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Context remarkably affects learning behavior by adjusting option values according to the

distribution of available options. Displaying counterfactual outcomes, the outcomes of the

unchosen option alongside the chosen one (i.e., providing complete feedback), would

increase the contextual effect by inducing participants to compare the two outcomes

during learning. However, when the context only consists of the juxtaposition of several

options and there is no such explicit counterfactual factor (i.e., only partial feedback is

provided), it is not clear whether and how the contextual effect emerges. In this research,

we employ Partial and Complete feedback paradigms in which options are associated

with different reward distributions. Our modeling analysis shows that the model that uses

the outcome of the chosen option for updating the values of both chosen and unchosen

options in opposing directions can better account for the behavioral data. This is also in

line with the diffusive effect of dopamine on the striatum. Furthermore, our data show that

the contextual effect is not limited to probabilistic rewards, but also extends to magnitude

rewards. These results suggest that by extending the counterfactual concept to include

the effect of the chosen outcome on the unchosen option, we can better explain why

there is a contextual effect in situations in which there is no extra information about the

unchosen outcome.

Keywords: reinforcement learning, value learning, contextual effect, counterfactual outcome, partial and

complete feedback

1. INTRODUCTION

Behavior necessarily occurs within a specific context. A wealth of studies have investigated the
effect of context on decision making (Summerfield and Tsetsos, 2015; Rigoli et al., 2016a,b, 2017,
2018; Tsetsos et al., 2016), while the effect of context on reinforcement learning has received little
attention. Recent studies have shown that many cognitive biases arise due to the effect of the context
in which the value learning process occurs (Palminteri et al., 2015; Klein et al., 2017; Bavard et al.,
2018). The choice context is comprised of the currently available options. Two paradigms have
been implemented to investigate the value learning process. In the Complete feedback paradigm,
participants are shown the outcomes of the options they select (factual outcomes) as well as
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the outcomes of the options they forgo (counterfactual
outcomes). Thus, participants are able to compare the factual
and counterfactual outcomes and thereby learn the value
of the selected option relative to the value of the forgone
option (Palminteri et al., 2015; Bavard et al., 2018). In the Partial
feedback paradigm, participants are only shown the outcomes
of the selected options, so they are not able to compare the two
outcomes. It is unknown if and how the contextual effect appears
in the Partial feedback paradigm.

In reinforcement learning, the value of an option is usually
learned through trial and error (Sutton and Barto, 2018).
Reinforcement learning is an incremental process in which
option values are updated via prediction errors, that is, the
difference between the received reward versus the expected
reward (Sutton and Barto, 2018). Prediction errors are encoded in
the brain by the neurotransmitter dopamine (Schultz et al., 1997).
Dopamine releases diffusively and has opposing excitatory and
inhibitory effects on two distinct populations of striatal neurons
called D1-SPNs and D2-SPNs (spiny projection neurons),
respectively. These two clusters encode the values of the two
competing options (Frank et al., 2004; Tai et al., 2012; Collins
and Frank, 2014; Donahue et al., 2018; Nonomura et al., 2018;
Shin et al., 2018; Bariselli et al., 2019). Inspired by the opposing
effects of dopamine on D1- and D2-SPNs, we propose a simple
reinforcement learningmodel called theOpposing Learning (OL)
model. In the OL model, the chosen prediction error not only
updates the value of the chosen option, but also that of the
unchosen option, in opposite directions. Moreover, the updating
of both option values depends on the observed rewards of the
chosen option as well as those of the unchosen option. This
implies that two competing options with identical expected
rewards will have different learned values in different contexts.

In a typical value learning task, participants aim to maximize
expected rewards. However, in the Complete feedback paradigm,
in which counterfactual outcomes are also presented, the value
learning strategy can be more complex (Palminteri et al., 2015;
Klein et al., 2017; Bavard et al., 2018): Participants aim to learn
option values by comparing the two outcomes relative to each
other. This comparison will trigger regret (when the factual
outcome is the less favorable) or relief [when the counterfactual
outcome is the less favorable]. In an attempt to minimize
regret and maximize relief, people aim to optimize the outcome
difference, i.e., [outcomefactual − outcomecounterfactual] (Camille
et al., 2004; Coricelli et al., 2005, 2007). Recent studies have shown
that people are neither fully expected-reward optimizers nor fully
outcome-difference optimizers; they are hybrid optimizers who
use both of these strategies but weight them differently (Kishida
et al., 2016; Bavard et al., 2018). The individual differences
between people depend on the degree to which a person utilizes
each of these strategies. By adding a hybrid component to the
simple OL model, we extend the OL model to account for the
results in the Complete feedback paradigm as well.

Most of the previous studies have aimed to explain the
contextual effects as resulting from the effect of the forgone
outcome on the chosen value. In this study, we go beyond that
explanation and aim to explain the contextual effect as resulting
from the effect of the factual outcome on the unchosen value,

especially in situations in which there is no forgone outcome.
To this end, we designed two types of feedback paradigms, with
and without forgone outcomes, and will show that we observed
the contextual effect in both feedback paradigms. We introduce
a novel reinforcement learning model that is better able to
account for the underlying contextual bias in behavioral data
than previous models. To study situations that occur frequently
in everyday life, we use reward magnitude rather than reward
probability and thereby show that the contextual effect is also
present in paradigms using reward magnitude.

2. RESULTS

2.1. Behavioral Task
Two groups of participants performed two different versions of
the instrumental learning task: the Partial feedback version, in
which we only provided them with factual outcomes, and the
Complete feedback version, in which we provided them with
both factual and counterfactual outcomes. Participants were to
gain the most possible rewards during the task. The rewards were
random independent numbers drawn from specified normal
distributions. Participants faced two pairs of options (A1,B) and
(A2,C), where A1 and A2 were associated with rewards from the
same distribution as N(64, 13) and B and C were associated with
rewards from two different distributionsN(54, 13) andN(44, 13),
respectively. To conceal the task structure from the participants,
different images were assigned to A1 and A2, although their
associated values were equal. After the learning phase, the
participants unexpectedly entered the post-learning transfer
phase in which all possible binary combinations of options (six
pairs) were presented to them (each combination presented
four times), and they were asked to choose the option with
the highest expected reward. The transfer phase design aims to
reveal any bias between A2 and A1. Similar designs can be found
in the context-dependent value learning literature (Palminteri
et al., 2015; Klein et al., 2017; Bavard et al., 2018). To avoid
interfering with the participants’ previous learning, no feedback
was provided in the transfer phase (Frank et al., 2004, 2007;
Palminteri et al., 2015; Klein et al., 2017; Bavard et al., 2018).
After each choice, participants reported their confidence in that
choice on a scale of 0 to 100. Finally, in the value estimation
phase, participants reported their estimated expected value of
each stimulus on a scale of 0–100 (Figure 1).

2.2. Performance
First, to see whether the participants had learned the option
values during the task, we assessed their performance in the
learning phase by calculating the percentage of trials in which
they chose the advantageous option (the option with the higher
expected reward). We observed that, in both versions of the
task, the participants’ performance was significantly better than
random (0.5) [Partial: performance = 0.7613 ± 0.1130; t-test,
p = 1.1041e − 15, t(34) = 13.6787, Complete: performance
= 0.8823 ± 0.0853, t-test, p = 2.8382e − 29, t(41) = 29.0489;
Figure 3A]. We also compared the participants’ performance in
the two versions of the task and found that their performance
was significantly better in the complete feedback version [p =
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FIGURE 1 | Behavioral design. Timelines of the Partial and Complete feedback versions of the task. Participants were given written instructions and trained through

20 trials before beginning the main task. They learned two pairs of options in the Learning phase by trial and error. In the subsequent transfer phase, they were

presented with two options and were to choose the more advantageous option and then report their level of confidence about their choice. In the transfer phase, all

possible binary combinations of options were presented. Finally, in the value estimation phase, they were to estimate the option value on a scale from 0 to 100.

