurons in the peripheral nervous systems (PNS) of

Drosophila (Bodmer et al., 1987). Compelling evidence demonstrated that Cut is both necessary

and sufficient in specifying neuronal identities in fly PNS (Blochlinger et al., 1991; Bodmer et al.,

1987). Therefore, Cut dictates cell identity switch within or across organ boundary.

We reason that Cut might be particularly suitable for being a master cell identity switch in diverse

biological contexts. Firstly, cut is an unusually large gene harboring a long and complex enhancer

region spanning more than 150 kb. Such a long enhancer region can be subdivided into small seg-

ments responsive to different stimuli or signals in diverse tissues or organs at distinct developmental

stages. Therefore, akin to neurons with extensive and complex arbors, the extra-long and seg-

mented enhancer region of cut receives and integrates diverse input signals, and drives Cut expres-

sion with high temporospatial precision. Secondly, Cut, as a homeobox transcription factor, may

intrinsically possess the ability to specify and confer organ or tissue identities, analogous to the clas-

sic homeotic genes such as Antennapedia, by simultaneously erasing old cell identities and writing

new ones.

Figure 7 continued

of the cut locus spanning approximately 60 kb. Putative TCF-binding sites and Br-Z2-binding sites are represented by green and blue dots respectively.

Purple line indicates intron2-enhancer. (F) EMSA demonstrating the interaction of TCF or Br-Z2 DNA-binding domains with biotin-labelled probes

bearing wild type (WT) or mutant (mut) sequence of putative TCF- or Br-Z2-binding sites. E: enhancer; P: promoter. Note that green or blue arrowheads

indicate the DNA-protein complexes, whereas white arrowheads indicate free probes. (G) CoIP between full-length (FL) or truncated FLAG-tagged Br-

Z2 and Myc-tagged Br-Z2 in 293T cells. Note that dimerization of Br-Z2 depends on its BTB but not ZF domain. (H) Schematic drawings of Br-Z2-D5AA

construct, a small deletion in the BTB domain. (I) CoIP between Flag-Br-Z2-D5AA and Myc-Br-Z2 in 293T cells. (J) Coexpression of TCF with Br-Z2-DBTB,

Br-Z2-D5AA or Br-Z2-DZF failed to precociously induce Cut expression at 9 hr BPF. Scale bars, 25 mm.

DOI: https://doi.org/10.7554/eLife.33934.020

The following figure supplements are available for figure 7:

Figure supplement 1. Identification of an intronic enhancer conferring temporospatial induction of cut in future RPs.

DOI: https://doi.org/10.7554/eLife.33934.021

Figure supplement 2. EMSA assay showing specific binding of TCF or Br-Z2 to their binding site in cut promoter or intron2-enhancer region.

DOI: https://doi.org/10.7554/eLife.33934.022
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Figure 8. Ecdysone signaling and Wg pathway might intersect through a poising-and-bridging mechanism to dictate midgut-to-renal lineage

reprogramming. (A) A graphic model of the MP-RP identity switch. Cut (orange), induced by Wg morphogen gradient (purple; spatial cue) in

conjunction with the steroid hormone ecdysone (grey; temporal cue), dictates midgut-to-renal progenitor identity switch at the onset of

metamorphosis. (B) A working model depicting the poising-and-bridging mechanism. Note that the red circle represents cohesin, which is likely to be

Figure 8 continued on next page
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Precise induction of master identity switch by a ‘poising-and-bridging’
mechanism
Acquisition and switch of distinct cell identities are precisely and tightly controlled in both space and

time (Erclik et al., 2017; Red-Horse et al., 2010; Schaub et al., 2015). Yet the molecular basis

underlying the integration of spatial and temporal signals remain poorly understood. We posit that

two molecular mechanisms may underlie the intersection of temporal and spatial cues: (1) the spatial

cues restrict the expression/activity of the temporal pathway component(s), or vice versa. This strat-

egy has been well exemplified in spatiotemporal control of border cell migration in the Drosophila

ovary (Jang et al., 2009) and spatial restriction of neural competence (Huang et al., 2014); and (2)

the temporal and spatial pathways converge to induce the expression of a specific set of target

genes. The molecular basis of the latter scenario remains enigmatic.

