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Abstract Purpose: To study and
compare the relationship between
end-expiratory lung volume (EELV)
and changes in end-expiratory lung
impedance (EELI) measured with
electrical impedance tomography
(EIT) at the basal part of the lung at
different PEEP levels in a mixed ICU
population. Methods: End-expira-
tory lung volume, EELI and tidal
impedance variation were determined
at four PEEP levels (15–10–5–0 cm
H2O) in 25 ventilated ICU patients.
The tidal impedance variation and
tidal volume at 5 cm H2O PEEP were
used to calculate change in imped-
ance per ml; this ratio was then used
to calculate change in lung volume
from change in EELI. To evaluate
repeatability, EELV was measured in
quadruplicate in five additional
patients. Results: There was a sig-
nificant but relatively low correlation
(r = 0.79; R2 = 0.62) and moderate
agreement (bias 194 ml, SD 323 ml)
between DEELV and change in lung
volume calculated from the DEELI.
The ratio of tidal impedance variation
and tidal volume differed between
patients and also varied at different
PEEP levels. Good agreement was

found between repeated EELV mea-
surements and washin/washout of a
simulated nitrogen washout tech-
nique. Conclusion: During a PEEP
trial, the assumption of a linear rela-
tionship between change in global
tidal impedance and tidal volume
cannot be used to calculate EELV
when impedance is measured at only
one thoracic level just above the
diaphragm.
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Abbreviations

CT Computed tomography
EIT Electrical impedance

tomography
EELV End-expiratory lung volume
EELI End-expiratory lung

impedance
ICU Intensive care unit
PEEP Positive end-expiratory

pressure

Introduction

Electrical impedance tomography (EIT) may be a promising
new tool for bedside monitoring of regional lung ventilation
and changes in end-expiratory lung volume (EELV) [1, 2].

EIT is a technique based on the injection of small currents
and voltage measurements using electrodes on the skin
surface generating cross-sectional images representing
impedance change in a slice of the thorax. It is a radiation
free, non-invasive and portable lung imaging technique.
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When there is a linear relationship between Dimped-
ance and Dvolume, EIT can be used to calculate dynamic
EELV changes based on impedance changes. Adler et al.
[3] demonstrated a linear increase in impedance in dogs
when the lung was inflated with a calibrated syringe. Also,
EELV measured by an open-circuit nitrogen washout
maneuver increased nearly linearly with impedance
change (n = 10, R2 = 0.95) [4]. This principle was used
during various procedures with rapidly changing lung
volumes to calculate a dynamic EELV in the whole lung,
calibrated with impedance change and tidal volumes at one
thoracic level [5–7]. However, it remains unclear whether
this principle is only valid for an open lung state and per-
haps not for a diseased lung with recruitment/
derecruitment as a result of PEEP changes at the site of the
EIT measurement. In ventilated critically ill patients,
ventilation is not divided homogenously [8], and, besides
change in air volume, other factors (e.g., cardiac oscilla-
tions and volume of the pulmonary vascular bed) may
contribute to impedance change. During a PEEP trial,
inter-electrode distance and chest geometry (EIT assumes a
round chest) will be affected. Furthermore, EIT measures
an eclipse with a central diameter of approximately 5–
10 cm. During an incremental PEEP trial, with increased
lung volume, the lung regions move in the cranio-caudal
axis, and the individual pixel of the EIT map may no longer
be representative for the same lung region [9]. Because the
electrical current flows on three-dimensional trajectories, it
remains unclear how movements of inhomogenous lung
tissue in the cranio-caudal axis affect the diagnostic value
of EIT measurements in the supine patient.

Therefore, this study aimed to evaluate the relation-
ship between measured EELV and changes in volume
calculated from DEELI measured at the basal part of the
lung during a PEEP trial in a mixed ICU population.