4.5603e − 07, t(75) = 5.3522, one-tailed t-test]. This means
that providing information about counterfactual outcomes to
participants facilitated their learning. This result is consistent
with the previous studies (Palminteri et al., 2015; Klein et al.,
2017; Bavard et al., 2018).

We also observed that participants’ performance was
significantly better than random (0.5) in the transfer phase
[Partial: performance = 0.8786±0.2868, t-test, p = 8.7844e−22,
t(34) = 21.673; Complete: performance = 0.9226± 0.2618, t-test,
p = 2.4064e − 24, t(41) = 21.6362; Supplementary Figure 1].
Additionally, the reported confidence was significantly higher
when participants had chosen the advantageous option
than when they had chosen the non-advantageous option
(Partial: average confidences of advantageous options =
0.7533 ± 0.1895, average confidences of non-advantageous
options = 0.4882 ± 0.2326; Complete: average confidences of
advantageous options = 0.7961 ± 0.1818, average confidences of
non-advantageous options = 0.5752± 0.2124).

To determine whether the two versions of the task had
different reward sensitivities, we ran a hierarchical model as
follows. action ∼ 1 + vdif ∗ task + (1 + vdif ∗ task|subject),
where the action variable represents choosing the left option,
the vdif variable is the option values difference, task variable
is a categorical variable with 1 for the Partial and 2 for the
Complete feedback version, and subject is the random effect
variable. As can be seen in Supplementary Table 1, reward
sensitivity was significantly higher in the Complete feedback
version than in the Partial feedback version (p-value of the
vdif : task2 regressor is 8.0551e − 17). For these and the

following analyses, unanswered trials in the learning phase
were excluded.

2.3. Contextual Effect
After the participants had learned the option values, we turned
to the transfer phase to see whether there was any contextual
effect. We found that participants’ preferences between A1 and
A2 had been significantly modulated by their distance from their
paired options, such that despite having equal absolute values,
participants preferred A2 over A1 (transfer bias) in both versions
(Partial: p = 0.04, ratio = 0.65; Complete: p = 0.01, ratio =

0.66; binomial test; Figures 2, 3B, Supplementary Figure 1).
Although this analysis has bee done on the first iterations of
the participants choices in the transfer phase, this trend still
remained after we considered all four iterations of A1 and
A2 (the rates of choosing A2 over A1 for each participant),
though it lost significance (Partial: p = 0.083; Complete: p =

0.063; t-test). This loss of significance might be explained as
follows. In the learning phase, only certain pairs of options
appeared together, allowing participants to compare and learn
the options’ relative values. However, in the transfer phase, the
participants were presented with pairs of options that had not
previously been paired so they were not able to compare the
options’ relative values. It may thus have been a better strategy
not to rely completely on the relative values, but to use the
absolute values of the options (For details of the binomial test
see Supplementary Material).

To ensure that the observed bias in the transfer phase
was a result of context-dependent value learning, and not of

Frontiers in Neuroscience | www.frontiersin.org 3 May 2022 | Volume 16 | Article 631347

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Barakchian et al. Counterfactual Effect in Partial Reinforcement Learning

FIGURE 2 | Transfer effect. In the transfer phase of the Partial and the Complete feedback versions of the task, participants significantly more often preferred the

option with higher relative value (A2, dark colors), although the both options had equal absolute value.

confounding factors, we examinedwhich other factors could have
affected the participants’ preference for A2. The observed bias
may have occurred because, in the learning phase, participants
chose A2 more frequently than A1. To test this possibility, we ran
a logistic regression analysis to see whether the preference of A2

over A1 was due to the difference in frequency of choosing A2

versus A1 in the learning phase. This analysis showed that the
effect on the transfer bias of participants having chosen A2 more
frequently than A1 in the learning phase was almost significant
for the Partial version, but not significant for the Complete
version (t-test on the regression weights, Partial: p = 0.054;
Complete: p = 0.12). The significant intercept of the regression
confirms the transfer effect, even when choice frequency is
controlled (t-test on the Intercept weight, Partial: p = 0.03;
Complete: p = 0.02). Although the above analysis has been
done on the first iteration of (A1,A2), the result is almost the
same when we consider all iterations of (A1,A2), i.e., the rates
of choosing A2 over A1 (t-test on the regression weights, Partial:
p = 0.0851; Complete: p = 0.060, t-test on the Intercept weight,
Partial: p = 0.081; Complete: p = 0.080).

Furthermore, we repeated the analysis described in the
previous paragraph for the last 20 trials. We again found no
significant effect of late choice frequencies on the transfer bias
(t-test on the regression weights, Partial: p = 0.56; Complete:
p = 0.29) while intercepts remained almost significant (Partial:
p = 0.06; Complete: p = 0.03). Although the above analysis
has been done on the first iteration of (A1,A2), the result is the
same when we consider all iterations of (A1,A2) (t-test on the
regression weights, Partial: p = 0.730; Complete: p = 0.798,

t-test on the Intercept weight, Partial: p = 0.132; Complete:
p = 0.108).

The other possible confounding factors for the transfer bias
might be the amount of very small or very large rewards (upper
or lower tails of the reward distributions). To test this, first, we
summed up the rewards greater than µ + 2.5σ (µ and σ are
the mean and standard deviation of the rewards, respectively),
and using logistic regression analysis, we tested whether this sum
had a significant effect on the transfer bias. We repeated the same
analysis for rewards less than µ − 2.5σ . We found no significant
effect of large or small rewards in either version (t-test on the
regression weights, large rewards: [Partial: p = 0.40; Complete:
p = 0.62], Small rewards: [Partial: p = 0.54; Complete: p =

0.47]). Again, although the above analysis has been done on the
first iteration of (A1,A2), the result is the same when we consider
all iterations of (A1,A2) (t-test on the regression weights, large
rewards: [Partial: p = 0.684; Complete: p = 0.508], Small
rewards: [Partial: p = 0.630; Complete: p = 0.879]).

Next, we assessed whether the confidence participants
reported about their choices differed in the two feedback versions.
To this end, we ran a t-test analysis and found no significant
difference in reported confidences between two feedback versions
[p = 0.156, t(75) = −1.43, t-test].

2.4. Value Estimation
We then turned our attention to the analysis of the value
estimation phase. We found that participant were able to
estimate the expected rewards of the advantageous options fairly
accurately, but they significantly underestimated the expected
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FIGURE 3 | Behavioral results in the learning, transfer, and estimation phases. (A) The learning curves show that, when presented with paired options, participants

learned to choose the more advantageous option in the pair (AA1 in A1B pair and A2 in A2C pair). The learning curve of the OL models shows similar results. Each bin

in the x-axis is the average of choices in 10 trials. Solid lines show the behavioral data, dashed lines show the synthetic data. (B) The summarized preferences of the

participants in six combinations (top) and their corresponding confidence levels (bottom), along with the predictions of the OL model (black dots). (C) The participants’

value estimations (colored bars) are very close to the real expected rewards of the options A1 and A2 (colored lines). The Partial version is green and the Complete

version is brown. Shadings denote SD and error bars denote SEM.

rewards of the non-advantageous options (Figure 3C). These
results can be explained as follows.When a given option is chosen
frequently, participants could either track its average rewards or
calculate its value at the moment of estimation.