Interestingly, our results revealed that the spatial and temporal cues might intersect by an unex-

pected ‘poising and bridging’ mechanism to dictate the midgut-to-renal progenitor identity switch

(Figure 8B). In this model, the spatial transcription factors (TF) bind a distal enhancer and prime it

for a timely response to the temporal cues, whereas the temporal TF acts as a bridging factor that

binds to both the distal enhancer and the promoter region and induces enhancer-promoter looping

through its self-association (Figure 8B). Meanwhile, the temporal TF is likely to also act as a tran-

scription activator by physically interacting with the spatial TFs. Importantly, since protein dimeriza-

tion or oligomerization occurs only when the protein concentration rises above certain threshold

(Marianayagam et al., 2004), such a protein-dimerization-based regulatory mechanism is ideal for

integrating and translating gradual changes in temporal and spatial signaling strength into a timely

and all-or-none biological event such as cell identity switch.

Although long-range chromatin looping has been found at numerous gene loci (Ghavi-

Helm et al., 2014; Levine et al., 2014), the identity and mode of action of looping factors under

developmental or physiological settings remain unclear. Our findings shed mechanistic insights into

how a temporal factor might bridge the distal enhancer and the promoter of a master gene via pro-

tein dimerization in development. In light of recent studies implicating dimerization of TFs, such as

CTCF, Yin Yang one and LDB1, in the organization of chromatin architecture either globally

(Phillips and Corces, 2009; Weintraub et al., 2017) or locally (Deng et al., 2012), it is conceivable

that TF dimerization or multimerization might represent a precise and prevailing mechanism estab-

lishing chromatin loops in space and time.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers Add. info.

Genetic reagent
(D. melanogaster)

UAS-cut Bloomington Drosophila
Stock Center

RRID: BDSC_36496

Genetic reagent
(D. melanogaster)

FRT19A, cutC145 Bloomington Drosophila
Stock Center

RRID: BDSC_36496

Genetic reagent
(D. melanogaster)

FRT19A, dsh3 Bloomington Drosophila
Stock Center

RRID: BDSC_6331

Genetic reagent
(D. melanogaster)

UAS-Wg-HA Bloomington Drosophila
Stock Center

RRID: BDSC_5918

Genetic reagent
(D. melanogaster)

UAS-Arm-S10 Bloomington Drosophila
Stock Center

RRID: BDSC_4782

Continued on next page

Figure 8 continued

important for stabilizing the enhancer-promoter looping of cut. (C–E) Downregulation of either cohesin subunit SA or cohesin loading factor Nipped-B

abolished cut induction (C) but showed no effects on Fz3-GFP (D) or cut-intron2-enhancer-GFP (E) expression in future RPs. Scale bars, 25 mm.

DOI: https://doi.org/10.7554/eLife.33934.023
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Add. info.

Genetic reagent
(D. melanogaster)

esg-Gal4, tubP-Gal80ts,
UAS-GFP

Gift from Dr. H Jasper
(Biteau et al., 2008) and Dr. C Micchelli
(Micchelli and Perrimon, 2006)

N/A

Genetic reagent
(D. melanogaster)

wg-Gal4 Gift from Dr. JP Vincent
(Alexandre et al., 2014)

N/A

Genetic reagent
(D. melanogaster)

wg(KO; NRT–Wg) Gift from Dr. JP Vincent
(Alexandre et al., 2014)

N/A

Genetic reagent
(D. melanogaster)

UAS-TCF-DN Bloomington Drosophila
Stock Center

RRID: BDSC_4785

Genetic reagent
(D. melanogaster)

wg-lacZ Bloomington Drosophila
Stock Center

RRID: BDSC_1672

Genetic reagent
(D. melanogaster)

Rab3-GFP Bloomington Drosophila
Stock Center

RRID: BDSC_62541

Genetic reagent
(D. melanogaster)

UAS-CD8-RFP Bloomington Drosophila
Stock Center

RRID: BDSC_27392

Genetic reagent
(D. melanogaster)

cut-intron2-Gal4 Bloomington Drosophila
Stock Center

RRID: BDSC_49818

Genetic reagent
(D. melanogaster)

NRE-GFP Bloomington Drosophila
Stock Center

RRID: BDSC_30727

Genetic reagent
(D. melanogaster)