Materials and methods

The study population consisted of a convenient sample of
30 mechanically ventilated patients. The study data were
obtained during PEEP trials integrated in standard practice,
with the approval and need for informed consent waived
for routinely collected data by the local human investiga-
tions committee. For all patients, chest X-rays and CT
scans (if available) were retrospectively evaluated and
related to clinical history and data to divide the patients into
four groups: (1) patients without acute respiratory failure
(non-ARF; group N), (2) with respiratory failure due to
primary lung disorders (group P), (3) patients with respi-
ratory failure due to secondary lung disorders (group S) and
(4) patients admitted to the ICU after major surgery (group
MS). All patients were adequately sedated and had a reg-
ular breathing pattern. Patients with an air leak due to
pneumothorax, severe airflow obstruction due to COPD

(defined as forced expired volume in 1 s or vital capacity
below predicted value minus 2 SD) and severe cardiovas-
cular instability were excluded from the study.

In 25 patients impedance measurements were per-
formed during 2 min with a silicone belt with 16 integrated
electrocardiographic electrodes placed around the thoracic
cage at the fifth or sixth intercostal space, connected with
an EIT device (EIT evaluation kit 2, Dräger, Lubeck,
Germany). EIT data were generated by application of a
small alternating electrical current of 5 mA and 50 kHz.
During the study period, patients were ventilated with an
Engström Carestation ventilator (GE Healthcare, Madison,
WI). EELV measurements were performed with the COVX
module (GE Healthcare, Helsinki, Finland) integrated
within the ventilator. Lung volumes were calculated based
on a multibreath simulated nitrogen washout by measure-
ment of oxygen and carbon dioxide. This COVX module
has been extensively described by Olegard et al. [10] and
recently validated in ICU patients by Chiumello et al. [11].
At baseline, patients were switched to the Engström ven-
tilator and ventilated according to their original settings
before any measurements were made. After a steady state
of at least 20 min, PEEP was increased to 15 cm H2O
without changing the other ventilator settings. After a
steady state, EELV was measured twice (washout and
washin). This was repeated at a PEEP of 10, 5 and (if
clinically acceptable) 0 cm H2O. Before each EIT and
EELV measurement, hemodynamic and ventilatory
parameters were recorded, and arterial blood gas analysis
was performed (ABL 700, Radiometer, Copenhagen,
Denmark) in order to calculate the PaO2/FiO2 ratio.
Dynamic compliance was calculated by dividing expira-
tory tidal volume by the driving pressure.

In five additional patients quadruplicate EELV mea-
surements were made at three PEEP levels (15, 10 and
5 cm H2O) to evaluate the repeatability of the simulated
nitrogen washout technique. PEEP was increased from the
original settings to 15 cm H2O, and after a steady state
of 20 min the EELV was measured in quadruplicate
(4 washins and 4 washouts). This was repeated after a
steady state of 15 min at 10 and 5 cm H2O.

EIT analysis

EIT data were stored and analyzed offline on a personal
computer (Dell, P4, 2.4 GHz). Figure 1 presents a diagram
of a representative patient. At each designated PEEP level,
mean tidal impedance variation and mean EELI were cal-
culated. The ratio between tidal impedance variation and
tidal volume at 5 cm H2O PEEP was used to calculate
Dvolume from the EELI between the different PEEP levels.
DMean EELI between PEEP levels was divided by this ratio
to calculate a Dlung volume. DLung volume was calculated
between each PEEP level and the lowest used PEEP level (0
or 5 cm H2O). Distribution of tidal ventilation was
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expressed with the center of gravity index [12]. Change in
global tidal impedance was divided into two equal regions
of interest, dorsal and ventral, each accounting for 50% of
the EIT image. The center of gravity was calculated by
dividing the dorsal tidal impedance variation by the total
tidal impedance variation.

Statistical analysis

Statistical analysis was performed with Graphpad software
package (Graphpad software Inc. San Diego, CA). Results
are expressed as mean ± SD for normal distributed data
and median ? interquartile range (IQR) for not normally
distributed data. The Shapiro–Wilk normality test was used
to evaluate the distribution of all data. Changes in EELV
measured with the nitrogen washout/in method and changes
in EELV calculated from EELI were analyzed with linear
regression, Spearman’s correlation and a Bland–Altman
analysis. Wilcoxon’s matched-pairs test was used to analyze
the tidal impedance variation and the tidal volume ratio.