Our next question was whether the value estimation phase
introduced any bias similar to that introduced by the transfer
phase. To test this, we ran a paired t-test analysis on the estimated
values. We found that there was no significant difference between
estimation of A1 and A2 in either version, yet there was a trend
toward overestimating A2 compared to A1 [Partial: p = 0.1457,
t(34) = −1.48; Complete: p = 0.651, t(41) = −0.45; paired t-
test]. To assess whether there are any differences in estimation
variabilities in the two feedback versions, we considered the
standard error of the four reported values for each stimulus. To
analyze this, we ran a t-test analysis and found that there were
no significant differences in estimation variabilities in the two
versions [p = 0.888, t(75) = 0.141, t-test].

2.5. Comparison Effect
In the next step, we studied the effects of regret and relief on
participants’ behavior. The idea of regret and relief is that, to learn
the consequences of one’s decision, one compares the outcome
of the selected option with that of the non-selected option. This

comparison triggers regret or relief depending on whether the
outcome of one’s decision is worse or better, respectively, than
the outcome of the opposite decision. People naturally tend to
avoid regret (approach relief), and when facing regret (relief),
they are likely to switch to the other option (or select the same
option again; Camille et al., 2004; Coricelli et al., 2005).

In each trial of our experiment, regret and relief were
operationalized as the difference between outcomes in that trial.
To test whether the difference in outcomes of the previous trial
influenced the decision to select a different option (“switch”) or
the same option (“stay”) as in the previous trial in the current
trial, we used a hierarchical logistic regression analysis as follows.
action ∼ 1 + vdif + odif + cond + (1 + vdif + odif +

cond|subject), where action is the participants switching behavior
(1 if participant switched, 0 if participant stayed), and odif is the
outcome difference of the previous trial and the value difference
of the current trial. The outcome difference in the Complete
version was defined as the difference between the factual and
counterfactual outcomes, {rFC − rCF}, and for the Partial version,
we used VCF instead of rCF . The vdif variable is the option values
difference, cond variable is a categorical variable with 1 for the
A1B pair and 2 for the A2C pair, and subject is the random
effect variable.
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TABLE 1 | Comparison effect of the participants’ switching behavior and reaction times.

Switch

Partial Complete

Name Estimate SE t-stat p-value Estimate SE t-stat p-value

(Intercept) −1.5528097 0.10551335 −14.716713 2.69E-48 −2.724902 0.17598005 −15.484153 2.28E-53

Outcome difference −0.0879529 0.0567055 −1.5510467 1.21E-01 −0.5462195 0.06292942 −8.6798744 4.68E-18

Value difference −1.123403 0.08767908 −12.812668 3.67E-37 −0.9158512 0.06505058 −14.079062 1.57E-44

Condition 0.25688705 0.08761796 2.93189954 0.00337999 0.25104619 0.12809207 1.95988856 0.05004073

Reaction time

Partial Complete

Name Estimate SE t-stat p-value Estimate SE tstat pValue

(Intercept) −0.1164283 0.03073684 −3.7879077 0.00015321 −0.1211333 0.03585658 −3.3782727 0.00073263

Outcome difference 0.01123051 0.00651389 1.72408744 0.08473669 −0.0164905 0.00526292 −3.1333433 0.00173402

Value difference −0.0699353 0.0101347 −6.9005836 5.64E-12 −0.0698999 0.01654412 −4.2250579 2.41E-05

Condition 0.04191482 0.02390541 1.75336139 0.07958424 0.03658956 0.02364193 1.54765513 0.12174177

The hierarchical logistic regression and hierarchical simple regression analyses were performed on the switching behavior and logarithms of participants’ reaction times, respectively.

Along with the outcome difference as the main regressor, the current value differences between the two paired options and the condition type (A1B,A2C) were also included as control

regressors. The results show that the participants’ current choices as well as their current reaction times were significantly influenced by the outcome differences of their previous

choices in the Complete, but not the Partial feedback version.

We found a significant comparison effect in the Complete
version, but not in the Partial version (Table 1). This means that
participants tended to switch from or stay with their previous
choice according to whether they were facing regret or relief,
respectively, and this tendency was stronger in the Complete
version. To investigate this effect more thoroughly, we performed
a similar analysis on the logarithm of reaction times: logrt ∼

1 + vdif + odif + cond + (1 + vdif + odif + cond|subject).
We observed that, in the Complete version but not the Partial
version, reaction times in each trial were significantly modulated
by the outcome difference from the previous trial such that
the smaller the difference, the slower the reaction time, and
vice versa (Table 1). This result is consistent with the post-error
slowing phenomena reported frequently in the decision-making
literature (Jentzsch and Dudschig, 2009; Notebaert et al., 2009).

2.6. Opposing Learning Model (OL)
In the following, we introduce a novel reinforcement learning
model, called the Opposing Learning (OL) model, adopted from
the standard Q-learning model and inspired by the striatal
mechanism. First, we will introduce the basic model for the
Partial feedback version, and then we will extend the model for
the Complete feedback version.

2.6.1. Model Description
Our model focuses on the chosen option in the sense that
value updating is based solely on the prediction error of the
chosen option. Following the choice, the chosen prediction error
will simultaneously update the chosen and unchosen values in
opposite directions (increasing and decreasing, respectively).

Qch = Qch + α1δch

Qun = Qun − α2δch

where ch refers to the chosen option, un refers to the unchosen
option, and δch = rch − Qch. At the final stage, the decision is
made following the softmax rule, p(c) = 1

1+eβ(Qun−Qch)
, where β is

the inverse of the temperature parameter. The model equation is
inspired by the effect of dopamine on the striatum. The striatum
consists of D1 and D2 spiny projection neurons (SPNs) which
encode chosen and unchosen values, respectively. The presence
of prediction error in both chosen and unchosen value updating
comes from the fact that the dopamine release is diffusive and
thus non-selective. The specified signs of prediction error in the
model equations relates to the opposite effects of dopamine on
D1- and D2-SPNs (Figure 4).

2.6.2. Contextual Effect in the OL Model
In the OL model, the chosen and unchosen values are coupled
and thus not independent. We measured the correlation between
these two values in a simulation. The correlation turned out to
be negative and proportionate to the ratio of two learning rates
(Figure 5B):

Corr(Q1,Q2) ≈ −
α2

α1

When α2 changes from 0 to α1, the correlation between Q1

and Q2 changes from 0 to −1, and the encoding changes from
almost fully absolute to almost fully relative. Figure 5A shows
how Q1 and Q2 start to move away from orthogonality to fully
negatively correlated. In simulations, typical agent α2 = 0 shows
no contextual effect, agent 0 < α2 < α1 shows a moderate and
temporary contextual effect, and agent α2 = α1 shows a large and
permanent contextual effect (Figure 5C).
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FIGURE 4 | The schematic of the OL model and its extension. (A) A common strategy in the value learning task, especially when counterfactual outcomes are also

provided, is to compare competing outcomes. This comparison triggers the regret (relief) that subsequently drives avoidance (approach) behavior. The tendency to

minimize regret (and maximize relief) along with the tendency to maximize expected rewards, which is a hybrid strategy, can better account for the behavioral data

than either of these strategies. The absolute and relative weights assigned to each strategy (maximize expected rewards and minimize regret) determine the amount of

their effect on behavior. (B) The idea behind the OL model comes from the opposing effect of dopamine on two distinct populations of spiny projection neurons (viz.,

D1 and D2). It has been proposed that they encode the values of chosen and unchosen options, respectively, by promoting the latter and inhibiting the former.

