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Abstract

There is a limited evaluation of an independent linguistic battery for early diagnosis of Mild

Cognitive Impairment due to Alzheimer’s disease (MCI-AD). We hypothesized that an inde-

pendent linguistic battery comprising of only the language components or subtests of popu-

lar test batteries could give a better clinical diagnosis for MCI-AD compared to using an

exhaustive battery of tests. As such, we combined multiple clinical datasets and performed

Exploratory Factor Analysis (EFA) to extract the underlying linguistic constructs from a com-

bination of the Consortium to Establish a Registry for Alzheimer’s disease (CERAD),

Wechsler Memory Scale (WMS) Logical Memory (LM) I and II, and the Boston Naming

Test. Furthermore, we trained a machine-learning algorithm that validates the clinical rele-

vance of the independent linguistic battery for differentiating between patients with MCI-AD

and cognitive healthy control individuals. Our EFA identified ten linguistic variables with dis-

tinct underlying linguistic constructs that show Cronbach’s alpha of 0.74 on the MCI-AD

group and 0.87 on the healthy control group. Our machine learning evaluation showed a

robust AUC of 0.97 when controlled for age, sex, race, and education, and a clinically reli-

able AUC of 0.88 without controlling for age, sex, race, and education. Overall, the linguistic

battery showed a better diagnostic result compared to the Mini-Mental State Examination

(MMSE), Clinical Dementia Rating Scale (CDR), and a combination of MMSE and CDR.

Introduction

Mild Cognitive Impairment due to Alzheimer’s disease (MCI-AD) is a precursor to Alzhei-

mer’s disease (AD) [1–3]. It is characterized by a cognitive decline that is usually associated

with aging or AD [4]. Some of the profound characteristics of MCI-AD are the gradual degrad-

ing of cognitive speech functions, which is often affected long before the diagnosis of MCI-AD

[5]. Research has shown that neurodegenerative disease such MCI-AD deteriorates nerve cells
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that control cognitive speech and language processes, and therefore affect the ability of an indi-

vidual to make effective verbal utterances [6, 7].

The need for early detection of MCI-AD using linguistic biomarkers has been growing in

recent years [6–12]. However, it is still prevalent to diagnose MCI-AD using a combination of

neuropsychological batteries and a doctor’s longitudinal observation of the individual [13]. A

more popular option is to use the Mini-Mental State Examination (MMSE) instrument which

looks for gross cognitive deficits that may not be sensitive enough to capture low-level cogni-

tive deficits that often characterize MCI-AD [14, 15]. It is also common to combine the MMSE

with another test battery [13]. The Montreal Cognitive Assessment (MoCA)[16], Clinical

Dementia Rating Scale (CDR) [17], Boston Naming Test (BNT) [18], and the Consortium to

Establish a Registry for Alzheimer’s disease (CERAD) battery [19], are often combined to diag-

nose MCI-AD. Administering these neuropsychological batteries can be lengthy and compli-

cated [16]. At the same time, each test battery would typically assess multiple cognitive deficits.

The clinician would then need to make a challenging determination of an ideal diagnosis by

considering all the possible cognitive deficits linked to different variants of a neuropsychologi-

cal disorder [20].

Some independent linguistic subtests are available as part of the existing test battery such as

the CERAD battery [21]. Many of the CERAD linguistic subtests have been assessed or vali-

dated independently or as part of a combined battery [22]. What is often less studied, however,

is the combination of multiple linguistic subtests to create an independent linguistic battery

for early diagnosis of MCI-AD using language alone. An independent linguistic battery could

reduce the test burden on patients over a large population while at the same time increases the

effectiveness of the diagnosis even with less test time.

For example, the efficacy of the Wechsler Logical Memory (WLM) I and II, which are two

of the five different subtests of the Wechsler Memory Scale (WMS) [23], have been reported

by some researchers to independently screen MCI-AD patients through a narrative task [6, 15,

24]. The WLM involves two narrative tasks, where the participants listen to a tale and then

retell the tale both immediately after listening to the story and after a delayed period of about

30 minutes. The immediate retell is known as the WLM I, and the delayed retell is known as

WLM II. A famous tale that is often used for the clinical diagnosis of MCI-AD is the Anna

Thompson story [15]. Each narrative of the participant is scored based on the number of story

elements in the narrative. The WLM I and II give a single summary score for retelling the nar-

rative, immediate memory, and delayed memory [11, 15, 21, 24].

Similarly, the CERAD Word List Memory subtest, which is a part of the CERAD neuropsy-

chological assessment battery, has proven to be useful in the neuropsychological assessment of

cognitive deficits in patients with MCI-AD [21, 25]. Like the WMS, the CERAD battery com-

bines multiple subtests which require individual interpretations. The CERAD Word List

Memory subtest of the larger CERAD battery is presented to the participants in three trials

[25]. At every 2 seconds, participants are required to read each word aloud. At the end of the

reading task, participants would recall as many words as possible from the list in a single trial.

