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ABSTRACT
Purpose Determining the nature of the relationship between cumulative duration of exposure to an agent and the hazard of an adverse
outcome is an important issue in environmental and occupational epidemiology, public health and clinical medicine. The Cox proportional
hazards regression model can incorporate time-dependent covariates. An important class of continuous time-dependent covariates is that
denoting cumulative duration of exposure.
Methods We used fractional polynomial methods to describe the association between cumulative duration of exposure and adverse
outcomes. We applied these methods in a cohort study to examine the relationship between cumulative duration of use of the antiarrhythmic
drug amiodarone and the risk of thyroid dysfunction. We also used these methods with a conditional logistic regression model in a nested
case-control study to examine the relationship between cumulative duration of use of bisphosphonate medication and the risk of atypical
femur fracture.
Results Using a cohort design and a Cox proportional hazards model, we found a non-linear relationship between cumulative duration of
use of the antiarrhythmic drug amiodarone and the risk of thyroid dysfunction. The risk initially increased rapidly with increasing cumulative
use. However, as cumulative duration of use increased, the rate of increase in risk attenuated and eventually levelled off. Using a nested
case-control design and a conditional logistic regression model, we found evidence of a linear relationship between duration of use of
bisphosphonate medication and risk of atypical femur fractures.
Conclusions Fractional polynomials allow one to model the relationship between cumulative duration of medication use and adverse
outcomes. © 2014 The Authors. Pharmacoepidemiology and Drug Safety published by John Wiley & Sons, Ltd.
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INTRODUCTION

Determining the functional form of the relationship
between a variable that represents cumulative duration
of past exposure to an agent and the hazard of an
adverse outcome is an important issue in environmental
and occupational epidemiology, public health, and

clinical medicine. Important examples of cumulative
duration of past exposure include tobacco smoke,
industrial toxins, environmental pollutants, radiation,
and medications taken for chronic medical conditions.
Correctly describing the functional nature of the
relationship between such exposures and the risk of an
adverse event can inform regulators, public health
officials, clinicians and patients and can identify
whether or not cumulative toxicity is important. When
it is, an accurate characterization of the relationship
between cumulative duration of past exposure and tox-
icity can help to characterize safe levels of cumulative
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exposure, levels of cumulative duration of past exposure
at which the risk becomes clinically important, and the
level of total duration of exposure after which the risk
of the outcome increases more rapidly.
Common study designs for the analysis of the

effects of exposures on the risk of adverse events are
the cohort design, the case-control design and nested
case-control design. When using a cohort design, the
Cox proportional hazards regression model is often
used to describe the association between exposure
and the hazard of an outcome. When using a case-
control (or nested case control) design in which one
or more controls have been individually matched to
each case, conditional logistic regression can be used
to determine the association between total cumulative
duration of past exposure and the risk of the outcome.
The Cox proportional hazards regression model is

frequently used in biomedical research to model the
effect of explanatory variables on the hazard of the
occurrence of a time-to-event outcome.1 A primary
advantage of this model is that one is freed from
making specific assumptions about the functional form
of the hazard function or about the specific parametric
family from which the distribution of event times arises.
Two secondary advantages of this model are its abilities
to incorporate time-varying covariate effects and time-
dependent (or time varying) covariates.2 The former
refers to a variable whose effect on the hazard of the
outcome is allowed to change over the duration of
follow-up. The latter refers to a variable whose value
itself changes over the duration of follow-up.
Dichotomous or categorical time-dependent variables

occur frequently in biomedical research. Each level of
the variable represents a discrete state, and patients can
move between different discrete states (e.g. receipt of
an organ transplant, current use of chronic medication,
and current use of different medications within the same
therapeutic class). However, a time-dependent variable
may also be a continuous variable. A particularly
important type of continuous time-dependent variable
is one denoting cumulative duration of past exposure.
While incorporating categorical time-dependent
variables into a Cox proportional hazards regression
model is relatively straightforward, incorporating a
continuous time-dependent variable is more complex.
In particular, one must decide how to model what may
be a non-linear relationship between a continuous time-
dependent covariate and the log hazard of the outcome.
Different methods have been proposed for estimating