UAS-Sgg.S9A Bloomington Drosophila
Stock Center

RRID: BDSC_5255

Genetic reagent
(D. melanogaster)

UAS-EcR-DN Bloomington Drosophila
Stock Center

RRID: BDSC_6872

Genetic reagent
(D. melanogaster)

UAS-Br-Z1 Bloomington Drosophila
Stock Center

RRID: BDSC_51190

Genetic reagent
(D. melanogaster)

UAS-Br-Z3 Bloomington Drosophila
Stock Center

RRID: BDSC_51192

Genetic reagent
(D. melanogaster)

UAS-Br-Z4 Bloomington Drosophila
Stock Center

RRID: BDSC_51193

Genetic reagent
(D. melanogaster)

UAS-TCF Bloomington Drosophila
Stock Center

RRID: BDSC_4838

Genetic reagent
(D. melanogaster)

UAS-cut-IR Bloomington Drosophila
Stock Center

RRID: BDSC_33967

Genetic reagent
(D. melanogaster)

UAS-br-IR Bloomington Drosophila
Stock Center

RRID: BDSC_27272

Genetic reagent
(D. melanogaster)

UAS-Nipped-b-IR Bloomington Drosophila
Stock Center

RRID: BDSC_32406

Genetic reagent
(D. melanogaster)

UAS-SA-IR Bloomington Drosophila
Stock Center

RRID: BDSC_33395

Genetic reagent
(D. melanogaster)

UAS-wg-IR Bloomington Drosophila
Stock Center

RRID: BDSC_33902

Genetic reagent
(D. melanogaster)

UAS-Eip74EF-IR Bloomington Drosophila
Stock Center

RRID: BDSC_29353

Genetic reagent
(D. melanogaster)

UAS-Eip75B -IR Bloomington Drosophila
Stock Center

RRID: BDSC_26717

Genetic reagent
(D. melanogaster)

UAS-white-IR Bloomington Drosophila
Stock Center

RRID: BDSC_33623

Antibody Anti-Flag M2 affinity gels Sigma-Aldrich Cat#: A2220

Antibody Mouse anti-Broad-core
(25E9.D7)

Developmental Studies
Hybridoma Bank

RRID: AB_528104

Antibody Mouse anti-Broad-Z1
(Z1.3C11.OA1)

Developmental Studies
Hybridoma Bank

RRID: AB_528105

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Add. info.

Antibody Mouse anti-Cut (2B10) Developmental Studies
Hybridoma Bank

RRID: AB_528186

Antibody Mouse anti-Prospero
(MR1A)

Developmental Studies
Hybridoma Bank

RRID: AB_528440

Antibody Mouse anti-Bruchpilot
(nc82)

Developmental Studies
Hybridoma Bank

RRID: AB_2314866

Antibody Mouse anti-Allatostatin
(Ast7, 5F10)

Developmental Studies
Hybridoma Bank

RRID: AB_528076

Antibody Rabbit anti-Pdm1 Gift from Dr. X. Yang N/A

Antibody Anti-GFP antibody abcam Cat#: ab13970

Antibody Anti-GFP antibody - ChIP
Grade

abcam Cat#: ab290

Antibody Mouse anti-beta-galactosidase
(40-1a)

Developmental Studies
Hybridoma Bank

RRID: AB_2314509

Antibody Anti-RFP antibody abcam Cat#: ab62341

Antibody Phospho-Histone H3 (Ser10)
Antibody

Cell Signaling Technology Cat#: 9701

Antibody Rabbit anti-Myc Cell Signaling Technology Cat#: 2278

Commercial assay
or kit

Duolink In Situ Red Starter
Kit Mouse/Rabbit

Sigma-Aldrich Cat#: DUO92101

Strain, strain background
(E.coli)