Each trial has a maximum of 10 correct answers summing up to 30 correct answers in the

three trials. Different scores can be calculated from the trials, including delayed recall and

recognition, among other varying predefined scores [25]. In the same manner, the BNT is

commonly used to access language-related cognitive deficits in MCI-AD and other neuropsy-

chological disorders using confrontational word retrieval technique [26]. Both the 30-item

BNT and 60-item BNT are commonly used to assess naming difficulties among patients with

cognitive deficits. Patients are asked to say the names of specific images with a period of 20 sec-

onds between multiple trials.
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While the above test battery has been proven clinically useful [16, 20, 27, 28], we hypothe-

sized that an independent linguistic battery comprising of only the language components or

subtests of these popular test batteries could give better clinical diagnosis for the MCI-AD

compared to using an exhaustive battery of tests. As such, we combined multiple clinical data-

sets and performed Exploratory Factor Analysis (EFA) to extract relevant language-based sub-

tests from a combination of the CERAD word list, WLM language subtests, and the BNT

subtests. Furthermore, while the EFA identified variables that show the underlying structure of

the data, we trained a machine-learning algorithm that validates the clinical relevance of the

independent linguistic battery for diagnosing MCI-AD using the loaded variables from the

EFA.

Methods

Datasets

We used two datasets in this study. We obtained the first dataset from the Layton Aging and

Alzheimer’s Disease Center and the Oregon Center for Aging and Technology Research

Repository (http://www.ohsu.edu/xd/research/centers-institutes/orcatech/index.cfm), which

is part of an existing study on MCI and AD at the Oregon Health and Science University

(OHSU). The second dataset is based on the National Alzheimer’s Coordinating Center

(NACC) Uniform Data sets version 3.0 (UDS 3.0)(https://www.alz.washington.edu/WEB/

data_descript.html).

The OHSU study used a battery of tests like the CERAD battery (i.e., CDR, MMSE, CERAD

Word List, WLM I & II, WAIS-R, and the BNT) to follow participants over a longitudinal

period with at least a 6-month interval. The dataset consists of 34 healthy control individuals

without any cognitive impairments and a matching 34 individuals with MCI. There were no

significant age differences between the control and the MCI participants in that study. The

individuals with MCI were diagnosed based on individual scores from the used battery of tests,

including the CDR, Collateral CDR, and MMSE scores. A CDR score of 0 corresponds to the

absence of MCI, while a CDR score of 0.5 or more and an MMSE score below 24 indicate the

likelihood of MCI.

We extracted participants’ scores from the WLM subtests, CERAD Word List subtest, and

the BNT subtests from the dataset. We extracted ten language-based items scores (wordlist
used, wordlist cannot read, wordlist trial 1, wordlist trial 2, wordlist trial 3, wordlist acquisition,
wordlist intrusions, wordlist delayed recall, wordlist delayed intrusions, wordlist list recognition)

from the CERAD word list. Also, we extracted both the WLM I and WLM II scores from the

dataset. More importantly, as at the time of conducting the OHSU study, the WMS-III battery

was the existing version on which the WLM I and II were based.

The NACC UDS is based on data from 34 Alzheimer’s disease Centers founded by the

National Institutes of Health. The dataset consists of multiple subject visits over ten years

beginning from 2005. For this study, we extracted data from the third visit only since it con-

tains unique participants with a sufficiently large number balanced across the MCI-AD diag-

nosed patients and the matching healthy control individuals. There were 197 MCI-AD and

270 cognitive healthy unique subjects in the third visit. Upon removing observations with

non-relevant responses such as unknown, there were 178 MCI-AD and 270 cognitive healthy

unique subjects remaining in the dataset.

For this study, we combined both the OHSU dataset and the NACC UDS dataset into a sin-

gle dataset. Both datasets share the same set of variables as required for the linguistic battery

apart from the ten CERAD wordlist items which are only present in the OHSU dataset. As

such, we used multiple imputation techniques to construct a complete dataset with all the
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relevant variables [29]. Multiple imputation techniques have become popular in clinical

research [29, 30]. The technique allows for filling in missing data from the observed data.

More importantly, multiple imputations introduced uncertainties about the missing data

through multiple iterations (bootstrapping) of generating different datasets based on the pre-

dictive distribution of the observed data [31]. In the end, the generated datasets are harmoni-

cally combined to obtain a single and plausible dataset [30]. We performed ten iterations of

multiple imputations with a random seed of 54321 to impute the ten CERAD word list vari-

ables for the NACC UDS data based on the OHSU data. The multiple imputation process gen-

erated a total of 4,480 observations, which is the number of the original observations in ten

places. Note that because the imputed data were either missing at random (MAR) or missing

completely at random (MCAR) as a result of the combination of multiple datasets [30], there is

substantial evidence in the literature that the multiple imputation techniques effectively reduce

bias even with a large proportion of missing data [32, 33].

Analysis

We divided the OHSU dataset into MCI-AD and Control groups. We performed Exploratory

Factor Analysis (EFA) to extract latent linguistic constructs from the combined imputed data-

set [34]. The EFA was performed on each independent group (i.e., MCI-AD and healthy con-

trol) to show the underlying constructs in each group and determine whether the constructs

could adequately characterize the presence or absence of MCI-AD. Furthermore, the EFA

shows the validity of the underlying constructs to the diagnosis of MCI-AD or otherwise. We

based the validity evidence on the internal structure matrix of the EFA and a reliability mea-

sure of the internal consistency between the underlying constructs and the linguistic variables.