The repeatability of the quadruplicate EELV mea-
surements in five patients was evaluated with the variation
coefficient (SD divided by the average). Bland–Altman
analysis was used to analyze the agreement between
washin/washout measurements in these five patients.

Results

This study examined the relation between EELV and
EELI in 25 mechanically ventilated patients. Table 1
presents physiologic and demographic data on the study
population.

Patients were retrospectively divided into four groups:
group N (n = 9) consisted of two patients with traumatic
brain injury, five with cerebral vascular accidents and two
with a postoperative condition after neurosurgery; group
P (n = 6) consisted solely of patients with pneumonia;

group S (n = 4) consisted of patients with abdominal
sepsis; in group MS (n = 6) two patients were admitted to
the ICU after liver transplantation, one after kidney
transplantation, two after trans-thoracic esophagectomy
and one patient after coronary bypass surgery.

Of the 25 patients, 20 were ventilated with pressure or
volume-controlled ventilation and 5 patients with pressure
support ventilation; all had a stable breathing pattern and
stable EELI. Mean time after intubation was 17.2 h. In
total, 13 patients were measured at a PEEP of 15, 10 and
5 cm H2O and 12 patients at a PEEP of 15, 10, 5 and
0 cm H2O. In five additional ICU patients we evaluated
the repeatability of the simulated nitrogen washout tech-
nique; all patients tolerated this procedure well. Table 1
also presents data on the characteristics of this group.

The correlation between Dlung volume measured with
a multibreath simulated nitrogen washout technique and
Dlung volume calculated from EELI is shown in Fig. A
(see Electronic supplementary materials); although sig-
nificant, the correlation was moderate (r = 0.79, R2 =
0.62). To assess the difference between the two methods, a
Bland–Altmann analysis was performed (Fig. 2).
Calculating Dlung volume from EELI resulted in an
overestimation compared with the multiple breath wash-
out technique (bias 194 ml). Large differences in Dlung
volume were found between the two methods (SD
323 ml). To calculate Dlung volume from EIT, the ratio or
slope between tidal impedance variation and tidal volume
at 5 cm H2O was used. This ratio is shown in Fig. 3 for
each group of patients at the PEEP levels applied. During
the decremental PEEP trial, overall the decrease in the
slope was significant (15 vs. 5: P \ 0.001; 10 vs. 5:
P \ 0.001; 0 vs. 5 cm H2O: P = 0.001). In all individual
patient categories this ratio was different at 15 versus 5 cm
H2O PEEP; between patients the slopes also differed.

Fig. 1 Electrical impedance tomography (EIT) recording in a
patient at different PEEP levels. DEnd-expiratory lung impedance
(EELI) was calculated as the difference between EELI at each
PEEP level and the lowest used PEEP level

Table 1 Data on patient characteristics

EELI–EELV
relationship

EELV
repeatability

n 25 5
Gender, female/total 8/25 4/5
Age (years) 51 (15) 59 (21)
Height (cm) 177 (9) 172 (11)
Weight (kg) 76 (12) 74 (26)
Time after intubation (hours) 17.2 (11.0) 28.4 (17.2)
Baseline PEEP (cm H2O) 7.3 (2.7) 8.6 (2.2)
Baseline PaO2/FiO2 ratio

(mmHg) (range)
344 (533–123) 245 (360–145)

Ventilation mode
Pressure control 15 4
Pressure support 5 1
Volume control 1
Pressure controlled-

volume guaranteed
4

Data are presented as mean (SD), unless stated otherwise
PEEP Positive end-expiratory pressure, EELI end-expiratory lung
impedance, EELV end-expiratory lung volume
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The right panel of Fig. 3 shows the dorsal to ventral
center of gravity index of the tidal impedance variation for
each patient group. In group N and group MS there was a
significantly higher center of gravity at 15 and 10 com-
pared to 5 cm H2O PEEP, indicating increased tidal
ventilation distribution in the dorsal, dependent lung areas.