the effect of cumulative duration of exposure on the risk
of adverse outcomes. Hauptmann et al. used a B-spline
to model the effect of incremental exposure on disease
risk.3 The method was subsequently applied in a case-

control study examining the effect of smoking on lung
cancer. Richardson et al. used parametric latency
functions to estimate the incremental effect of increasing
exposure on disease risk.4 The method was subsequently
illustrated by examining the association between radon
exposure and lung cancer mortality in uranium miners.
Richardson et al. describe that lagging exposure is often
used to allow for a latency period in studies examining
the effect of cumulative exposure on disease risk. They
developed methods to allow for the joint estimation of
parameters describing the association between exposure
and outcome and the latency distribution.5 The method
was illustrated by examining the association between
cumulative asbestos exposure and lung cancer mortality
in textile workers. Finally, both Abrahamowicz et al.6

and Sylvestre and Abrahamowicz7 developed a method
for modelling the cumulative effects of time-dependent
exposures in cohort studies, weighted by recency,
represented by time-dependent covariates in a Cox
proportional hazards model. In doing so, the function that
assigns weights to previous doses was estimated using
cubic regression splines. This method has been used to
assess the cumulative effects of exposure to benzodiaze-
pines on the risk of fall-related injuries in the elderly.8

When fitting regression models, analysts frequently
categorize continuous explanatory variables, either out
of convenience or in the interest of simplicity. However,
several authors have criticized this practice.9–12 Draw-
backs to categorization include difficulties in deciding
how best to categorize the continuous variable, incorrect
inferences, and the loss of information. However, as-
suming a linear relationship between the continuous
variable and the outcome can also yieldmisleading anal-
yses. Several different approaches have been proposed
to account for non-linear relationships between fixed
or time-invariant continuous explanatory variables and
the outcome. These include the use of generalized
additive models, restricted cubic smoothing splines,
and fractional polynomials (FPs).12–14 Each of these
approaches allows for flexible modelling of the relation-
ship between a continuous fixed or time-invariant
covariate and the outcome.
The objective of the current study was to examine

the utility of FPs to model the relationship between
cumulative duration of past exposure and the risk of
an adverse outcome. We examine the use of these
methods in two common study designs: the cohort
design and the nested case-control design. We first
provide a brief review of FPs for modelling the effects
of continuous covariates. We then describe two case
studies in which we examine the relationship between
cumulative duration of past exposure to a specific
medication and the risk of an adverse event.
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FRACTIONAL POLYNOMIALS

Fractional polynomials were proposed by Royston and
Altman as a restricted set of transformations of a single
continuous variable.15,16 Given a continuous explana-
tory variable x> 0, a transformation of the form xp for
p in S= {�2,�1,�0.5, 0, 0.5, 1, 2, 3} (with the conven-
tion that x0 denotes log(x)) is referred to as an FP
transformation of degree 1. An FP1 function, defined
as φ*(x,p) = β0 + β1xp= β0 +φ1(x;p), can be included in
a regression model as an explanatory variable. There
are eight FP transformations of degree 1.
Royston and Altman extended the definition

of FP transformations to FPm transformations,
where m is an integer ≥2. An FP2 transformation
of x with powers p = (p1,p2) yields the vector

xp ¼ x p1;p2ð Þ ¼ xp1 ; xp2ð Þ; p1≠p2
xp1 ; xp1 logxð Þ; p1 ¼ p2

�
. An FP2

function (for p1≠p2), defined as φ�2 x; pð Þ ¼ β0 þ β1x
p1 þ

β2x
p2 ¼ β0 þ φ2 x; pð Þ, can be included in a regression

model as an explanatory variable (for p1 = p2, the func-
tion would be modified as above). The powers p1 and p2
are taken from the same set S described in the previous
paragraph. There are 28 FP2 transformations with dis-
tinct powers (p1≠ p2) and 8 FP2 transformations with
equal powers (p1 = p2); consequently, there are a total
of 44 FP1 and FP2 transformations. FP1 functions are
always monotonic, while FP2 functions may be mono-
tonic or unimodal. In medical applications, FP1 and FP2
transformations are used almost exclusively, with higher
order transformations being used rarely. FP1 and FP2
functions allow representation of a wide range of non-lin-
ear relationships. For greater detail, the reader is referred
to the comprehensive reference by Royston and
Sauerbrei.14 Once a specific FP1 or FP2 function is incor-
porated into a regressionmodel (for Cox proportional haz-
ards models, the intercept is omitted from the FP
function), the regression model can be estimated using
conventional methods for the regression model at hand.
A closed test procedure, known as RA2, has been