The Principal Axis Factoring (PAF) was used as the extraction method for the EFA since all

the variables do not have a normal distribution [35]. We specified the varimax orthogonal

rotation to produce an uncorrelated factor in order to identify all possible underlying linguistic

constructs [35]. For both the MCI-AD and healthy control groups, three factors were sug-

gested to be appropriate by a scree test. A 0.4 cut-off point was set to identify variables that suf-

ficiently load on each factor [29]. We excluded variables that loaded on multiple factors in the

interpretation of the results.

A bivariate correlation analysis was performed to show correlations between the underlying

linguistic constructs and all the variables using the Spearman correlation coefficient [36].

The purpose was to show the degree of relationship between the linguistic variables and the

underlying constructs of MCI-AD and control groups. Furthermore, to ascertain internal

consistency between the variables, we measured the reliability of the linguistic battery for dif-

ferentiating between patients with MCI-AD and healthy controls using Cronbach’s alpha

(α) coefficient [37].

Finally, for clinically diagnosed patients with MCI-AD, variables which loaded on the lin-

guistic constructs from the EFA were used to train Support Vector Machines (SVM) algorithm

[38], which is one of the famous and most robust machine learning algorithms [39]. We mea-

sured the performance of the machine learning algorithm using the Area Under the receiver

operating characteristics (ROC) Curve (AUC) [40, 41]. The AUC is famous for evaluating the

performance of clinical diagnostic and predictive models [42]. The AUC makes a tradeoff

between the sensitivity (true positive rate) and the specificity (true negative rate) [40]. The per-

centage of positive and accurately classified observations is known as sensitivity. On the other

hand, the specificity computes the percentage of negative observations which were accurately

classified as negative. When the sensitivity of a classifier is 0.0, and the specificity is 1.0, then

the confidence score of the diagnostic test is below the set threshold [11]. Conversely, when
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the specificity is 0.0, and sensitivity is 1.0, it means the confidence score of the diagnostic test is

above the set threshold. A random diagnostic test has an AUC of 0.5 with a diagonal line con-

necting the origin (0, 0) to the final point (1, 1). An AUC of 1.0 is a perfect diagnostic test that

ranks all positive observations above all negative observations [40]. While different clinical

diagnostic scenarios make different tradeoff with the AUC, the recommended AUC for clinical

purposes is 75 and above [15, 43].

Statistical analyses (EFA and correlations) were performed using the Statistical Analysis

Software (SAS) version 9.4. The machine learning experiments and evaluation were performed

in RStudio version 1.1.463 using the e1071 package for the SVM experiments [38], pROC

package for the AUC evaluations [42], and the gplots package for the heatmaps [45].

Results & discussion

Summary statistics

Table 1 shows the summary statistics of the combined dataset before the multiple imputa-

tions were performed. The summary excludes the CERAD word list variables as they were

not part of the NACC UDS data. The number of observations in each group excludes obser-

vations with at least one missing value. Compared to the male patients, there was a higher

number of female patients in both the MCI-AD (58.8%) and the control groups (58.2%).

About 91% of the MCI-AD were whites, while around 93% of the healthy controls were

whites. Surprisingly, the MCI-AD group had, on average, more years of education (16.21

±9.05) compared to the healthy control group (15.50±6.07), however, the difference is not

statistically significant. Also, there was no statistically significant difference between the

mean age of the MCI-AD (85.39±7.56) and the control (84.18±6.91) group. CDR, LMI, and

LMII had a statistically significant difference between the MCI-AD and control groups. On

average, the CDR was higher in the MCI-AD (0.12±0.22) compared to the control group

(0.05±0.17). Compared to the MCI-AD group, the control group had higher LMI and LMII

values on average. There was no statistically significant difference between the MCI-AD and

control groups for the MMSE and Boston variables. Note that the BNT variable is referred to

as Boston in both datasets.

Table 2 shows the summary statistics of the imputed datasets for the MCI-AD and control

groups from the ten iterations of multiple imputations. Among the demographic variables,

there was no statistical significance between male and female patients. Most of the CERAD

word list variables were statistically significant, except wordlistcantread, wordlistintrusions,
and wordlistrecognition.

Table 1. Summary statistics for the combined dataset before multiple imputations. The number of observations is shown for each category of sex and race. Mean (stan-

dard deviation) is shown for all other variables. n excludes observations with missing values.