Similarly, in the inspired model, chosen prediction error has an opposing role in updating the chosen and unchosen option values, by strengthening the latter and

weakening the former.

2.6.3. Performance of the OL Model
We performed a simulation analysis to study the behavior of the
OL model. First, we found that the OL model as a reinforcement
learning model performs better when the difference between
competing option values increases (Supplementary Figure 2).
Second, we studied the effect of parameter α2 on agents’ learning
performance. This analysis showed that when α2 > 0, average
performance is better than when α2 = 0 (SQLmodel). Moreover,
increasing α2 results in an increase in average performance
(Figures 6A,B). This increase is due to the inhibition role of the
chosen prediction error on the unchosen value that would lead to
an increase in the contrast between two competing option values,
and thus an increase in performance (Figure 6A). Note that the
above results are restricted to the case in which the parameter
β is in a reasonable range. (For details about the simulation, see
Section 4.4).

2.6.4. Extending the OL Model
Several studies have shown that, in the Complete feedback
version of the task, in the presence of counterfactual outcomes,
the quantity encoded by dopamine is not the simple prediction

error alone, but rather a combination of the simple prediction
error and the counterfactual prediction error (i.e., the
prediction error of the outcome difference; Kishida et al., 2016).
Furthermore, some studies have shown that by incorporating
the outcome difference into the learning procedure, the model
can better account for the behavioral (Bavard et al., 2018)
and physiological (Coricelli et al., 2007) data. To this end,
we replaced the reward term with a hybrid combination of
the absolute reward (rFC) and the relative reward (rFC − rCF ,
the outcome difference; Figure 4B). Recall that the outcome
difference played a significant role in the participants’ switching
behavior in the Complete feedback version (see Section 2.5). The
updating equations of the extended OL model are exactly the
same as those in the original OL model, but the prediction error
is defined as follows:

δch = rhyb − Qch

rhyb = wrabs + (1− w)rrlt

rabs = rFC, rrlt = rFC − rCF
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FIGURE 5 | Correlation between two competing option values estimated by the OL model. (A) When α2 = 0, two estimated values are equal to their absolute values

and they are orthogonal. However, whenever α2 gets closer to α1, the estimated values for each pair become more correlated. Moreover, when α2 = α1, estimated

values are approximately fully correlated(corr ≈ −1). (B) Correlation between two paired option values as a function of −α2/α1. (C) The difference in the estimated

values of A1 and A2 (contextual bias) emerges with increasing α2. The diagram for q-values and differences of q-values have been shown at the top and bottom,

respectively. The simulation was performed using two different pairs of options [N(7, 1),N(5, 1)], and [N(7, 1),N(3, 1)], with β = 0.1, α1 = 0.2, and four different

α2 = 0, 0.1, 0.18, 0.2.

where w is the weight of the absolute strategy.
It turns out that this extended model becomes an instance of

the original model by changing the mean rewards (µ1 and µ2)
to µ′

1 = µ1 + (1 − w)µ2 and µ′
2 = µ2 + (1 − w)µ1. Note

that since µ′
1 − µ′

2 = w(µ1 − µ2), the extended OL model is
like a simple OL model in which the means have gotten closer
to each other. Thus, this modification does not change the main
characteristics of the OL behavior, and the extended OL model
still preserves all of the above-mentioned properties. This shows
how, by designing a proper prediction error, the OL model can
be successfully extended for a wide range of conditions.

2.7. Model Comparison
2.7.1. Model Fitting and Model Validation
In this part of the analysis, we ran model comparison analyses
in two ways: model fitting (learning phase) and model validation
(transfer phase). The models we used in our model space
consists of some models as benchmarks and some models
that aim to explain context-dependent value learning. Our
main model-space included the standard Q-learning model
(SQL), the reference-point model (RP) (Palminteri et al., 2015),
the difference model (Klein et al., 2017), and the hybrid
model (Bavard et al., 2018). The same analysis was also performed

on the extendedmodel-space which, in addition to the previously
named models, included the forgetting reinforcement learning
model (FQL) (Barraclough et al., 2004; Ito and Doya, 2009;
Katahira, 2015; Niv et al., 2015; Kato and Morita, 2016), the
experienced-weighted attraction model (EWA) (Camerer and
Hua Ho, 1999), the sample-based episodic memory model
(SBE) (Bornstein et al., 2017), and RelAsym model (Garcia et al.,
2021; Ting et al., 2021, Supplementary Tables 2–4).

Except for the difference model, which only had the Complete
version, all of the models had two Partial and Complete feedback
versions. The OLmodel had two different versions, OL1 in which
the chosen and unchosen options had the same learning rates,
and OL2 in which they had different learning rates. For the details
of the models, see Section 4.

For the learning phase, we performed the fitting procedure
for each participant and each model separately, and calculated
their exceedance probabilities (xp). For the transfer phase, we
calculated the negative log-likelihood for the all iterations.
Through model comparison, we found that the OL1 model
(for the Partial and Complete versions), fit the data better
in the learning phase and also predicted the data better in
the transfer phase (Table 2). In addition to the model fitting
analysis, we applied all of the behavioral analysis in the
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FIGURE 6 | Comparison of OL and SQL model performance. (A) As α2/α1 goes from 0 (SQL) to 1 (the OL1 ), the peak of the performance shifts to the left, where the

value of β is smaller and more reasonable. In this β range, performance peaks where α2/α1 is higher. The larger β is, the larger the behavioral variances. The

performances were obtained by averaging performances across all task settings and different ranges of α2/α1. (B) This heat map shows that, by increasing α2/α1,

performance increases. This simulation was performed using two different pairs of options [N(10, 1),N(7, 1)] with β = 0.1. µ and σ stand for the mean and standard

deviation of the performance, respectively.

TABLE 2 | Model comparison: model fitting and model prediction.

SQL RPA Dif Hyb OL1 OL2

FITTING (LEARNING PHASE)

Partial

xp 2e− 05 0 0 0.99998 0

pxp 2.0047e− 05 4.7129e− 08 4.7129e− 08 0.99998 4.7129e− 08

Complete

xp 0.001594 0 0.16604 0.000685 0.66409 1e− 06

pxp 0.0024225 0.00083783 0.16591 0.0015188 0.66104 0.00083883

PREDICTION (TRANSFER PHASE)—ALL ITERATIONS

Partial

A1A2 2.77± 0.16 2.83± 0.22 2.88± 0.21 2.51± 0.14 2.63± 0.13

all 9.15± 0.55 9.05± 0.52. 9.27± 0.53 8.99± 0.63 9.12± 0.6

Complete

A1A2 4.69± 0.84 4.8± 0.85 4.2± 0.75 4.2± 0.64 3.49± 0.44 3.5± 0.45

all 15.42± 2.82 14.11± 2.01 12.88± 1.91 14.06± 1.86 12.26± 2.05 12.27± 1.85

Fitting: Bayesian exceedance probability (xp) (Stephan et al., 2009) and protected exceedance probability (pxp) (Rigoux et al., 2014) of the learning phase. Prediction: negative

log-likelihood (nll) of A1A2 and all six combinations of the transfer phase separately. Mean± SEM.