BL21 (DE3) TransGen Biotech Cat#: CD601-02

Software, algorithm Photoshop CS5 Adobe N/A

Software, algorithm The Leica Application
Suite 2.6.3

Leica N/A

Cell line (Human) HEK293T ATCC RRID: CRL-3216

Cell line (D. melanogaster) S2 DGRC Cat#: S2-DGRC

Recombinant DNA
reagent

pcDNA3.1 Invitrogen Cat#: V79020

Recombinant DNA
reagent

pAc5.1 Invitrogen Cat#: V4110-20

Recombinant DNA
reagent

pGEX-6P-1 GE Healthcare Cat#: 28-9546-48

Fly genetics
Fly culcture and crosses were performed according to standard procedures. Drosophila stocks used

in this study include: UAS-Cut (#36496; Bloomington stock center (BDSC)); FRT19A, cutC145 (#36496;

BDSC); UAS-Wg-HA (#5918; BDSC); UAS-Arm-S10 (#4782; BDSC); UAS-cut-RNAi (#33967; BDSC);

UAS-br-RNAi (#27272; BDSC); esg-Gal4, tubP-Gal80ts, UAS-GFP (Biteau et al., 2008; Micchelli and

Perrimon, 2006); wg-Gal4 (Alexandre et al., 2014); wg(KO; NRT–Wg) (Alexandre et al., 2014);

UAS-TCF-DN (#4785; BDSC); wg-lacZ (#1672; BDSC); Rab3-GFP (#62541; BDSC); UAS-CD8-RFP

(#27392, BDSC); cut-intron2-Gal4 (#49818, BDSC); NRE-GFP (#30727; BDSC); UAS-Sgg.S9A (#5255;

BDSC); UAS-EcR-DN (#6872; BDSC); UAS-wg-RNAi (#33902; BDSC); UAS-Br-Z1 (#51190; BDSC);

UAS-Br-Z3 (#51192; BDSC); UAS-Br-Z4 (#51193; BDSC); FRT19A, dsh3 (#6331; BDSC); UAS-TCF

(#4838; BDSC); UAS-Nipped-B-RNAi (#32406; BDSC); UAS-SA-RNAi (#33395; BDSC); UAS-Eip74EF-

RNAi (#29353; BDSC); UAS-Eip75B (#26717; BDSC); UAS-white-RNAi (#33623; BDSC); Act5C-

FRT>stop>FRT-lacZ.nls (#6355; BDSC).

wg-Gal4 transgenic flies were generated by integrating the Gal4 containing plasmid RIVGal4

(Baena-Lopez et al., 2013) into the attP site of wg flies (Alexandre et al., 2014).
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Molecular biology
To generate Fz3-pH-Stinger and cut-intron2-enhancer-pH-Stinger constructs, a 2,318 bp genomic

DNA fragment (�2324 to �7) from frizzled3 gene region and a 3,157 bp genomic DNA fragment

from cut gene region were PCR amplified and inserted into the pH-Stinger vector respectively.

Transgenic lines of these reporters were generated by site-specific integration into the attP2 landing

site on the third chromosome using standard phiC31 transformation methods. All transgenic plas-

mids were verified by DNA sequencing before germline transformation.

The PCR primers are listed as below: fz three reporter Fw: 5’-GAACGAAAGAGTTGGCAGAGAG

�3’; fz three reporter Rv: 5’-GCTTAGTGGGTTTCAGGAGG�3’; ct reporter Fw: 5’-GCCGAGA

TGCGGTAGTAAAACG�3’; ct reporter Rv: 5’-CTGTTTGTTTCTGGCGAGCTTA �3’.

To generate UAS-FLAG-Br-Z2-FL; UAS-FLAG-Br-Z2-DBTB; UAS-FLAG-Br-Z2-D5AA or UAS-FLAG-

Br-Z2-DZF transgenic lines, full length or truncated version of FLAG-Br-Z2 was inserted into pUAST

vector, followed by phiC31-mediated integration into the attP2 landing site.

For Coimmunoprecipitation experiments, Arm-HA in pcDNA3.1 (Invitrogen) was made by cloning

Arm-S10 from genome DNA extracted from UAS-Arm-S10 transgenic fly line (#4782; BDSC), fol-

lowed by replacing Myc tag with HA tag (YPYDVPDYA). FLAG-tagged Br isoforms in pcDNA3.1

were constructed by cloning cDNA of each isoform from corresponding br isoform-specific trans-

genic lines using genomic DNA PCR. aa 191–514; aa 1–190; aa 32–97, aa 439–492 and aa 46–50 of

Br-Z2 were deleted to make Br-Z2-N, Br-Z2-C, Br-Z2-DBTB, Br-Z2-DZF and Br-Z2-D5AA respectively.

pCMV-Myc-TCF is a generous gift from Dr. Esther M Verheyen.