proposed for selecting the most appropriate FP
function for inclusion in a regression model.17,18 In
this procedure, which is described in greater detail in
the references provided in this paragraph, a linear
function is assumed as the default choice or selection.
The test procedure preserves an overall family-wise
type I error rate of α. One fits each of the 44 possible
regression models, each containing a different FP func-
tion as an explanatory variable (possibly in addition to
other covariates) and determines the deviance of each
fitted model. We reproduce Royston and Sauerbrei’s14

description of this selection procedure:

(1) Compare the best FP2 model for x against the null
model using a test with 4 degrees of freedom. If
the test is not significant, then one stops the
process and concludes that the effect of x is not
significant at the α level. Otherwise proceed.

(2) Test for the best FP2 for x against a linear relation-
ship at the α level using a test with 3 degrees of
freedom. If the test is not statistically significant,
then one stops, with the final model being a
straight line. Otherwise continue.

(3) Test for the best FP2 for x against the best FP1 at
the α level using a test with 2 degrees of freedom.
If the test is not significant, the final model is FP1;
otherwise, the final model is FP2. At this point the
procedure terminates.

The previous discussion of FPs and the procedure for
selecting the best FP transformation for settings in
which there is a single continuous variable one is
seeking to model using FPs. It is also possible to use
FPs to simultaneously model the effects of several
continuous variables on the outcome. However, we do
not consider this approach here, as the focus of the
current study considers only a single continuous
variable denoting cumulative duration of past exposure.

CASE STUDIES

We present two case studies to illustrate the use of FPs
for modelling the relationship between cumulative du-
ration of past exposure to a given medication and the
risk of an adverse event. In the first, we use a cohort
design, while in the second, we use a nested case-con-
trol design. In the former, cumulative duration of past
exposure was modelled as a time-dependent covariate
in a Cox proportional hazards model.

Cumulative duration of previous amiodarone use and
thyroid dysfunction in elderly patients

Motivation. Amiodarone is an antiarrhythmic agent that
is considered the most effective drug for controlling
rhythm in atrial fibrillation.19,20 However, it has various
effects on the thyroid.21,22 We examined the relationship
between cumulative duration of previous use of
amiodarone and the hazard of thyroid dysfunction in a
cohort of subjects initiating treatment with amiodarone.
Cumulative duration of previous use of amiodarone
was treated as a continuous time-dependent covariate.

Methods. The Ontario Drug Benefit (ODB) database
documents prescriptions filled under Ontario’s drug
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benefit programme, which provides universal access to
prescription medications to all Ontario residents over
the age of 65 years old. We identified all Ontario
residents over the age of 66 years old who filled a
prescription for amiodarone in 2005 and who had not
filled a prescription in the previous 365 days (the deci-
sion to exclude subjects who had filled a prescription
for amiodarone in the previous year was based on an
earlier study comparing brand name versus generic
formulations of amiodarone in patients with atrial fi-
brillation23). We excluded subjects who had evidence
of thyroid dysfunction in the year prior to the initial
prescription for amiodarone, using methods similar to
those described in a study comparing the effect of
amiodarone formulations on thyroid dysfunction.23

The cohort consisted of 4839 patients. The date of
cohort entry was defined to be the date on which the
initial prescription of amiodarone was filled. The age
and sex of each cohort member were determined by
linking each subject to the Registered Persons Data-
base (RPDB) using encrypted health card numbers.
Each cohort member was followed up for the occur-
rence of thyroid dysfunction, using methods similar
to those described in an earlier publication.23 For each
subject, the time from cohort entry to the occurrence of
thyroid dysfunction was determined. Subjects were
followed until 31 December 2010 and were censored
at death (as denoted in the RPDB) or if the event of
interest had not occurred by the end of the study period.
The median length of observed follow-up time was
1564 days (25th percentile: 390 days and 75th percen-
tile: 1991 days). Twenty-two percent of the subjects
experienced the occurrence of thyroid dysfunction.