Performance and Contextual effect sections on the simulated
data. The simulation for each participant in each model was
conducted by the participant’s best-fitted parameters (averaged
over 100 repetitions).

This analysis showed that the OL1 model was able to generate
all key signatures of the behavioral data (Figures 3A,B). In

the learning phase, agents’ performances were higher than 0.5
(Partial: performance = 0.6637± 0.0627; Complete: performance
= 0.8857 ± 0.0639; Figure 3A), and the performance in the
learning phase of the Complete version was significantly higher
than that in the Partial version [p = 4.4086e−25, t(75) = 15.3079,
one-tailed t-test]. We also observed that agents’ performance
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was significantly better than random (0.5) in the transfer phase
[Partial: performance = 0.8238 ± 0.1429, t-test, p = 3.2597e −
22, t(34) = 22.3594; Complete: performance = 0.9587 ±

0.0746, t-test, p = 1.2272e − 34, t(41) = 39.6801; Figure 3B,
Supplementary Figure 1]. We were also able to replicate the
transfer effect (Figure 3B): Agents preferred A2 over A1 in both
feedback versions (Partial: p = 0.04096, ratio = 0.65714;
Complete: p = 6.8771e− 05, ratio = 0.78571; binomial test).

We next assessed how the estimated parameter β is different
across feedback versions. To do so, we ran a t-test analysis and
found that the exploitation rate β was significantly higher in the
Complete version than in the Partial version (partial: mean =

0.0705, complete: mean = 0.368, p = 1.085e − 07, t-test). Thus,
participants explored less in the Complete version than in the
Partial version.

2.7.2. Parameter Recovery and Model Recovery
To validate our model fitting and model comparison procedures,
we conducted parameter recovery and model recovery analyses,
respectively (Correa et al., 2018; Wilson and Collins, 2019).

To do these analyses, using a common approach in the
literature (Daw et al., 2011; Palminteri et al., 2015; Correa
et al., 2018), we fitted beta distributions to the best fitted
parameters of all participants. Then we sampled synthetic
participants from these distributions. Then we generated 30 ×

numberofsubjects simulated behaviors with all models in the
main model space (30 repetitions resulting 30 × 35 simulations
for the Partial version, and 30 × 42 simulations for the
Complete version). Then we fitted the generated data by each
model in the main model space to find which models best
fitted to these generated data. It should be noted that the
task configurations were the same as those used for the real
participants.

For parameter recovery analysis, from the above simulation
data we took the generated and fitted parameters of the OL
models, and calculated the Pearson correlation of them. As can
be seen in the Figure 7, the correlations between fitted and
recovered parameters are strong. We also regressed recovered
parameters against the true parameters. The result of the
regression has been reported in the Table 3, and shows an
acceptable parameter recovery.

In the model recovery analysis, our aim is to investigate
whether the models in the model space can be distinguished from
each other. To do this, we used the model recovery approach
in the paper of Wilson and Collins (Wilson and Collins, 2019;
Ciranka et al., 2022). According to this approach we calculated
two metrics: the conditional probability that a model fits best
given the true generative model [p(fit|gen)], and the conditional
probability that the data was generated by a specific model, given
it is the best fitted model [p(gen|fit)]. To calculate p(fit|gen), we
took the fitted data on our generated datasets and calculated
the corresponding AICs to see how often each model provided
the best fit. To calculate p(gen|fit), we used the following Bayes
formula with the uniform prior over models p(gen):

p(gen|fit) =
p(fit|gen)p(gen)

∑nmodels
m=1 p(fit|gen)mp(gen)m

If we could recover our models perfectly, the p(fit|gen) matrix
must be an identity matrix (a matrix with all the diagonal
entries 1 and other entries 0). Unfortunately, some of the models
in our model space have rather similar behavior on this task
(e.g., the Hybrid model with w = 1 is identical to the SQL
model), therefore we have large off-diagonal elements in this
matrix (Figure 8). Since the model recovery was not perfect, we
conducted p(gen|fit) analysis, which is a more critical metric to
investigate model recovery analysis (Wilson and Collins, 2019;
Ciranka et al., 2022). As can be seen in the Figure 8, in the Partial
version, all diagonal entries of the p(gen|fit) matrix, except OL2
are dominant in their columns which shows that all the models
except OL2 could be identified well. In the Complete version,
all diagonal entries of the p(gen|fit) matrix, except SQL and Dif
models are dominant in their columns. This analysis shows that
all the models could be distinguished from each other, except
SQL model which could not be confidently distinguished from
Dif model.

We conducted model recovery analysis to identify OL2 model
with a specific range for α2 parameter (α2 is close but not
equal to α1), and it was successfully identified. Unfortunately by
using the range of best fitted parameters to the behavioral data,
OL2 model could not be recovered. It is critical to note that,
although some models could not be identified well, our newly
introduced model OL1 that is also the winning model in the
model-comparison procedure, could be significantly recovered
and we can see no strong mixing behavior between OL1 and
other models.

3. DISCUSSION

Studies of the contextual effect on value learning have mostly
focused on the putative role of the unchosen outcome in updating
the chosen value in the Complete feedback paradigm (Palminteri
et al., 2015; Klein et al., 2017; Bavard et al., 2018). In this
study, we showed that we are able to explain the contextual
effect in the Partial feedback paradigm by using the chosen
outcome in updating the unchosen value. Inspired by the
opposing effect of dopamine in the striatum on competing
option values, we introduced the novel Opposing Learning
model, in which the chosen prediction error updates the
chosen and unchosen values in opposing directions. This update
rule will make the competing option values correlated to
each other, which leads to the emergence of the contextual
effect during value learning. On the other hand, due to the
inhibitory role of the prediction error in updating unchosen
values, the contrast between option values compared to the
standard Q-learning model will increase, which leads to a
higher performance average. Compared to previous models,
this model was better able to account for the behavioral
characteristics of the data (Camerer and Hua Ho, 1999;
Palminteri et al., 2015; Kato and Morita, 2016; Bornstein et al.,
2017; Klein et al., 2017; Bavard et al., 2018; Sutton and Barto,
2018).

Most studies on the instrumental learning paradigm use
discrete rewards (1 and 0) as gain and loss. Participants then
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FIGURE 7 | Parameter recovery analysis of the OL models. Data from 30× number of subjects were simulated with the OL models. The Pearson correlation between

the true and recovered parameters of the OL models shows they have strong correlations.

TABLE 3 | Parameter recovery of the OL1 model: regression results.

Coef Parameter Estimate SE p-value Parameter Estimate SE p-value

b0 β 0.004 0 0.00E+00 β 0.005 0.001 0

b1 0.818 0.013 0 0.865 0.016 0

Partial b0 α 0.038 0.004 0.00E+00 Complete α 0.058 0.004 0

b1 0.734 0.026 0.00E+00 0.611 0.025 0

b0 w 0.143 0.007 0

b1 0.549 0.021 0

The recovered parameters were regressed against the true parameters. The results of the intercepts (b0 ) and slopes (b1 ) showed an acceptable parameter identification.

estimate the probability of rewards for each option to maximize
their payoffs (Frank et al., 2004; Palminteri et al., 2015; Klein
et al., 2017). Although we sometimes encounter probabilistic

rewards in our daily lives (e.g., probability of making a profit on
a stock, at a horse race), we more often experience continuous
outcomes of our choices, as in the amount of profit from a
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FIGURE 8 | Model recovery analysis. Data from 30× number of subjects were simulated with all models in the model space. The generated data were fitted by all

models in the main model-space. The OL1 model (in the Partial and Complete versions) could be strongly identified.

financial transaction (e.g., stocks, pension plans) or evaluation
metrics (assessment scores, citation indices or any other case
with quantitative outcomes) and estimate the magnitude of
our expected outcomes based on these continuous outcomes.
Therefore, our secondary aim in this study was to investigate
the contextual effect in a paradigm with continuous reward
magnitude. We adapted previous instrumental learning tasks
with novel reward designs, in which the stimuli were associated
with some rewards drawn from specific normal distributions.
With these complementary results, we showed that the contextual
effect is not limited to probabilistic rewards, but extends to
magnitude rewards.