MARCM clonal analysis
To generate MARCM clones shown in Figure 1H–I’, Figure 3I,J or Figure 4—figure supplement

1E, larvae were heat-shocked at 37˚C for 6 times for 40 min each time successively at 24, 28, 48, 52,

72, 76 hr after-larvae-hatching (ALH) and further aged at 25˚C before dissection at early adult stage

(2–3 days after eclosion).

To generate MARCM clones shown in Figure 3G,H, larvae were heat-shocked at 37˚C for 6 times

for 60 min each time successively at 24, 28, 48, 52, 72, 76 hr after-larvae-hatching (ALH) and further

aged at 25˚C before dissection at 72 hr APF.

To generate MARCM clones shown in Figure 3M, third instar larvae were heat-shocked at 37˚C
for 40 min and farther aged at 25˚C before dissection at 96 hr APF.

Lineage-tracing
The lineage tracing experiments as shown in Figure 3A–F’ were performed by crossing the esg-

Gal4, Gal80ts, UAS-CD8-GFP; UAS-w-RNAi or esg-Gal4, Gal80ts, UAS-CD8-GFP; UAS-cut-RNAi flies

with UAS-FLP; Act5C-FRT>stop>FRT-lacZ.nls flies. Embryos were collected and kept at 18˚C. Late
third instar larvae were shifted to 29˚C until dissection at early adult stage (2–3 days after eclosion).

Immunohistochemistry
For intestine-renal tubule immunostaining, samples were dissected in Schneider’s insect medium

(Sigma-Aldrich) and proceeded as previously described (Lin et al., 2008) with modifications. Briefly,

samples were fixed in 4% formaldehyde/1xPBS/n-heptane (v/v/v = 1:1:2) for 15 min at room temper-

ature, washed with 100% methanol and gradually rehydrated in 75, 50 and 25% PBST (1xPBS plus

0.1% Triton X-100)/methanol mix. Samples were washed several times with PBST, blocked in block-

ing solution (1% BSA in PBST) for 1 hr, followed by incubating with appropriate primary antibody

overnight at 4˚C. After incubation with secondary antibodies according to standard procedures,

samples were mounted in Vectashield (Vector Laboratories). For DNA staining, Hoechst (Life Tech-

nologies) was added in the wash step with a dilution of 1:3000. Images were obtained on a Leica

TCS SP8 AOBS confocal microscope and were processed with Adobe Photoshop.

Primary antibodies used in this study were chicken anti-GFP (1:2000, Abcam), mouse anti-Pros

(1:100, Developmental Studies Hybridoma Bank [DSHB]), mouse anti-Cut (2B10) (1:100, DSHB),

mouse anti-Broad-core (25E9) (1:200, DSHB), mouse anti-Nc82 (1:100, DSHB), mouse anti-AstA

(1:100, DSHB), rabbit anti-Pdm1 (1:1000, a generous gift from Dr. Xiaohang Yang), mouse anti-b-

galactosidase (1:100, DSHB), rabbit anti-b-galactosidase (1:1000, Cappel), rabbit anti-phospho-His-

tone H3 (1:1000, Upstate).
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Cell lines and transfection
Human embryonic kidney HEK293T cells (ATCC, RRID: CRL-3216 obtained from Dr. Hong Wu’s labo-

ratory, Peking University, and authenticated by ATCC) were maintained in DMEM medium (Invitro-

gen) supplemented with 10% FBS at 37 ˚C and 5% CO2. DNA transfection was performed using a

standard polyethylenimine (PEI) protocol.

Drosophila S2 (Schneider 2) cells (DGRC, Cat#: S2-DGRC; obtained from Dr. Alan Jian Zhu’s labo-

ratory, Peking University, and authenticated by DGRC) were cultured at 25˚C in Schneider’s Dro-

sophila medium Drosophila Medium (Invitrogen) supplemented with 10% FBS, 100 U/ml penicillin

and 100 mg/ml streptomycin. DNA transfection of S2 cells were carried out using Effectene Trans-

fection Reagent (QIAGEN) according to manufacturer’s protocol.