For each subject, we used the ODB database to iden-
tify all prescriptions for amiodarone that were filled be-
tween the date of cohort entry and the end of follow-up.
The duration of each prescription was determined from
the mandatory days supply field of the prescription
record. Using the date that each prescription was filled
and the duration of each prescription, we were able to
determine the cumulative duration of daily exposure
to amiodarone during follow-up. For each new
prescription, the cumulative duration of daily exposure
was increased by one for each day supplied by that pre-
scription. During periods of non-use (lapses in use of
amiodarone), the cumulative duration of daily exposure
remained unchanged from the value at the time the
previous prescription expired. We were thereby able to
determine, for each day of follow-up, a subject’s cumu-
lative duration of past exposure to amiodarone. In using
this method, we are using prescription duration (number
of days supplied) as a surrogate for duration of

medication use. In reality, if a patient did not use some
of the dispensed tablets, the actual duration of use would
be less than the duration of the prescription (the number
of days supplied). Using administrative data, it is not
possible to determine with certainty whether patients
actually take all the provided medication; however, in
the presence of successive refills, it is sensible to assume
that the total prescription duration is a good clinical
proxy for the total duration of use.
The data set was structured so that there was one

record per day of follow-up per subject. One variable
denoted the cumulative duration of daily use of
amiodarone for the day and subject to which the record
pertained. The counting process style of model formu-
lation was used for specifying the Cox proportional
hazards model.
Each of the 44 FP1 and FP2 transformations was ap-

plied to the variable denoting current cumulative duration
of daily use of amiodarone. We fit a Cox proportional
hazards model in which the time to thyroid dysfunction
was regressed on cumulative duration of amiodarone
exposure (transformed using the corresponding FP
transformation) and the patient’s sex and age at cohort
entry. The RA2 selection procedure was applied to select
the most appropriate transformation of cumulative
duration of drug exposure.
All statistical analyses were performed using SAS

version 9.2 (SAS Institute Inc., Cary, North Carolina).

Results. The empirical cumulative distribution function
describing the distribution of cumulative duration of
amiodarone exposure at the end of follow-up
for each subject is described in the left panel of
Figure 1.

The distributions of the deviance across the 8 FP1
models and the 36 FP2 models, along with that of
the null model, are depicted in the left panel of
Figure 2. The deviance of the best-fitting FP2 model,
the best-fitting FP1 model, the linear model and the
null model is reported in Table 1, along with the
results of the test comparing different FP models.
Using the RA2 selection algorithm, the FP2 transfor-
mation with P = (1, 1) was selected as the best-fitting
FP transformation. The FP model that best described
the relationship between cumulative duration of
use of amiodarone and the log hazard of thyroid
dysfunction was of the form β1x + β2x log(x), where x
denotes cumulative use of amiodarone. The point esti-
mates and associated 95% confidence intervals for β1
and β2 were 0.0216 (0.0176, 0.0256) and �0.0027
(�0.0032, �0.0022), respectively. Four other FP2
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((0.5, 2), (0.5, 1), (0.5, 3), and (0.5, 0.5)) transforma-
tions resulted in models with deviance within four of
that of the best-fitting FP2 transformation. None of

the FP1 transformations resulted in models whose
deviance was within four of that of the best-fitting
FP2 transformation.
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Figure 1. Cumulative days of medication use at the end of follow-up
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Figure 2. Deviances of all 44 fractional polynomial models

Table 1. Fractional polynomial models for effect of cumulative duration of past amiodarone use on the risk of thyroid dysfunction