There are two pathways in the basal ganglia with opposing
roles: the direct pathway, which promotes actions, and the
indirect pathway, which suppresses actions (Cox and Witten,
2019; Peak et al., 2019). These pathways originate from two
distinct populations of striatal neurons, D1- and D2-SPNs, on
which dopamine has an opposing effect (viz., stimulating D1-
SPNs and inhibiting D2-SPNs; Surmeier et al., 2007; Shen et al.,
2008). Associative learning studies have shown that D1- and D2-
SPNs encode the values of the chosen and unchosen options,
respectively (Frank et al., 2004; Tai et al., 2012; Collins and
Frank, 2014; Donahue et al., 2018; Nonomura et al., 2018; Shin

et al., 2018; Bariselli et al., 2019). Inspired by these results, we
introduced a novel model in which the chosen prediction error
updates the chosen and unchosen values concurrently, but in
an opposing manner (the latter with positive and the former
with negative coefficients). The only model in the literature with
similar update rules is the OpAL model introduced by Collins
and Frank (2014). The crucial difference between the OpAL and
OL models is that, while the OpAL model uses a reference-point
mechanism to account for the contextual effect, the OL model
can better explain the effect without resorting to the concept of
reference point.

The parameter in the OLmodel that controls themagnitude of
the correlation between competing option values (as an indicator
of the contextual effect) is α2. According to whether α2 ≈ 0,
α2 ≈ α1, or 0 < α2 < α1, there are three regimes. When
α2 ≈ 0, the correlation is at its lowest (corr ≈ 0) and there
is no contextual effect at all. When α2 = α1, the absolute
correlation is at its highest (corr ≈ −1) and the contextual
effect is the strongest and permanent. Finally, when 0 < α2 <

α1, the correlation is moderate and the contextual effect is
moderate and temporary, disappearing over time (Figure 5).
This negative correlation between the chosen and unchosen
values in the OL model (especially in the OL1 model) causes
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the competing option values to be learned relative to each other
(qun ≈ −qch). By this relative encoding, this model can explain
not only the reward learning behavior but also the punishment
avoidance learning behavior (Palminteri et al., 2015; Palminteri
and Lebreton, 2021).

The average performance of the OL model is better than
that of the SQL model. In environments with a reasonable
amount of noise, the more relative the model (α2 closer to
α1), the better the average performance. The performance
of the OL model improves as a result of increased contrast
between option values, which makes detection of the superior
options easier. We should also mention some other related
models. First, the confirmation bias model (Lefebvre et al.,
2022) which improves the performance in the same way. In
this model, it is the asymmetric updating of positive and
negative prediction errors that improves the performance by
increasing the contrast between option values. Second, the
RelAsym model (Garcia et al., 2021; Ting et al., 2021) which is
the combination of the confirmation bias and reference point
mechanisms. The RelAsym model by having these two factors,
not only has the asymmetric updating advantage (performance
advantage) but also is able to explain the contextual effect
because of the reference point function it used in its mechanism.
The RelAsym model from the performance’s and contextual
effect’s viewpoints is similar to the OL model, but these two
models are different in their main underlying mechanisms. The
RelAsym model uses the explicit reference point mechanism
to explain the contextual effect, while the OL model can
explain the contextual effect without using any explicit reference
point mechanism.

One of the advantages of the OL model is that it can be
extended for the Complete feedback version. Several studies
have shown that people performing the Complete version of
the task are affected not only by absolute rewards (chosen
outcomes), but also by relative rewards (the difference between
chosen and unchosen outcomes; Camille et al., 2004; Coricelli
et al., 2005, 2007). These relative rewards are encoded in the
brain by dopamine (Kishida et al., 2016; Lak et al., 2016).
Our results are consistent with these findings. In Section 2.5,
we showed that relative rewards have a significant effect in
the Complete version, but not in the Partial version (Table 1).
This suggests that participants are using a hybrid strategy,
that is, a weighted combination of absolute and relative
rewards, when performing the Complete version. This finding
is similar to those of previous studies (Coricelli et al., 2007;
Bavard et al., 2018). It is noteworthy that the extended OL
model preserves all the essential characteristics of the basic
OL model.

There are two types of learning models in which the unchosen
values are updated when people observe the chosen rewards.
The “reference-point learning model” is an example of the first
type. In this model, the reference point of a state, which is
equivalent to its expected rewards, is updated continuously with
its outcomes. The valences of its outcomes are specified relative to
the reference point. The valence is positive when the outcome is
greater than the reference point and negative when the outcome

is smaller than the reference point. Thus, in the first type, the
values of the competing options are learned relative to each
other (Palminteri et al., 2015; Klein et al., 2017; Bavard et al.,
2018).

In the second type, the competing values are learned
independent of each other. The “forgetting reinforcement
learning model” is an example of the second type. Despite
similarities between the OL model and the forgetting
reinforcement learning model, there are crucial differences
between them. First, in a forgetting reinforcement learning
model, the unchosen value decays over time. Therefore, if an
option has not been chosen for a long time, its value decays
toward zero. However, in the OL model, the unchosen value
does not decay, but is updated by the chosen prediction error
in an opposing direction. This implies that, if an option has not
been chosen for a long time, its value does not decay to zero, but
converges toward [−α2/α1 × chosen value]. Second, in contrast
to the OL model, in the forgetting reinforcement learning model,
the observed rewards of the chosen options do not affect the
values of the unchosen options, so the competing values are
learned independently of each other.

Taken together, we have shown that context affects people’s
behavior even in everyday conditions when there is no
counterfactual outcome available. Although this contextual effect
leads to an ecological advantage by allowing one to gain
more rewards in the original context, it results in suboptimal
decision making outside the original context. Studying the
mechanism underlying context-dependent behavior can also help
us to find a solution for the problems that might arise from
suboptimal behavior.

4. MATERIALS AND METHODS

4.1. Participants
Two groups of 41 and 47 participants took part in the Partial and
Complete versions of the experiment, respectively. We excluded
six participants from the Partial version and five participants
from the Complete version. In the Partial and Complete versions,
two and three participants, respectively, did not learn the
associations, and the difference of expected rewards for A1 and
A2 exceeded one for four and two participants, respectively. After
their exclusion, N = 35 participants [age: 26 ± 6 (mean ±

SD), female: n = 16] and N = 42 participants [age: 23 ± 5
(mean ± SD), female: n = 12] remained for the Partial and
Complete versions, respectively. They received their monetary
rewards according to their performance after completing the
task. They were all healthy volunteers that gave written informed
consent before starting the task. The study was approved by the
local ethics committee.