Variable MCI-AD (n = 187) Control (n = 261) p-value

SEX (Male/Female) 77/110 109/152 0.9015

RACE(White/Black/Asian) 170/16/0 243/17/1 0.3143

EDUCATION (Years) 16.21(9.05) 15.50(6.07) 0.3514

AGE (Years) 85.39(7.56) 84.18(6.91) 0.0795

CDR 0.12(0.22) 0.05(0.17) <0.0000

MMSE 27.18(2.05) 27.56(2.85) 0.1000

LM I 10.64(4.39) 11.51(4.76) 0.0500

LM II 8.88(4.82) 9.89(5.27) 0.0400

BOSTON 25.35(3.43) 25.85(3.74) 0.0900

https://doi.org/10.1371/journal.pone.0229460.t001
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Underlying linguistic constructs with exploratory factor analysis

Table 3 shows the underlying linguistic constructs for patients with MCI-AD. On that group,

the logical memory subtests and the CERAD wordlist subtests loaded on the three factors. We

observed that the MCI-AD group could be characterized as having linguistic deficits that can

be measured by different linguistic constructs. We identified three different linguistic themes

based on the variables that uniquely loaded on each of the factors. Most of the loaded variables

have communalities above 70%, which shows a substantial amount of each variable’s variance

that is explainable by the factors [46].

Factor 1 represents a linguistic translation construct (wordlist recognition, wordlist recall,

and wordlist intrusion) that shows the impaired ability of the patients to perform recognition

and recall processes with a certain level of intrusion or disturbances during that process. Since

the combined dataset consists of a predominantly white population, we can only infer that the

linguistic translation construct might be specific to patients with MCI-AD who are whites.

Factor 2 shows the evidence of linguistic retention construct (wordlist learning trials II, III,

wordlist acquisition), which shows the inability of patients with MCI-AD to learn and retain

certain linguistic components successfully. Finally, Factor 3 implies the evidence of linguistic
transient construct as observed in the immediate and delayed components of the logical mem-

ory (LMI and LMII) subtests with the negatively loaded wordlist delayed intrusions.

We believe these three linguistic themes (linguistic translation, emphlinguistic retention,

and linguistic transient) speak to the non-trivial nature of diagnosing the MCI-AD group. At

the same time, we believe our analysis uncovers the fact that no single underlying construct

can characterize the complicated nature of MCI-AD [2, 13]. As such, these multiple linguistic

constructs could be used in a linguistic battery that captures essential linguistic biomarkers

for identifying patterns of impaired speech that is specific to patients with MCI-AD [6, 8, 11,

12, 15].

Table 2. Summary statistics of the imputed datasets for the MCI-AD and control groups from the ten iterations of multiple imputations. Mean (standard deviation)

is shown for all other variables.

Variable MCI-AD (n = 1870) Control (n = 2610) p-value

SEX 1.59 (0.49) 1.58(0.49) 0.6948

RACE 1.61(7.15) 1.08(0.35) 0.0014

EDUCATION (Years) 16.21(9.03) 15.50(6.06) 0.0031

AGE (Years) 85.39(7.54) 84.18(6.90) <0.0001

CDR 0.12(0.22) 0.05(0.17) <0.0001

MMSE 27.18(2.05) 27.56(2.85) <0.0001

LM I 10.68(4.38) 11.51(4.75) <0.0001

LM II 8.93(4.81) 9.89(5.26) <0.0001

BOSTON 25.38(3.41) 25.94(3.73) <0.0001

WORDLISTUSED 1.43(0.74) 1.48 (0.59) 0.0169

WORDLISTCANTREAD 0.12(2.00) 0.05(1.58) 0.2012

WORDLISTTRIALI 4.51(2.73) 4.83(1.99) <0.0001

WORDLISTTRIALII 6.16(2.40) 6.51(1.89) <0.0001

WORDLISTTRIALIII 6.93(2.68) 7.27(1.88) <0.0001

WORDLISTACQUISITION 17.67(6.12) 18.67(4.81) <0.0001

WORDLISTINTRUSIONS 0.61(2.85) 0.64(1.42) 0.6174

WORDLISTDELAYEDRECALL 5.37(3.35) 5.89(2.53) <0.0001

WORDLISTDELAYEDINTRUSIONS 0.36(1.04) 0.21(0.80) <0.0001

WORDLISTRECOGNITION 19.16(4.80) 19.08(1.64) 0.4592

https://doi.org/10.1371/journal.pone.0229460.t002
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Table 4 shows the underlying linguistic construct for the healthy control group. Unlike the

MCI-AD group, the control group loaded differently, albeit with three different underlying

constructs as observed in the MCI-AD group. Also, like the MCI-AD group, most of the

loaded variables showed communalities above 70%, which shows a substantial amount of each

variable’s variance that is explainable by the factors [46]. Factor 1 showed combined evidence

of linguistic translation and linguistic retention constructs. This forms the translate-retention
construct (wordlist delayed recall, wordlist learning trials II, III, wordlist acquisition). The

translate-retention construct characterizes the difficulty of differentiating patients with

MCI-AD from healthy control individuals since many cognitive healthy individuals have been

shown to share overlapping biomarkers with patients who have MCI-AD [8]. We believe the

overlap between MCI-AD and healthy control emphasizes the non-trivial nature of diagnosing

MCI-AD at the early stages. Factor 2 shows the evidence of linguistic competence (MMSE,

LMI, LMII, Boston, and wordlistused) construct as most healthy controls tend to do very well

with the MMSE, logical memory subtests, the Boston naming test, and the number of words

used. The CDR, on the other hand, is famously sensitive to AD of Dementia-type and even less

sensitive to MCI-AD, which could be a reason why it did not load on the MCI-AD. Unlike the

control group, the MCI-AD group did not load on the MMSE, Boston, and wordlistused vari-

ables. Finally, Factor 3 shows a certain level of linguistic intrusion construct (wordlist intru-

sions and wordlist delayed intrusions). It is expected that some of the healthy controls would

load on the linguistic intrusion since both MCI-AD and the control groups are likely to have

similar responses to linguistic disturbances [2, 13].