Model Deviance D P Step Comparison Deviance difference p-value

FP2 16 772.87 1, 1 1 FP2 versus null 371.72 <0.0001 (4 d.f.)
FP1 16 783.91 0 2 FP2 versus linear 103.80 <0.0001 (3 d.f.)
Linear 16 876.67 1 3 FP2 versus FP1 11.04 0.0040 (2 d.f.)
Null 17 144.59
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The relationship between cumulative duration of
daily use of amiodarone and the log-hazard ratio of
thyroid dysfunction (relative to a subject with 1 day
of amiodarone use) is described in the left panel of
Figure 3. The vertical axis denotes the log-hazard ratio
comparing the hazard for thyroid dysfunction for a
subject with a given cumulative duration of use with
that of a subject whose cumulative duration of use
was equal to one (i.e. with that of a subject who had
used amiodarone for one single day). On the horizon-
tal axis is a rug plot describing the distribution of
cumulative duration of amiodarone use at the end of
follow-up. We describe the relationship between
cumulative duration of amiodarone use and the risk of
the outcome as described by the best-fitting FP1 and
FP2 transformations and by the identity transformation
(i.e. assuming a linear relationship). The FP2 (1, 1)
transformation shows the risk of thyroid dysfunction
increasing rapidly with increasing cumulative duration
of amiodarone use. However, once cumulative duration
of use exceeded approximately 700 days, the rate of
increase in the risk of thyroid dysfunction begins to
attenuate. The risk of thyroid dysfunction eventually
begins to decrease with increasing duration of cumula-
tive duration of amiodarone use. This attenuation and
decrease may reflect depletion of susceptibles—those
subjects who had higher risk for thyroid dysfunction
experience an early failure. Alternatively, it may be
because of exposure having occurred entirely in the
distant past (i.e. subjects have discontinued treatment),
and distant exposure may have little impact on the
current risk of thyroid dysfunction.

To examine uncertainty in the selection process,
we drew 50 bootstrap samples from the original cohort
(i.e. samples of the same size as that of the original
sample drawn with replacement from the original
sample). In each of these bootstrap samples, we used
the RA2 algorithm to select the best-fitting FP trans-
formation for cumulative duration of past exposure in
each of the bootstrap samples. The relationship
between cumulative duration of amiodarone use and
the log-hazard ratio (relative to a subject with 1 day
of amiodarone use) for thyroid dysfunction for each
of these 50 models is described in the right panel of
Figure 3. The FP2 (1, 1) transformation was selected
for cumulative duration of amiodarone use in 17 of
the 50 bootstrap samples, the FP2 (0.5, 1) transforma-
tion was selected in 22 of the 50 samples, and the FP2
(0.5, 2) and FP2 (0.5, 3) transformations were each
selected in 3 of the 50 samples, while the logarithmic
transformation was selected in the remaining 5 boot-
strap samples. We do not advocate bootstrap sampling
to guide model selection. Rather, this process was used
to examine the stability of the selection algorithm to
minor, random perturbations in the data set. We
suggest that the transformation selected in the overall
sample is the one that should be used.

Oral bisphosphonates and atypical fractures of the
femur in elderly women

Motivation. Osteoporosis is associated with signifi-
cant morbidity and mortality in the ageing population.
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Oral bisphosphonates have become a mainstay in the
treatment of osteoporosis. Randomized trials have shown
that bisphosphonates reduce the risk of osteoporotic
fractures. However, concerns have emerged that
bisphosphonate-related suppression of bone remodelling
may adversely influence bone strength. A recent nested
case-control study found that long-term bisphosphonate
use was associated with an increased risk of atypical
femur fractures in postmenopausal women.24 These are
fractures involving the subtrochanteric or shaft region
of the femur, generally after minimal trauma. Fractures
at these sites are considered atypical because they are
not characteristic of osteoporotic fractures. We used data
from this published nested case-control study to describe
the functional form of the relationship between cumula-
tive duration of bisphosphonate exposure and the risk
of an atypical femur fracture.

Methods. We used data from a previously published
population-based nested case-control study that
explored the association between bisphosphonate use
and atypical fractures in a cohort of Ontario women
68 years of age and older who commenced treatment
with an oral bisphosphonate between 1 April 2002 and
31 March 2008. The date of the first prescription for
bisphosphonate therapy served as the cohort entry date.
Women in the cohort were followed until the first atyp-
ical femur fracture, death or the end of the study period
(31 March 2009). The reader is referred to the prior
publication for greater details on the study cohort.24

Cases were defined as women who experienced an
atypical femur fracture, identified by a hospitalization
for a subtrochanteric or femoral shaft fracture between
cohort entry and 31 March 2009. For each case, the
index date was defined as the date of fracture. Each
case was matched to five controls that at the case’s
index date were still at risk for an atypical fracture.
The base cohort consisted of 205 466 women, while
the nested case-control study consisted of 716 cases
and 3580 matched controls.