4.2. Behavioral Task
Two different cohorts of participants performed two different
versions of instrumental learning tasks, which had been adapted
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from previous studies (Palminteri et al., 2015; Klein et al.,
2017; Bavard et al., 2018). The two tasks were structured very
similarly and included three consecutive phases of learning, post-
learning transfer, and value estimation. The tasks differed with
respect to the way feedback was provided to the participants.
In the Partial version of the task, only the outcomes for
the chosen option (factual outcomes) were provided to the
participants; in the Complete version, both the outcomes for
the chosen and unchosen options (factual and counterfactual
outcomes) were provided. Before the main task, participants
performed a short training session (20 trials) to become
familiarized with the learning phase. The stimuli and the reward
statistics of the training session were different from those of
the main session. The stimuli were selected from the Japanese
Hiragana alphabet.

The learning phase was made up of one session in which,
in each trial, two stimuli were presented on the screen, and
participants were instructed to choose the option with the
higher expected reward. This instrumental learning paradigm
resulted in participants gradually learning, through trial and
error, to choose the most advantageous option in each trial. The
cues were shown to the participants from two pairs of stimuli
{A1B,A2C}, which means that, in each pair, each stimulus was
always presented with a specific other stimulus. Each stimulus
pair thus established a fixed context. These two contexts were
pseudorandomly interleaved across trials. The rewards of A1

and A2 stimuli were drawn from the same normal distribution
of N(64, 13) and the rewards of B and C stimuli were drawn
from different normal distributions of N(54, 13) and N(44, 13),
respectively. To control for confounding factors, reward samples
were drawn from the truncated distribution, which was in
the [µ − 3σ ,µ + 3σ ] ([0, 100]) interval. The parameters
of the distributions were unknown to the participants, and
they were supposed to learn them. Although the reward
statistics of A1 and A2 were the same, the images associated
with them were different to conceal the task structure from
the participants.

The side on which each stimulus was presented on the
screen, whether to the right or left of the fixation point, was
also pseudorandomized during the task, such that for the total
number of trials for each context, a given stimulus was presented
on the right in half of the trials and on the left in the other
half. The participants were asked to select their choices within
4,000 ms. Otherwise they missed the reward in that trial and
the “No Response” message was shown on the screen. In each
trial, the participants selected their choice by pressing the left
or right arrow key for the options displayed on the left or
right, respectively. Following the choice, the chosen option was
surrounded by a blue square and the related outcomes were
presented simultaneously on the screen. In the Partial version,
the factual outcome was shown below the chosen option for 500
ms. In the Complete version, both the factual and counterfactual
outcomes were shown below the chosen and unchosen options
for 1,000 ms, respectively. In the Complete version, participants
were to process twice the amount of information processed in
the Partial version. In our pilot study, we found that having only

500 ms to process two continuous outcomes was not sufficient
and resulted in poorer performance in the Complete compared
to the Partial version, so we increased the presentation time in
the Complete version to 1,000 ms. The next trial started after
a 1,000-ms fixation screen. Each context was presented to the
participants in at least 50 trials for a total of at least 100 trials.
After at least 100 trials, the task continued for each participant
until the experienced mean of A1 became almost equal to the
experienced mean of A2 (i.e., their difference became <1). If
this condition was not met by the 300th trial, the learning
phase was stopped and the participant’s data were excluded
analysis. By this design, the number of trials always fell into
the range of [100, 300] and the number might be different for
each participant.

After the learning phase, participants immediately entered
the post-learning transfer phase. We did not inform them about
the transfer phase until they had completed the learning phase,
so that they would not use any memorizing strategies during
the learning phase. In the transfer phase, all possible binary
combinations of the stimuli (six combinations) were presented
to the participants and they were asked to choose the option
with higher expected rewards. We informed them that, in the
transfer phase, they would not only see previously paired options,
but also options that had not been paired in the preceding
(learning) phase. Each combination was presented four times,
giving a total of 6 × 4 = 24 trials that were presented in a
pseudorandomized order. In contrast to the learning phase, the
transfer phase was self-paced (i.e., participants were not forced
to choose within a limited time) and no feedback was provided
to the participants in order not to interfere with their learned
values (Frank et al., 2004, 2007; Palminteri et al., 2015; Klein
et al., 2017; Bavard et al., 2018). Following each choice, using
the computer mouse, participants were to report their level of
confidence about their choice on a scale of 0–100, whereby the left
side of the axis was labeled “completely unsure” and the right side
“completely sure.”

After the transfer phase, participants completed the value
estimation phase. In the value estimation phase, stimuli were
presented to the participants one by one. Participants were asked
to estimate average rewards on a scale of 0–100. Each stimulus
was presented four times giving a total of 4 × 4 = 16 trials
which were presented pseudorandomly. These trials were also
self-paced and no feedback was provided to the participants.
We informed the participants that their payoff would be based
on the sum of rewards they earned during the learning task.
In the Complete version, the participants’ total rewards were
based solely on the rewards of their choices. Although they were
not paid in the transfer and value estimation phases, they were
encouraged to respond as correctly as possible as if their rewards
depended on correct responses. At the end of the task, their total
rewards were shown on the screen.

4.3. Computational Models
4.3.1. The Standard Q-Learning (SQL) Model
Context-dependent learning models are commonly compared
to the standard Q-learning (SQL) model as a benchmark
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(absolute learning model). In the SQL model, the value of
each option is updated only based on its own outcomes
(Sutton and Barto, 2018).

δch = rch − Qch

Qch = Qch + αδch

In the simplest form, only the chosen option is updated based on
its outcomes, while in the extended form the unchosen options
are also updated, but again with their own outcomes:

δch = rch − Qch

Qch = Qch + α1δch

δun = run − Qun

Qun = Qun + α2δun

In this model, the learning rates can be the same or different
(α1 = α2 or α1 6= α2).

4.3.2. The Reference-Point (RP) Model
The idea for the reference-point (RP) model comes from
the reference point phenomenon which has been reported by
behavioral and economic studies (De Martino et al., 2009;
Baucells et al., 2011). According to this model, there is a distinct
reference point for each context that is obtained by its expected
rewards. Then the relative outcome of each option is calculated
compared to this reference point. We implemented several
forms of RP models considering the different forms of context
reward (Palminteri et al., 2015). The RPD (Reference-Point
Direct), RPA (Reference-Point Average), and RPM (Reference-
Point Max) models, when the contextual rewards, rx, are
considered to be direct rch, an average of (rch + Qun)/2, and
max(rch,Qun), respectively, in the Partial version, and rch, (rch +
run)/2, and max(rch, run) in the Complete version.

δx = rx − Vx

Vx = Vx + α1δx

δch = (rch − Vx)− Qch

Qch = Qch + α2δch

where Vx is the value of the context, and Qch is the value of
the chosen option. For the Complete version, we also update the
unchosen options as below,

δun = (run − Vx)− Qun

Qun = Qun + α3δun

In the Complete version, we used different versions for
RP: one which only updates the chosen value, and one
which updates both options with the same and different
learning rates.

4.3.3. The Difference (Dif) Model
In a context in which a participant is to maximize her rewards,
the learning strategy is to find an advantageous option as soon
as possible. The difference model is one of the models that
allow fast detection of the advantageous option by learning
the relative value. In this model, participants learn how much
better the superior option is compared to the inferior option
(Klein et al., 2017).

rrlt = rFC − rCF

δ = rrlt − Qch

Qch = Qch + αδ

This model was only applied for the Complete version.

4.3.4. The Hybrid (Hyb) Model
It has been shown that people are not fully absolute or fully
relative learners. Rather they are hybrid learners who use both
strategies but weight them differently (Bavard et al., 2018).

rabs = rFC, rrlt = rFC − rCF

rhyb = wrabs + (1− w)rrlt

δ = rhyb − Qch

Qch = Qch + αδ

For the Partial version, we used the Qun instead of rCF .