Correlation between variables and the underlying linguistic constructs

As shown in Tables 3 and 4, all the loaded variables showed moderate to very strong Spearman

correlation coefficients with the identified factors. This shows that the variables are effective in

Table 3. EFA structure matrix for the MCI-AD group. Uniquely loaded variables (>0.40) are marked with asterisks. Important r and communality (Comm.) values are

boldfaced.

Variable r Factor1 Factor2 Factor3 Comm.

SEX 0.17 14 6 7 0.03

RACE 0.10 85� -33 -22 0.88

EDUCATION (Years) -0.27 -39 -23 -19 0.24

AGE (Years) 0.24 -15 -16 25 0.11

CDR -0.41 -9 -25 -5 0.08

MMSE 0.30 0 21 36 0.17

LM I 0.92 4 8 89� 0.81

LM II 0.93 5 7 91� 0.83

BOSTON 0.30 0 23 22 0.10

WORDLISTUSED 0.26 -2 2 22 0.05

WORDLISTCANTREAD -0.27 -39 26 -2 0.22

WORDLISTTRIALI 0.71 73 51 6 0.80

WORDLISTTRIALII 0.82 -23 87� 12 0.82

WORDLISTTRIALIII 0.79 0 87� 1 0.76

WORDLISTACQUISITION 0.95 25 95� 8 0.96

WORDLISTINTRUSIONS -0.52 -85� -6 6 0.72

WORDLISTDELAYEDRECALL 0.74 74� 35 11 0.68

WORDLISTDELAYEDINTRUSIONS -0.33 -15 -3 -43� 0.20

WORDLISTRECOGNITION 0.55 92� -11 -10 0.87

https://doi.org/10.1371/journal.pone.0229460.t003
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characterizing either the MCI-AD group or the healthy control group. More importantly, we

observed many variables with very strong positive correlations in the MCI-AD group com-

pared to the control group. For example, the LMI and LMII variables in the MCI-AD group

have Spearman correlation coefficients of 0.92 and 0.93, respectively, compared to 0.83 and

0.88 in the healthy control group. We believe these results indicate the difference in the linguis-

tic deficits between the MCI-AD group and the control group. Other loaded variables showed

similar correlation coefficients in both the MCI-AD and control groups.

Also, the between factor correlations showed the difference between the underlying linguis-

tic constructs since we specified the varimax orthogonal rotation to produce an uncorrelated

factor. On the MCI-AD group, Factor 1 had a 51% (p<0.0001) positive correlation with Factor

2 and a 38% (p<0.0001) positive correlation with Factor 3. Factor 2 had a non-significant and

marginal -0.004 (p = 0.8501) correlation with Factor 3. On the healthy control group, however,

Factor 1 had a non-significant 2% (p = 0.3420) negative correlation with Factor 2 and a 4%

(p = 0.0405) positive correlation with Factor 3. Finally, Factor 2 had a 21% (p<0.0001) negative

correlation with Factor 3. Again, we believe the very weak to moderate correlations which

were observed between the extracted factors in the MCI-AD group shows the difficulty in

effectively diagnosing MCI-AD because of its complicated pattern of biomarkers [2, 13]. The

control group, however, demonstrated a clear pattern of uncorrelated underlying linguistic

patterns.

A standardized Cronbach’s alpha of 0.74 was achieved with ten variables from the MCI-AD

group (LMI, LMII, Boston wordlistused, wordlisttrialI, wordlisttrialII, wordlisttrialIII, wordlis-
tacquisition, wordlistdelayedrecall, and wordlistrecorgnition). On the control group, we realized

a standardized Cronbach’s alpha of 0.87 for the same set of variables. We believe that a Cron-

bach’s alpha of 0.74 on the MCI-AD group showed moderate reliability for this exploratory

phase of the study. At the same time, a Cronbach’s alpha of 0.87 on the control group

Table 4. EFA structure matrix for the control group. Uniquely loaded variables (>0.40) are marked with asterisks. Important r and communality (Comm.) values are

boldfaced.

Variable r Factor1 Factor2 Factor3 Comm.