Figure 4 shows arterial oxygenation and dynamic
compliance for each patient group. No significant differ-
ences were found between the groups; however, this may
be due to the small numbers of patients per group.

In the five patients with quadruplicate EELV mea-
surements (used to evaluate repeatability of the simulated
nitrogen washout technique), mean EELV was 2,232 (SD

1,468), 1,992 (SD 1,304) and 1,565 (SD 1,042) ml at 15,
10 and 5 cm H2O PEEP, respectively. There was good
agreement between the measurements with variation
coefficients of 0.018 (range 0.012–0.027), 0.032 (0.018–
0.050) and 0.039 (0.005–0.101), and within subjects the
SDs were 34 (range 11–52), 29 (10–48) and 23 (7–38) ml
at 15, 10 and 5 cm H2O PEEP, respectively. Also, there
was good agreement between the washin and washout
measurements, bias -0.76 ± 3.22%.

Discussion

This study assessed the relationship between Dlung
volume measured with a simulated nitrogen washout
technique and Dlung volume calculated from EIT in crit-
ically ill patients. Compared to the nitrogen washout
technique, EIT overestimated Dlung volume, and large
overestimations or underestimations occurred in the indi-
vidual patient. The ratio between tidal impedance
variation and tidal volume decreased at lower PEEP levels,
indicating a change in ventilation distribution at lower
PEEP.

This study has some methodological considerations that
need to be addressed. First, both techniques (EIT and the
simulated nitrogen washout technique integrated into the
Engström Carestation ventilator) are novel techniques with
ongoing development. Second, Olegard et al. [10] inves-
tigated the precision of the simulated nitrogen washout
technique and found a bias of -9 ml and limits of agree-
ment of 356 ml when performing repeated measurements
with an FiO2 step of 0.1 and 0.3; this could in part explain
the moderate correlation found in the present study.

Fig. 2 Bland–Altman analysis. Comparison of Dend-expiratory
lung volume (DEELV) measured with a multibreath nitrogen
washout technique and Dlung volume obtained from changes in
end-expiratory lung impedance (EELI) calculated with the slope
between tidal impedance variation and tidal volume at 5 cm H2O
PEEP. Open triangles represent patients on assisted spontaneous
breathing, and black dots represent patients on controlled ventila-
tion. The linear correlation is shown in Fig. A (see Electronic
supplementary materials)

Fig. 3 Tidal impedance variation at the studied PEEP levels. Left
panel shows the ratio of tidal impedance variation divided by tidal
volume (impedance/ml). This ratio is the slope between tidal
impedance variation and tidal volume. Right panel shows the center
of gravity index. Global tidal impedance variation was divided in
two equal regions of interest, dorsal and ventral, each accounting
for 50% of the EIT image. The center of gravity was calculated by
dividing the dorsal tidal impedance variation by the total tidal

impedance variation. Patients are divided into groups according to
the type of lung condition. Group N = non-ARF, group P = pri-
mary lung disorder, group S = secondary lung disorder, group
MS = admitted to the ICU after major thoracic or abdominal
surgery. Data are presented as box=and-whisker plot (min.-25–50–
75%-max.), asterisks indicate significance compared to 5 cm H2O
PEEP within each group, P \ 0.05
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However, the simulated nitrogen washout method did
correlate well in a recent comparison with helium dilution
and CT scanning [11]. Also, we evaluated the repeatability
of the simulated nitrogen washout technique at 15, 10 and
5 cm H2O PEEP and found good agreement between the
repeated measurements. Therefore, and based on the sig-
nificantly lower ratios between tidal impedance variation
and tidal volume during the decremental PEEP trial, we
believe that the results also reflect lung physiology.