4.3.5. The Forgetting Q-Learning (FQL) Model
In the Forgetting model, when the chosen value is updated by its
prediction error, the unchosen value decays at a different learning
rate (Barraclough et al., 2004; Ito and Doya, 2009; Katahira, 2015;
Niv et al., 2015; Kato and Morita, 2016).

δch = rch − Qch

Qch = Qch + α1δch

Qun = α2 ∗ Qun

4.3.6. The Experience-Weighted Attraction (EWA)

Model
It has been shown that, in addition to counterfactual outcomes,
the number of times an option is chosen has a substantial
effect on value learning. Therefore, Camerer and Hua Ho (1999)
brought these two features together in an augmented version
of the Rescorla-Wagner model called the experience-weighted
attraction model,

N(t + 1) = ρN(t)+ 1
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Qch = (QchN(t)ϕ + rch)/N(t + 1)

Qun = (QunN(t)ϕ + δrun)/N(t + 1)

Where N is the experience weight of the option that is
decayed with parameter ρ. The option value is also decayed
with parameter ϕ. If there is a counterfactual outcome
(similar to our Complete feedback version), the counterfactual
outcome also affects the updating of the unchosen value
with weight δ, but if there is not a counterfactual outcome
(similar to our Partial feedback version), this parameter
is zero.

N(t + 1) = ρN(t)+ 1

Qch = (QchN(t)φ + rch)/N(t + 1)

4.3.7. The Sample-Based Episodic (SBE) Model
The idea of the sample-based episodic model is to calculate
option values based on a recency-based sampling strategy rather
than tracking the running average of option values (q-learning
model; Bornstein and Norman, 2017; Bornstein et al., 2017). To
estimate the value of option a at trial t, denoted by Q(a), this
model stochastically samples one observed reward ri with the
following probability:

P(Qa = ri) = α(1− α)(t−i)

By this probability, it is most (exponentially) likely to sample the
most recent experience. Therefore, the likelihood, the probability
of the behavioral data given this model, is computed as the
following:

t−1
∑

j=1

[

P(Qch = rj).

t−1
∑

k=1

[

P(Qun = rk).
eβQch

eβQch + eβQun

]

]

This is a weighted sum of softmax probability over all
possible pairs of competing options. In this model, any sample
probability for trials with no rewards to sample from was
set to 1.

4.3.8. The Relative Asymmetric (RelAsym) Model
This RelAsym model consists of two relative value learning
component (thorough reference point mechanism) and
asymmetric updating component (thorough confirmation
bias mechanism; Garcia et al., 2021; Ting et al., 2021). In
the reference-point model, outcomes are context-dependent
and causes that options’ values to be learned relative to their
reference-point. In the asymmetric updating of option-values,
there is a tendency to update the values with positive prediction
errors with a larger weight. The reference-point part of the model
is as the following:

δx = rx − Vx

Vx = Vx + α1δx

δch = (rch − Vx)− Qch

δun = (run − Vx)− Qun

where Vx is the value of the context. The confirmation part of the
model is as the following:















Qch = Qch + αconf δch if δch > 0

Qch = Qch + αdiscδch if δch < 0
Qun = Qun + αconf δun if δun < 0

Qun = Qun + αdiscδun if δun > 0

where Qch and Qun are the values of the chosen option and
unchosen option, and αconf and αdisc, are learning rates for
confirmatory and disconfirmatory information.

TABLE 4 | The estimated parameters.

Parameters

Parameter Constraint SQL RPA Dif Hyb OL1 OL2

Partial

β 0 ≤ β < inf 0.07± 0.03 0.12± 0.08 0.06± 0.04 0.02± 0.02 0.03± 0.02

α1 0 ≤ α1 ≤ 1 0.25± 0.26 0.26± 0.27 0.37± 0.29 0.26± 0.2 0.32± 0.23

α2 0 < α2 ≤ α1 0.34± 0.3 0.21± 0.18

w 0 ≤ w ≤ 1 0.55± 0.37

Complete

β 0 ≤ β < inf 0.12± 0.09 0.37± 0.24 0.37± 0.23 0.2± 0.15 0.11± 0.12 0.1± 0.1

α1 0 ≤ α1 ≤ 1 0.14± 0.16 0.1± 0.12 0.09± 0.08 0.21± 0.15 0.22± 0.15 0.26± 0.14

α2 0 < α2 ≤ α1 0.11± 0.13 0.19± 0.16

α3 0 ≤ α3 ≤ 1 0.35± 0.3

w 0 ≤ w ≤ 1 0.28± 0.23 0.28± 0.17 0.32± 0.19

Mean± SD.
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4.3.9. The Opposing Learning (OL) Model
The opposing learning model was inspired by the opposing role
of dopamine on the chosen and unchosen options. In this model,
both the chosen and unchosen values are simultaneously
updated with the chosen prediction error, but in an
opposite direction.

δch = rch − Qch

Qch = Qch + α1δch

Qun = Qun − α2δch

We extended this model for the Complete version by replacing
the absolute reward with the weighted combination of absolute
and relative rewards (a hybrid strategy).

rabs = rFC, rrlt = rFC − rCF

rhyb = wrabs + (1− w)rrlt

δ = rhyb − Qch

Qch = Qch + α1δ

Qun = Qun − α2δ

4.4. Pure Simulation Procedure
The OL behavior has been examined in a wide range of
task and parameter settings. Without loss of generality, we
did the simulation with normalized settings such that we
had σ = 1 in reward distributions. As an example, the
normalized version of the setting of task N(µ = 64, σ = 10),
parameters of β = 0.01, and any α1,α2, changes to its
normalized version of N(µ = 6.4, σ = 1) (divide by
10), and parameters of β = 0.1 (multiply by 10), and
the same α1,α2. The task settings included 10 different
pairs of options in which their relative values were covered
{1, 2, . . . , 10} ([µ1,µ2] ∈ {[10, 9], [10, 8], . . . , [10, 0]},
and σ = 1). The parameter settings covered a wide
range of β : {0, 0.025, 0.05, 0.075, 0.1, 0.1025, . . . , 0.4}∪
{0.5, 0.6, . . . , 1}, α1: {0.1, 0.2, . . . , 1}, and α2/α1:
{0, 0.5, 0.75, 0.875, 0.93, 0.96, 0.980.992, 0.996, 0.998, 0.999, 1}.

4.5. Fitting and Simulation Procedure
The data fitting was implemented using the fmincon function of
Matlab software (the MathWorks Inc., Natick, MA). The fittings
were done with several initial points to have a higher probability
of finding the global optimum, rather than getting stuck on a
local optimum. We calculated the exceedance probabilities (xp)
and protected exceedance probabilities (pxp) for the model-
comparison part (Stephan et al., 2009; Rigoux et al., 2014).
Since the number of trials for each participant is different, we
have fed the BIC to the BMS toolbox. To estimate parameters,
we optimized maximum a posteriori (MAP) using weakly

informative priors of β(1.2, 1.2) for each parameter. It is worth
noting that the option values are on a scale of 0 to 100, so
that the range of the β parameter will be on a scale of much
<1, thus, the β(1.2, 1.2) would be a proper prior in the model
fitting (Table 4). The simulation for each participant was done
on its best-fitted parameters for 100 repetitions and then the
representative behavior of this agent was obtained by averaging
over its repetitions.
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