For each patient in the matched sample, all prescrip-
tions that were filled for oral bisphosphonate between
the cohort entry date and the end index date were
identified. The duration of each prescription was
determined from the mandatory days supply field of
the prescription record. Using the data on the duration
of each prescription, we were able to determine for each
subject in the matched sample the total cumulative
duration of past exposure to bisphosphonate between
cohort entry and the index data.
For each of the 44 FP1 and FP2 transformations, we

fit a conditional logistic regression model in which the
occurrence of an atypical femur fracture was regressed
on cumulative duration of bisphosphonate exposure
(transformed using the corresponding FP trans-
formation) and the other covariates described in the
prior publication. The RA2 selection procedure was
applied to select the most appropriate transformation
of cumulative duration of drug exposure.
For comparative purposes, we used restricted cubic

regression splines (which are constrained to be linear
in the tails) with four knots to model the relationship
between cumulative duration of use of bisphosponate
and the risk of atypical femur fracture.12 The knots
were placed at the 5th, 35th, 65th, and 95th percentiles
of the cumulative duration of bisphosponate use, as
suggested by Harrell.12 The values of these percentiles
were 90, 688, 1290, and 2092 days, respectively.

Results. The empirical cumulative distribution function
describing the distribution of total bisphosphonate expo-
sure on the index date for each subject is described in
the right panel of Figure 1.

The distributions of the deviances across the 8 FP1
models and the 44 FP2 models, along with that of
the null model, are depicted in the right panel of
Figure 2. The deviance of the best-fitting FP2 model,
the best-fitting FP1 model, the linear model, and the
null model is reported in Table 2, along with the
results of the test comparing different FP models. Using
the RA2 selection algorithm, the FP1 transformation
with P = (1) (i.e. the linear or identity transformation)

Table 2. Fractional polynomial models for effect of cumulative duration of bisphosphonate use on the risk of atypical femur fracture

Model Deviance D P Step Comparison Deviance difference p-value

FP2 895.453 �0.5, 1 1 FP2 versus null 20.656 0.0004 (4 d.f.)
FP1 898.156 2 2 FP2 versus linear 4.712 0.1941 (3 d.f.)
Linear 900.165 1 3 FP2 versus FP1 2.703 0.2589 (2 d.f.)
Null 916.109
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was selected as the best-fitting FP transformation. Thus,
the linear transformation resulted in the best description
of the relationship between total cumulative duration of
bisphosphonate use and the risk of atypical fracture
of the femur. The regression coefficient for duration
of cumulative duration of past exposure from the
linear transformation was 0.0006146 (95% confi-
dence interval: 0.0003049 to 0.0009243). Thus,
every additional year of total cumulative duration
of past exposure increases the odds of an atypical
femur fracture by 25%.
The relationship between cumulative duration of

bisphosphonate use and the log-odds ratio of atypical
femur fracture (relative to a woman with a single day
of bisphosphonate use) is described in the left panel of
Figure 4 (a rug plot describing the distribution of cumu-
lative duration of drug use is presented on the horizontal
axis). We describe the relationship between cumulative
duration of use and risk of atypical femur fracture for the
best-fitting FP1 and FP2 transformations, the identity
transformation (i.e. assuming a linear relationship),
and the relationship described using restricted cubic re-
gression splines. The vertical axis denotes the log-odds
ratio comparing the odds of atypical femur fracture for
a woman with a given cumulative duration of use of
bisphosphonate relative to that of a woman whose
cumulative duration of use was equal to one (i.e. with
that of a woman who had used bisphosphonate for one
single day).The FP2 (�0.5, 1) transformation described

a clinical implausible relationship between duration of
exposure and risk of atypical fracture. This transforma-
tion described a log-odds ratio that initially decreases
with increasing duration of cumulative use. It then
reaches a nadir. The log-odds ratio then increases with
increasing duration of exposure.
The RA2 algorithm selected the linear transformation