Both cell lines used in this study have been tested for and confirmed to be negative for myco-

plasma contamination, using short tandem repeat (STR) profiling technique.

Coimmunoprecipitation
Coimmunoprecipitation assays in HEK293T cell extracts were performed as previously described

(Liu et al., 2017). Briefly, 48 hr after transfection, HEK293T cells were harvested, washed and resus-

pended in lysis buffer [50 mM Tris-HCl (pH 8.0); 120 mM NaCl; 5 mM EDTA; 1% NP-40; 10% glyc-

erol; protease inhibitor cocktail (Sigma-Aldrich); 2 mM Na3VO4] and kept on ice for 20 min. Cell

extracts were sonicated with Bioruptor Plus (Biosense) at 4˚C with low power for 5 cycles of 10 s on/

10 s off. The cell extracts were clarified by centrifugation, and proteins immobilized by binding to

anti-FLAG M2 (Sigma-Aldrich) affinity gel for 4 hr at 4˚C. Beads were washed and proteins recovered

directly in SDS-PAGE sample buffer. Rabbit anti-Flag (Cell Signaling Technology), Rabbit anti-c-myc

(Cell Signaling Technology) or rabbit anti-HA (Santa Cruz Biotechnologies) were used for western

blot analysis.

Br-Z2 antibody
Isoform-specific rabbit anti-Br-Z2 antibody was generated in this study [GST fusion of Br-Z2 aa 432–

514, affinity purified (Abclonal Biotech.)] and used at 1:40 for immunostaining.

Protein purification
The DNA-binding domains (DBD) of TCF (aa 271–408) and Br-Z2 (aa 432–514) were cloned into

pGEX-6P-1. GST-tagged protein was purified by ProteinIso GST resin (Transgen Biotech) through

column buffer (25 mM HEPES (pH 7.6), 150 mM NaCl, 10% glycerol, 1 mM EDTA, 10 mM b-mercap-

toethanol, 2 mM PMSF). After washing, protein was eluted with 100 mM glutathione in column

buffer. Protein concentrations were measured by Coomassie stained gels. Known concentrations of

BSA (bovine serum albumin) were used as a standard.

Electromobility shift assays
Increasing concentration of purified GST-tagged protein and 10 fmol biotin-labelled double-

stranded DNA substrate were incubated at 25˚C in 20 ml reaction buffer (20 mM HEPES (pH 7.9), 50

mM KCl, 0.1 mM EDTA, 2 mM DTT, 6 mM MgCl2, 0.1 mg/ml BSA, 50 ug/ml poly(dI-dC), 5% glyc-

erol) for 45 min. The reaction mixture was loaded and resolved in 8% TBE gel. Amounts of recombi-

nant protein used per reaction were as follows: 1.2–7.2 ug GST-TCF-DBD (E probe); 0.01–0.2 ug

GST-Br-Z2-DBD (P probe) and 0.2–1 ug GST-Br-Z2-DBD (E1 probe).

Proximity ligation assay (PLA)
Duolink in situ PLA was performed with Drosophila S2 cells according to manufacturer’s instructions

(DUO92101; Sigma-Aldrich). Briefly, after transfection and fixation, S2 cells were incubated with pri-

mary antibodies at RT for 3 hr, followed by incubation with Duolink PLA probes (1:12) at 37˚C for 1

hr, ligation at 37˚C for 1 hr and amplification at 37˚C for 2 hr. Primary antibodies used were rabbit

anti-Myc (1:200) and mouse-anti-Br-core (1:150).

Quantification and statistical analysis
Length of ureter was measured with Leica Application Suite 2.6.3 from Leica Microsystems. For

quantification of the intensity of antibody staining, images were taken with the same confocal

Xu et al. eLife 2018;7:e33934. DOI: https://doi.org/10.7554/eLife.33934 22 of 27

Research article Cell Biology Developmental Biology and Stem Cells

https://scicrunch.org/browse/search?query=CRL-3216&l=CRL-3216
https://doi.org/10.7554/eLife.33934


settings and the mean fluorescence intensity was measured with Histogram function of Adobe Pho-

toshop. Unpaired Student’s t-tests were used for statistical analysis between two groups.
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