SEX -0.18 3 -9 -16 0.04

RACE -0.26 -12 -22 -12 0.08

EDUCATION (Years) 0.43 -1 45 75 0.76

AGE (Years) -0.08 -25 2 -9 0.07

CDR -0.36 -37 -39 11 0.30

MMSE 0.56 32 66� -22 0.59

LM I 0.83 13 82� -7 0.69

LM II 0.88 11 84� -9 0.72

BOSTON 0.51 37 54� -7 0.44

WORDLISTUSED 0.53 3 59� 0 0.34

WORDLISTCANTREAD -0.11 2 -12 -3 0.01

WORDLISTTRIALI 0.73 72 16 -42 0.73

WORDLISTTRIALII 0.83 84� 23 4 0.77

WORDLISTTRIALIII 0.79 81� -1 -17 0.69

WORDLISTACQUISITION 0.94 94� 15 -23 0.96

WORDLISTINTRUSIONS 0.50 -19 -23 51� 0.35

WORDLISTDELAYEDRECALL 0.63 67� 29 -36 0.66

WORDLISTDELAYEDINTRUSIONS 0.76 6 -13 82� 0.70

WORDLISTRECOGNITION -0.59 43 21 -64 0.64

https://doi.org/10.1371/journal.pone.0229460.t004
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emphasizes the observed difference between the MCI-AD and the healthy control groups. The

ten variables identified by Cronbach’s alpha form our independent linguistic battery to be eval-

uated with machine learning techniques.

Finally, Table 5 shows the Fraction of Missing Information (FMI) and Relative Efficiency

(RE) for the linguistic variables. Although the proportion of missing data for the variables used

in the MI process is approximately 87%, the FMI and RE are better measures that demonstrate

the benefits and efficiency of the MI process [32]. More importantly, each linguistic variable

shows a relative efficiency above 90%, which indicates an effective reduction in bias even when

the proportion of missing data is large.

Evaluation of the linguistic battery with machine learning techniques

To automate the diagnosis of the MCI-AD from healthy control patients [24], we performed

different sets of experiments to verify the hypothesis that an independent linguistic battery

could better diagnose patients with MCI-AD compared to the MMSE, CDR, or a combination

of the MMSE and CDR test battery put together. As such, we build machine learning models

using only the ten variables that loaded in the EFA process and further confirmed reliable by

Cronbach’s alpha.

We verified the importance of covariates in diagnosing patients with MCI-AD. We experi-

mented with and without the four covariates (age, sex, race, and education). We also evaluated

the Linguistic Battery model with and without the CERAD word list.

Each model in our experiment was tuned to the best SVM parameters on a separate 1840

random observations from the total 4840 imputed observations. Consistent with the literature,

our tuning process used 10-fold cross-validation that ensured optimal parameters for each

model [47]. We used the SVM and tune functions in the e1071 R library to perform the tuning

process [38]. The SVM kernel was set to the Radial kernel, the cost parameters range from 10-1

to 102, and the gamma parameter was set to be selected from a default list of 0.5, 1, and 2

parameter values. Using the optimal parameters, the remaining 3000 observations were used

in the final classification for generating the AUC with 10-fold cross-validation. Also, it is

worth mentioning that other variants of the SVM algorithm such as the Recursive Feature

Elimination (RFE) [48], could be used to identify useful features or build classification models

without the EFA technique. However, our goal was to employ an explainable method of analy-

ses parallel to the more complex SVM algorithm. Table 6 shows the identified optimal SVM

parameters for each model.

Table 5. Fraction of Missing Information (FMI) and Relative Efficiency (RE) for linguistic variables.

Variable FMI RE

LM Ia 0.0156 0.9984

LM IIa 0.0094 0.9991

Bostona 0.0229 0.9977

WORDLISTUSED 0.8723 0.9198

WORDLISTTRIALI 0.7855 0.9272

WORDLISTTRIALII 0.8466 0.9220

WORDLISTTRIALIII 0.8550 0.9212

WORDLISTACQUISITION 0.7969 0.9262

WORDLISTDELAYEDRECALL 0.7293 0.9320

WORDLISTRECOGNITION 0.6322 0.9405

a Component of Linguistic Battery II in Tables 7 & 8.

https://doi.org/10.1371/journal.pone.0229460.t005
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In the first experiment, we trained an SVM model using all the linguistic variables with the

best Cronbach’s alpha from our correlation analysis to form the independent linguistic battery

I (LMI, LMII, Boston, wordlistused, wordlisttrialI, wordlisttrialII, wordlisttrialIII, wordlistacqui-
sition, wordlistdelayedrecall, and wordlistrecorgnition). Second, we trained an SVM model with

all the linguistic variables except the CERAD word list variables to form an independent lin-

guistic battery II (LMI, LMII, Boston). Third, we trained an SVM model with the MMSE vari-

able. Fourth, we trained an SVM model with the CDR variable. Fifth, we trained an SVM

model with a combination of the MMSE and the CDR variables. Finally, we trained an SVM

model with a combination of the best of linguistic battery I and II, MMSE, and CDR variables.

Table 7 shows the results of the models without the four covariates. More often than not,

the MMSE and the CDR are interpreted independent of the covariates used in this study (i.e.,

age, sex, race, education). Our results show that these covariates could contribute to the effec-

tiveness of the diagnosis of MCI-AD, and thus, should be considered in the context of inter-

preting the results. Nevertheless, without the covariates, the linguistic battery I showed better

AUC of 0.72 (CI: 0.70-0.73, p<0.0001) and linguistic battery II showed better AUC of 0.88

(CI: 0.86-0.89, p<0.0001) compared to an AUC of 0.59 for the MMSE; 0.55 for CDR; and 0.64

for the combination of MMSE and CDR. These results support the findings in [14, 16, 20],

which found limited evidence that the MMSE could be used to clinically diagnose MCI-AD.