as the best-fitting transformation. However, several
other transformations were closer competitors. Two
FP1 transformations (FP1 (2) and FP1 (3)) had
deviances that were within four of that of the FP1 (1)
transformation. Similarly, 24 of the FP2 transformations
resulted in models whose deviance was within four of
that of the FP1 (1) transformation. To examine the sta-
bility of the RA2 selection algorithm, we drew 1000
bootstrap samples of cases and their matched controls.
In each bootstrap sample, we used the RA2 algorithm
to select the most appropriate FP transformation of
cumulative duration of use. In 37 (3.7%) of the 1000
bootstrap samples, the null model was selected as the
best-fitting model. An FP1 transformation was selected
as the best-fitting transformation in 728 (72.8%) of the
bootstrap samples (with the linear transformation
being selected as the best-fitting model in 591 of
the bootstrap samples), while an FP2 transformation
was selected in the remaining 235 (23.5%) boot-
strap samples. We then determined, for each level
of cumulative duration of past exposure, the log-
odds ratio for an atypical fracture relative to a
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subject with only a single day of bisphosphonate
use. We determined the 25th, 50th, and 75th per-
centiles of the distribution of these log-odds ratios.
These values are described in the right panel of
Figure 4. Moderate variability in the log-odds ratio
is evident across the bootstrap samples, illustrating
the variability that is inherent in the selection proce-
dure. We examined different percentiles for summa-
rizing the distribution of log-odds ratios. In a
minority of bootstrap samples, a relationship that
was more extreme than that of the FP2 (�0.5, 1)
depicted in the left panel of Figure 4 was selected,
resulting in negative log-odds ratios of very large
magnitude. Thus, in a small number of bootstrap
samples, the RA2 algorithm selected a model that
was not clinically plausible.

DISCUSSION

We demonstrated that FPs can be used to model the
relationship between cumulative duration of past
exposure to a pharmaceutical agent and the risk of
an adverse outcome. These methods can be used
in cohort studies in which cumulative duration of
past exposure is treated as a continuous time-depen-
dent covariate. The methods are also applicable in
case-control designs in which total cumulative dura-
tion of past exposure is treated as a continuous var-
iable. Our focus was on modelling the relationship
between current cumulative duration of medication
use (in days) and the risk of an adverse event.
However, the methods can be applied to more gen-
eral problems. The methods could also be applied
to model the relationship between cumulative dose
exposure (e.g. in milligram of active ingredient) and
the risk of an adverse outcome. Furthermore, in cohort
designs, the use of FPs may allow one to model the re-
lationship between any continuous time-dependent co-
variate (which takes on strictly positive values) and the
hazard of an outcome.
We illustrated the applications of our methods in

both a cohort design and a nested case-control
design. There are advantages to each of these two
designs. The use of a cohort design will, in general,
result in greater statistical power and efficiency
because information from all of the cohort members
is being used, while a nested case-control design
will result in greater computational efficiency.25,26

Conducting the FP analyses in the cohort of
amiodarone users required over 400 times as much
processor time than did conducting these analyses
in the nested case-control study of bisphosphonate

users. The substantial increase in process time for
the cohort design arises from the fact that for these
analyses, the data set must be structured so that
there is one row of data for each day of follow-
up, so that the cumulative duration of past exposure
can be calculated separately for each day. Thus, for
a cohort with 1000 subjects, each of who is
followed for an average of 1000 days, the resultant
data set will have 1 000 000 records. A further
advantage of the nested case-control design is that
when necessary data on all subjects in the cohort
are not readily available, this design will be more
economical than the cohort design because extra
data will need to be collected for only the cases
and the matched controls.27