The results of the present study do not support the
assumption of a purely linear relationship between
Dvolume and Dimpedance in critically ill patients, espe-
cially as impedance was measured at only one thoracic
level. Although we found a significant correlation, the level
of agreement was poor. A linear relationship has been
reported in different settings. For example, Erlandsson
et al. [5] described good agreement between impedance
tidal variation and tidal volume (R2 = 0.95) in morbidly
obese patients undergoing surgery. The results of our study
do not contradict these findings, because tidal volume is
less likely to affect recruitment or derecruitment compared
to PEEP change in the whole lung. In animal studies, good
agreement was found between impedance and volume
when inflating the lung with a calibrated syringe [3, 13].
Hinz et al. [4] measured impedance and lung volume with
an open circuit nitrogen washout technique in ten critically
ill patients with acute respiratory failure. In their study, the
patients were a heterogeneous group with different causes
of respiratory failure, and the measured EELV ranged from
815 to 2,002 ml at 0 cm H2O PEEP. Agreement between
change in EELV and change in EELI was good
(R2 = 0.95). Surprisingly, the slope between Dvolume and
Dimpedance was very similar for all their patients [4]. In
our study, however, we found different slopes between
tidal impedance variation and tidal volume for each patient
(Fig. 3). This slope is dependent on the electrical con-
ductivity of the measured tissue and may be influenced by
edema and other lung pathology [14, 15]. In the present
study, the different slopes explain the moderate correlation,

because they indicate a change in the distribution of ven-
tilation at different PEEP levels. With EIT, PEEP has been
shown to shift ventilation in the frontal to dorsal direction
[8]. This phenomenon was also present in the present study,
indicated by the center of gravity index (Fig. 3). At higher
PEEP levels, tidal ventilation distribution made a signifi-
cant shift in groups N and MS to the dorsal parts of the lung,
indicating decreased atelectasis. Also, with atelectasis in
the dependent regions near the diaphragm, PEEP is likely
to shift ventilation and air content in the cranial-to-caudal
direction. Consequently, Dvolume calculated from
Dimpedance measured at one thoracic level would not be
representative for Dvolume in the entire lung. This expla-
nation is supported by the difference in time between
measurement and intubation, because lung recruitment
with increased airway pressures is more effective at the
start of mechanical ventilation. In the study of Hinz et al.,
patients were intubated on average 7 ± 3 days, whereas
in the present study patients were ventilated only
17.2 ± 11.0 h before measurement.

While the results of this study indicate that EIT mea-
sured at one basal thoracic level cannot predict lung
volume changes in the entire lung, EIT has been shown to
reliably assess ventilation distribution as compared with
CT scanning. Victorino et al. [16] compared EIT with the
same CT slice and showed good agreement between EIT
images and dynamic CT scanning, good agreement in
detection of right–left ventilation imbalance and relative
ventilation distribution in layers of the thoracic section.
Furthermore, in anesthetized pigs a good correlation was
shown between the changes in lung air content determined
by EIT and electron beam CT [17]. An experimental ALI
study by Meier et al. [18] explored global and regional
lung recruitment and lung collapse, and compared EIT
with corresponding CT slices during an incremental and
decremental PEEP trial; here, a strong correlation between
regional volume changes was established. However, even
in this latter study the intra-individual relationship
between tidal volume and tidal impedance was much

Fig. 4 PaO2/FiO2 ratio (left) and dynamic compliance (right) at the
PEEP levels examined in the four patient groups. Patients are
divided into groups according to the type of lung condition. Group
N = non-ARF, group P = primary lung disorder, group

S = secondary lung disorder, group MS = admitted to the ICU
after major thoracic or abdominal surgery. Data are presented as
box-and-whisker plot (min.-25–50–75%-max.)
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stronger than the overall correlation between all studied
animals (n = 8). Thus, EIT has been shown to be very
precise and reproducible, especially when looking at
regional ventilation and not at overall lung volume [18].

In conclusion, the assumption of a strictly linear
relationship between global tidal impedance variation and
tidal volume cannot be used to calculate EELV based on
DEELI during a PEEP trial when impedance is measured
only at one thoracic level just above the diaphragm. This
is particularly so when there is considerable change in the
geometry of the electrical current conduction pathways
such as, for example, in the case of recruitment and
derecruitment. In this case, the relationship may become
nonlinear. Thus, there might be a different slope between
tidal impedance variation and tidal volume in different

patients. Nevertheless, this intra-individual slope can be
used to monitor regional ventilation distribution to assess
the effect of ventilator settings.
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