Table 6. Identified optimal SVM parameters for each model.

Model Kernel Cost Gamma

Linguistic Battery I Radial 10 2

Linguistic Battery II Radial 1 1

MMSE Radial 0.1 0.5

CDR Radial 100 1

MMSE & CDR Radial 100 1

All combined Radial 1 2

Linguistic Battery I w/ covariates Radial 10 1

Linguistic Battery II w/ covariates Radial 1 0.5

MMSE w/ covariates Radial 1 1

CDR w/ covariates Radial 0.1 2

MMSE & CDR w/ covariates Radial 1 2

All combined w/ covariates Radial 10 2

� Linguistic Battery I is with CERAD wordlist. Linguistic Battery II excludes CERAD wordlist.

https://doi.org/10.1371/journal.pone.0229460.t006

Table 7. Machine learning diagnostic performance of models without covariates using the Area Under the ROC

Curve (AUC)—(No covariates used in the models).

Model AUC CI p-value

Linguistic Battery I 0.72 0.70-0.73 <0.0001

Linguistic Battery II 0.88 0.86-0.89 <0.0001

MMSE 0.59 0.57-0.62 <0.0001

CDR 0.55 0.51-0.58 <0.0001

MMSE & CDR 0.64 0.62-0.66 <0.0001

All combined 0.98 0.97-0.98 <0.0001

� Linguistic Battery I is with CERAD wordlist. Linguistic Battery II excludes CERAD wordlist.

https://doi.org/10.1371/journal.pone.0229460.t007
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Using the best linguistic battery, we recorded a 29% improvement on the MMSE, 33%

improvement on the CDR, and a 24% improvement on the combination of MMSE and CDR.

Unlike the MMSE and the CDR, we see that the linguistic battery with or without the CERAD

word list is robust to achieve a clinically reliable AUC for diagnosis even when the covariates

are not being considered at all. We believe that the combination of the linguistic battery with

MMSE and CDR improves the AUC of the combined test battery put together by 34%. Overall,

when compared to MMSE and CDR, our results show the linguistic battery alone has the

potential to effectively diagnose patients with MCI-AD without controlling for age, sex, race,

and education.

Table 8 emphasizes the importance of covariates in diagnosing patients with MCI-AD.

The table shows the AUC comparison between the models with covariates. When controlled

for age, sex, race, and education, the linguistic batteries I and II gave robust AUC values of

0.84 (CI: 0.83-0.86, p<0.0001) and 0.97 (CI: 0.96-0.97, p<0.0001), which demonstrates the

effectiveness of the linguistic battery in identifying linguistic biomarkers in patients with

MCI-AD. Compared to using the MMSE alone, the best linguistic battery had a better diag-

nostic performance by 20%. Similarly, compared to using the CDR alone, the best linguistic

battery showed better diagnostic performance by 28%. Even when both MMSE and CDR are

combined, the best linguistic battery had better performance by 10%. The combination of the

linguistic battery with MMSE and CDR showed showed that the linguistic battery improves

the performance of a combination of MMSE and CDR by 13%. Also, when the covariates are

included, the CDR and MMSE actually do perform much better diagnostically. At the same

time, even though the combination of all measures gives an almost perfect AUC, using the

linguistic battery alone can lead to effective and efficient screening process that avoids the

rigor of having to combine the MMSE and the CDR especially for screening through a large

population [2, 20].

Although the Wechsler LMI, LMII, and Boston variables appeared to be more effective in

the linguistic battery compared to the imputed CERAD word list, benefits of the multiple

imputation technique can be seen in the difference between linguistic battery I and the individ-

ual MMSE and CDR test batteries. In Table 7, the linguistic battery I showed a 13% improve-

ment over MMSE, 17% improvement over CDR, and 8% over the combination of MMSE and

CDR. Similarly in Table 8, the linguistic battery showed a 7% improvement over MMSE, 16%

over the CDR, and only lost 2% to a combination of MMSE and CDR, which could easily be

gained by using the linguistic battery II. Notably, we believe the multiple imputation technique

has helped understand the underlying linguistic patterns that could help predict the presence

of MCI-AD without using exhaustive test batteries.

Table 8. Machine learning diagnostic performance of models with covariates using the Area Under the ROC

Curve (AUC)—(Models include covariates).

Model AUC CI p-value

Linguistic Battery I w/ covariates 0.84 0.83-0.86 <0.0001

Linguistic Battery II w/ covariates 0.97 0.96-0.97 <0.0001

MMSE w/ covariates 0.77 0.75-0.78 <0.0001

CDR w/ covariates 0.68 0.66-0.71 <0.0001

MMSE & CDR w/ covariates 0.86 0.85-0.88 <0.0001

All combined w/ covariates 0.99 0.99-1.00 <0.0001

� Linguistic Battery I is with CERAD wordlist. Linguistic Battery II excludes CERAD wordlist.

https://doi.org/10.1371/journal.pone.0229460.t008
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Furthermore, we constructed heatmaps in the form of hierarchical clustering of the data.