In our second case study, which used a nested case-
control design, we compared the use of FPs with the
use of restricted regression splines. However, we did
not conduct a similar comparison in our first case
study that used a cohort design. The rationale for this
omission highlights an advantage to the use of FPs to
model the effects of continuous time-dependent covar-
iates. The use of (restricted) cubic regression splines
requires that the locations of knots be specified.
Frequently, these knots are placed at specified quantiles
of the distribution of the continuous variable.12 How-
ever, when the value of the continuous variable
changes over the duration of follow-up, it is unclear
how these quantiles should be determined. When the
continuous variable denotes cumulative duration of
past exposure, the distribution of that variable will
shift to the right (or shift upwards) over time. If one
decides to base the quantiles of the distribution of cu-
mulative duration of past exposure at the end of fol-
low-up, then the large majority of the values of the
variable during the early phases of follow-up will lie
to the left of the first or second knots, limiting the flex-
ibility of the estimate. In contrast to this, the use of
FPs does not rely on computing any such quantiles.
Instead, the use of this method simply requires that
one apply the appropriate FP1 or FP2 transformation
to the value of the continuous time-dependent covari-
ate at each follow-up time. In contrast to this, in a
retrospective design such as the nested case-control
study, the cumulative duration of past exposure is
fixed at the index date (the event date for the cases).
Therefore, the requisite quantiles can be specified,
allowing one to use (restricted) cubic regression
splines to model the non-linear relationship between
cumulative duration of past exposure and the risk of
the outcome.
In the current study, we explored the use of FPs

for modelling the effect of time-dependent
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covariates on the log hazard of an outcome. An
advantage to the use of FPs in the current context
is that, for negative powers, they can model curves
that tend to a horizontal asymptote as the explana-
tory variable tends to infinity (i.e. the curve be-
comes increasingly flat as the explanatory variable
becomes very large). This may be useful in examin-
ing the effects of cumulative duration of past
exposure if there are settings in which there is some
‘saturation’ level of cumulative duration of past use,
above which the risk of an event does not change.
Such a setting could not be modelled using cubic
regression splines (which do not permit accurate
approximation of curves in which there is a hori-
zontal asymptote—cubic regression splines would
result in the curve tending to either negative or
positive infinity as the explanatory variable
becomes arbitrarily large). While we believe our
use of FPs to model the effects of time-dependent
covariates to be original, it bears noting that FPs
have been proposed for modelling time-varying
covariate effects.14,28

The primary limitation of the method, as currently
described, is that it does not take into account the
recency of the exposure. Thus, a given duration of
cumulative past exposure that occurred entirely in the
distant past has the same effect on the current hazard
of the occurrence of the outcome as the same duration
of cumulative exposure that occurred recently.
As noted in the Introduction, Hauptmann et al.,3

Richardson et al.,5 Abrahamowicz et al.6 and
Sylvestre and Abrahamowicz7 have developed
methods to allow one to account for recency of expo-
sure or latency. In future work, the methods described
in this paper need to be expanded to allow one to
incorporate the timing of cumulative duration of past
exposure when using FPs to model the exposure–
outcome relationship.
In conclusion, FPs can be used to model the

nature of the relationship between cumulative dura-
tion of past exposure to an agent and the risk of the
occurrence of an outcome. These methods can be
employed in cohort designs when cumulative dura-
tion of past exposure is treated as a time-dependent
covariate in a Cox proportional hazards model. The
methods can also be applied in case-control designs
in which total cumulative duration of past exposure
is assessed for each case and control. Increased use
of these methods will provide investigators in
clinical medicine, public health, and epidemiology
with tools to examine the form of the relationship
between cumulative duration of past exposure and
the risk of an outcome.
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KEY POINTS
• Researchers may be interested in determining the
effect of the cumulative duration of exposure or
of cumulative dosage of a given agent on the risk
of adverse outcomes.

• The Cox proportional hazards regression model
allows analysts to incorporate time-dependent
or time-varying covariates. A class of time-
dependent covariates is that denoting current
cumulative duration of exposure to a given agent.

• FPs are a regression method that allows analysts
to determine the functional form of the relation-
ship between a continuous covariate and an
outcome variable.

• In cohort studies, FPs can be used with Cox pro-
portional hazards regression models to determine
the functional form of the relationship between a
time-dependent variable denoting cumulative
duration of exposure to an agent and the risk of
subsequent adverse outcomes.

• In (nested) case-control studies, FPs can be used
with conditional logistic regression models to
determine the functional form of the relationship
between a variable denoting cumulative duration
of past exposure to an agent and the risk of an
adverse outcome.
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