The heatmaps emphasize the sensitivity of the linguistic battery with covariates to capture the

underlying difference between the MCI-AD and the healthy control groups.

Fig 1a and 1b show the underlying patterns of the linguistic battery with covariates by the

group. We observed a unique difference between the underlying patterns of the ten linguistic

variables with Boston, LMI, LMII, wordlistacquisition, and wordlistrecorgnition variables

showing distinct patterns in both heatmaps. Compared to the MCI-AD group, the healthy

control group showed a lighter color gradient across the ten linguistic variables, an indica-

tion that the healthy control group performs very well with those variables. The unique

contributions of the covariates were also emphasized in the heatmaps. Compared to the

MCI-AD group, age and education variables showed a lighter color gradient in the healthy

control group. This observation supports the result of the linguistic battery with covariates

in Table 8, which shows improvement over the linguistic battery without covariates in

Table 7.

On the other hand, Fig 2a and 2b show the underlying patterns of the combined MMSE

and CDR variables with the four covariates for MCI-AD and the healthy control group. Across

the MMSE and CDR variables, we observed no distinct difference between the patterns of the

MCI-AD and the healthy control group, an indication that the MMSE and CDR are less sensi-

tive to differentiating patients with MCI-AD from cognitively healthy individuals. More

importantly, we observed that the MMSE and CDR could not be effective without considering

the covariates. A slight difference was observed across the age and education variables, which

yet shows the importance of the covariates in administering neuropsychological tests, hence

supporting the results of the models in Table 8.

Overall, a distinct difference was created by the linguistic battery variables between the

MCI-AD and healthy control individuals. This is an indication that the linguistic battery can

effectively show the difference between patients with MCI-AD and healthy control individuals,

compared to the MMSE, CDR, or a combination of both.

Limitations

One of the limitations of this study is the exploratory nature of the analysis, especially in iden-

tifying the underlying linguistic constructs. As a follow-up to the EFA, confirmatory factor

analysis could be performed to validate the assumptions made in the EFA [34, 49].

Another limitation lies in the use of multiple imputation techniques for imputing the miss-

ing CERAD wordlist variables for the NACC UDS data. While multiple imputation techniques

have been successful in clinical and epidemiological research [30, 31], there remain ongoing

debates about its implication on the interpretation of findings [29]. We also recognize that

using the third visit only from the NACC UDS dataset might vary the performance from the

other study visits or the average over all the visits.

This study did not use objective measures such as neuroimages due to the absence of such

measures in the datasets used in this study. Future works could include neuroimages in addi-

tion to the linguistic battery for clinically diagnosing MCI-AD.

Also, the majority-white dataset is another limitation in this study. There is the possibility

that the results may be associated with the demographics of that population alone. Future

works could consider a dataset with even distribution of the race/ethnicity and other demo-

graphic variables to measure their actual impact on the outcome.

Finally, the machine learning algorithm used for building the diagnostic models was tuned

to the optimal parameters on each model [47]. As such, performing similar experiments on a

different dataset would require that the machine learning algorithm is tuned on that dataset to
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Fig 1. Comparison of the underlying patterns of the linguistic battery between the MCI-AD and healthy control

groups. (a) A. MCI-AD group. (b) B. Healthy control group.

https://doi.org/10.1371/journal.pone.0229460.g001
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Fig 2. Comparison of the underlying patterns of combined MMSE and CDR test battery between the MCI-AD

and healthy control groups. (a) A. MCI-AD group. (b) B. Healthy control group.

https://doi.org/10.1371/journal.pone.0229460.g002
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avoid the pitfall of relying in part on the sample’s error variance structure generated by the

machine learning algorithm in this study.

Conclusion

Exploratory factor analysis and a machine learning evaluation of an independent linguistic

battery for diagnosing Mild Cognitive Impairment due to Alzheimer’s disease have been inves-

tigated. The linguistic battery combines the language-based CERAD Word List subtests,

Wechsler Logical Memory subtests, and the Boston naming test to distinguish the underlying

linguistic construct of patients with MCI-AD from the healthy control individuals. The lin-

guistic battery consists of ten linguistic variables with distinct underlying linguistic constructs

achieving a Cronbach’s alpha of 0.74 on the MCI-AD group and 0.87 on the healthy control

group. Also, we showed that the linguistic battery could be automated using a robust machine

learning algorithm. The results of the machine learning evaluation using the clinically relevant

AUC measure showed that the best linguistic battery gives a robust AUC of 0.97 when con-

trolled for age, sex, race, and education. At the same time, our results show that the linguistic

battery alone gives a robust diagnostic performance with a clinically reliable AUC of 0.88 with-

out controlling for age, sex, race, and education. Overall, the linguistic battery showed a better

diagnostic performance compared to MMSE, CDR, and a combination of MMSE and CDR.
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